3.11 Mechanics of Materials F02
 Exam \#2 SOLUTIONS

(*show all of your work / calculations to get as much credit as possible)
(Each question worth 10 PTS)

1. The attractive interatomic(ionic) potential between two oppositely charged ions of Na^{+}and Cl^{-}in air, $\mathrm{U}(\mathrm{r})$, is given by :

$$
\mathbf{U}_{\text {attractive }}(\mathbf{r})=-\left[Q_{1} \mathbf{Q}_{2} / 4 \pi \varepsilon_{0}\right] r^{-1}
$$

where : $Q_{1}=Q_{2}=Q=1.602 \bullet 10^{-19} \mathrm{C}$ is the electric charge in Coulombs, ε_{0} is the dielectric permittivity of free space $=8.854 * 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$, and r is the interionic separation distance. The (steric) repulsive molecular interaction parameters using a soft, power law repulsion are : $B=10^{-135} \mathrm{Jm}^{12}, \mathrm{~m}=12$. Determine the binding energy, E_{B}, in units of k_{B} T. (*HINT : first calculate the equilibrium bond length).

ANS. Using a steric, soft, power law repulsion of :

$$
\mathrm{U}_{\text {repulsive }}(\mathrm{r})=\frac{+\mathrm{B}}{\mathrm{r}^{\mathrm{m}}}
$$

then the total interionic potential is :

$$
\mathrm{U}_{\text {total }}(\mathrm{r})=\mathrm{U}_{\text {attractive }}(\mathrm{r})+\mathrm{U}_{\text {repulsive }}(\mathrm{r})=\frac{-\mathrm{A}}{\mathrm{r}}+\frac{\mathrm{B}}{\mathrm{r}^{12}}
$$

where :

$$
\mathrm{A}=\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{\mathrm{o}}}=\frac{\left(1.602 \bullet 10^{-19} \mathrm{C}\right)^{2}}{4 \pi\left(8.854 \bullet 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}\right)}=2.3 \bullet 10^{-28} \mathrm{Jm}
$$

To find the equilibrium bond length, r_{e}, take the negative derivative of equation $(1) \mathrm{w} / \mathrm{r} / \mathrm{t}$ to r, set $=0$, and solve for r_{e} :

$$
\begin{aligned}
& \mathrm{F}_{\text {total }}(\mathrm{r})=\frac{\mathrm{dU}_{\text {total }}(\mathrm{r})}{\mathrm{dr}}=\frac{-\mathrm{A}}{\mathrm{r}^{2}}+\frac{12 \mathrm{~B}}{\mathrm{r}^{13}} \\
& \mathrm{~F}_{\text {total }}\left(\mathrm{r}_{\mathrm{e}}\right)=0=\frac{-\mathrm{A}}{\mathrm{r}_{\mathrm{e}}^{2}}+\frac{12 \mathrm{~B}}{\mathrm{r}_{\mathrm{e}}^{13}} \\
& \mathrm{r}_{\mathrm{e}}=^{11} \sqrt{\frac{12 \mathrm{~B}}{\mathrm{~A}}}={ }^{11} \sqrt{\frac{12\left(10^{-135} \mathrm{Jm}^{12}\right)}{2.3 \bullet 10^{-28} \mathrm{Jm}}}=0.217 \mathrm{~nm}
\end{aligned}
$$

Substitute r_{e} into equation (1):
$\mathrm{E}_{\mathrm{B}}=\mathrm{U}_{\text {total }}\left(\mathrm{r}_{\mathrm{e}}=0.217 \mathrm{~nm}\right)=\left[\frac{-2.3 \bullet 10^{-28} \mathrm{Jm}}{0.217 \bullet 10^{-9} \mathrm{~m}}+\frac{10^{-135} \mathrm{Jm}^{12}}{\left(0.217 \bullet 10^{-9} \mathrm{~m}\right)^{12}}\right]\left[\frac{1 \mathrm{k}_{\mathrm{B}} \mathrm{T}}{4.1 \bullet 10^{-21} \mathrm{~J}}\right]$
$\mathrm{E}_{\mathrm{B}}=220 \mathrm{k}_{\mathrm{B}} \mathrm{T}$
. A cantilever beam is used to support a linearly distributed load of intensity q_{1} from 0 to $3 \mathrm{~N} / \mathrm{m}$ and two concentrated loads $\mathrm{P}_{1}=1 \mathrm{~N}$ and $\mathrm{P}_{2}=2 \mathrm{~N}$, as shown in the figure below.

