3.11 Mechanics of Materials F01

Exam #3 Solutions
(26 PTS TOTAL)

1. Q. Two atoms interact at T=0°K via a van der Waals Lennard-Jones potential. One
of the atoms is charged and hence, there is an additional attractive interaction
energy : UgcnarcenonroLar(l) =-C/1*. These interactions are additive and yield
the total interatomic potential energy curve shown below.
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(a) Using the graph above calculate A (Jm®), B (Jm*), and C (Jm*) in the units
specified for each. (3PTS)

UTOTAL (r) = ULENNARD-JONES (r) + UCHARGE-NONPOLAR (r)

A, B C

where: U LI (r) = I’_G 2 and UCHARGE—NONPOLAR (r) = I‘_4

-A, B -C
UTOTAL (r) = 6 + 12 + _4(1)
rrr r
Equation (1) has three unknowns, so you need three equations to solve it for A, B, and C.

You can read three arbitrary datasets off the graph to obtain these three equations and three
unknowns :



-A + B -C

U r=r)= + =0k.T 2
rora (= 1,) 0.38nm®  0.38nm™  0.38nm* T2
-A B -C
U r=r)= + + =-0.76k,T(3
rora (7 = fe) 0.43nm°  0.43nm™  0.43nm* 219
Usorac (r=1) = A + B + < =-0.61k,T (4)

0.47nm°®  0.47nm™  0.47nm*
Solving equations (2), (3), and (4) one obtains :

A= 30107 Jm®
B= 10" Jm”
C= 310% Jm*

(b) By what percentage is the interatomic binding energy increased due to the
charge-nonpolar interaction? (3 PTS)

The total interatomic binding energy :

Urora (= 1) =E5 =-0.76 kg T

Without the charge polar interaction theinteratomic binding energy would be:
-A B

Uigral(r=r,) = r_6 + rT (no charge polar)

Show that thechangeinr, isnegligible :r, = (2B/A)"® = 0.43nm
Substitutingin A =3-107 Jm®, B =10"* Jm*, C =3-10 Jm*(from part (&), r, = 0.43 nm:
Usora (r=r,) =-0.547k,T (nocharge polar)

U oral (r = r.)(with charge polar) - U ;4. (r = 1.)(no charge polar)

%increase= - X 100
U ora (r = 1.)(with charge polar)
_C
4
Yincrease=—e_x 100=20KaT-0547Ke Ty 16y _ go
-0.76 kT -0.76k,T

(c) Calculate Fg prure(NN) (3 PTS)

Frurrure 1S the slope of the interatomic potential energy curve at r=r;:



“dUsora, (F=1) _-6A  12B _4C

Froprure = F(r=r1,) = dr rS7 rS13 _E(S)
- 2 = -
Tofindr,:=k(r=r) =2 UTO;/;; (r=r) 4rZBA +1fﬁ'3 - 2:)6(3 =0/(6)

Solve(6)for r, = 0.51 nm
Substitutingin(5) A =3-107" Jm®, B =10 Jm*, C =3-10% Jm* (from part (a)), r, = 0.51 nm:
Fosorone = -0.0180N
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2. A block of rubber is deformed at room temperature in uniaxial tenion and the
following stress versus extension ratio data is recorded.
(a) Using the Gaussian theory of rubber elasticity, calculate the network strand

density v, (strands/m®)
(b) Calculate the error in the stress (MPa) when one assumes that the Gaussian
theory of rubber elasticity holds at failure.

(c) Calculate the predicted stresses, g, and g,, from the Gaussian theory of rubber
elasticity if this same block of rubber was deformed in biaxial tension to A,=3 and

A,=4.



(a) Using the Gaussian theory of rubber elasticity, calculate the network strand
density v, (strands/m®) (2 PTS)

The stress strain law for uniaxial tension of an elastomer as predicted by the Gaussian theory
of rubber elasticity is as follows :

tl U
0, =k TV, (A, ——which holdsfor A, <15
0O AD
rearranging thestress versusstrain law above:
o,(Pa=N/m?
10
U
/\12D
Onecan read data off thegraph g, = 0.5-10° Pa, A, = 1.5and substituteinto(1):
v, =1.16+10°strands/m*

v, (m?) = .
kg T (3= Nm) A, -
[l

(b) Calculate the error in the stress (MPa) when one assumes that the Gaussian
theory of rubber elasticity holds at failure. (2 PTS)



Thiselastomer failsat A, =8
The Gaussian Theory of Rubber Elasticity predictsastressof :

D 1 D -21 26 3
0, =K TV, G ~—11=4.110 Nm +116+ 10" strands/m %——
0 1 0

o, =3.797 MPa
Ao, = Errorinstress = Real stress - Predicted Stress = 7 MPa (read off graph) - 3.797 MPa
0, = 3.203 (theory underestimates stress)

(c) Calculate the predicted stresses, o, and ,, from the Gaussian theory of rubber
elasticity if this same block of rubber was deformed in biaxial tension to A,=3 and

A=4. 2PTs)

Thestressversusstrain law for biaxial tensionis:

0 1 O
o, =kgTv, A ———0
3 AAE
U 1 U
o, =kgTv, A, —
= AB
Substituting in the given valuesoneobtains:
o, =1.42MPa
0, =1.90MPa

3. It is found that the stress relaxation behavior of a certain polymer can be
represented by a Maxwell Model, where an elastic spring of modulus, k=3¢10° Pa, is
in series with a viscous dashpot of viscosity, =510 Pass. Calculate the stress at
t=100s for the following loading schedule :

(1) strain of 4% is applied at t=0s +

(2) additional strain of 7% at time, t=25s +

(3) additional strain of 3% at t=75s

(6 PTS)

The solution to the Maxwell model is :



o(t) = ke exp™"

£, = 4%att=0s - 0, =3+ 10°Pas iexp—loos-a-losPa/S 10°Pa s

0, =3+10°Pas io exp 10053 108Pa/5 10'Pa s
o, =6.58 MPa

£, =T%att = 25s — g, =3+10°Pas Lexp—755-3108Pa/5 10°Pa s
o, =13.39 MPa

g, =3%att=75s - g, =3+10°Pa- H?’()exp—ZSS-&lOBPaﬁ 10'%Pa s
o, =7.746 MPa

OtotaL =0, T0, +0, =27.7 MPaat t =100s

4. The following Figure is experimental data for the macroscopic uniaxial
engineering stress versus strain curve for four different materials.
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From the above plot, state which material has the highest value of the following
parameters and calculate the numerical value for that material :



(1PT EACH,5PTS TOTAL)

(a) Young's modulus, E (GPa)
Material 1 : E=Aao/Ag (intial portion of curve) = 26.7 GPa

(b) 0.2% yield stress (MPa)
OMITTED

(c) ultimate tensile strength (MPa)

Material 11 : Maximum in stress versus strain curve : 350 MPa
(d) failure strength (MPa)

Material I : Maximum in stress versus strain curve : 380 MPa
(e) modulus of toughness (MPa)

Material 11 : total area under stress versus strain curve : 66 MPa
(f) modulus of resilience (MPa)

Material 1V : area under stress versus strain curve up until yield