(a) Draw the shear force diagram, $\mathrm{V}(\mathrm{x})$, and label the location (along x -axis) and magnitude of the maximum shear force.
(b) Draw the bending moment diagram, $M(x)$, and label the location (along x -axis) and magnitude of the maximum bending moment.
PLEASE LABEL NUMERICAL VALUES ON YOUR PLOTS AT $\mathrm{x}=0,1,2,2.5$, and 5. USE APPROPRIATE SIGN CONVENTIONS

ANS. (a) Consider a free-body diagram of the entire beam and the equations of static equilibrium to determine the reaction shear force and bending moment at the fixed end \mathbf{A}. Take upwards as $(+)$ and downwards as $(-)$.

$\Sigma \mathrm{F}_{\mathrm{Y}}=0=-\mathrm{P}_{1}+\mathrm{P}_{2}-\mathrm{P}_{3}+\mathrm{R}_{\mathrm{A}}$
$\mathrm{R}_{\mathrm{A}}=\mathrm{P}_{1}-\mathrm{P}_{2}+\mathrm{P}_{3}=(1-2+3.75) \mathrm{N}$
$\mathbf{R}_{\mathrm{A}}=+\mathbf{2 . 7 5 N}$
(*positive answer means assumed direction is correct)
Taking (CCW+) and (CW-) :
$\Sigma \mathrm{M}_{\mathrm{A}}=0=\mathrm{M}_{\mathrm{A}}-\mathrm{P}_{1}(1 \mathrm{~m})+\mathrm{P}_{2}(2 \mathrm{~m})-\mathrm{P}_{3}(4.17 \mathrm{~m})$
$\Sigma \mathrm{M}_{\mathrm{A}}=0=\mathrm{M}_{\mathrm{A}}-(1 \mathrm{~N})(1 \mathrm{~m})+(2 \mathrm{~N})(2 \mathrm{~m})-(3.75 \mathrm{~N})(4.17 \mathrm{~m})$
$\Sigma \mathrm{M}_{\mathrm{A}}=0=\mathrm{M}_{\mathrm{A}}-12.6 \mathrm{Nm}$
$M_{A}=+\mathbf{1 2 . 6 N m}$
(*positive answer means assumed direction is correct)

Shear Force Diagram :

You may start from either side of the beam.
$\underline{0.0}<\mathrm{x}<1.0$ Starting from the left hand side of the beam, the shear force is constant with x and equal in magnitude to $\mathrm{R}_{\mathrm{A}}=2.75 \mathrm{~N}$. The sign is obtained by noting the shear directions as follows:

$\underline{\mathbf{1 . 0}}<\mathrm{x}<\mathbf{2 . 0}$ For the concentrated load, $\mathrm{P}_{1}(\mathrm{x}=1)=1 \mathrm{~N}$, the shear will exhibit a discontinuous jump in the value of the $\mathrm{V}(\mathrm{x}=1)$ equal in magnitude to P_{1}. We can tell that $\mathrm{V}(\mathrm{x})$ will jump down to $\mathrm{V}(\mathrm{x}=1)=2.75-1=+1.75 \mathrm{~N}$ via a free body diagram :

$\underline{\mathbf{2 . 0}}<\mathrm{x}<\mathbf{2 . 5}$. For the concentrated load, $\mathrm{P}_{2}(\mathrm{x}=2)=2 \mathrm{~N}$, the shear will exhibit a discontinuous jump in the value of the $\mathrm{V}(\mathrm{x}=2)$ up to $\mathrm{V}(\mathrm{x}=2.0)=1.75 \mathrm{~N}+2 \mathrm{~N}=+3.75 \mathrm{~N}$.
$\underline{2.5<x<5.0}$ For linearly distributed loads, the shear force is parabolic with distance:
$\mathrm{q}_{1}(\mathrm{x})=\frac{\mathrm{qX}}{\mathrm{L}}$
$V(x)=-\int q_{1}(x) d x=-\int \frac{q x}{L} d x=\frac{-q x^{2}}{2 L}+C_{1}$
From above, $\mathrm{V}(\mathrm{x}=0)=+3.75 \rightarrow \mathrm{C}_{1}=+3.75 \mathrm{~N}$
$\mathrm{V}(\mathrm{x})=\frac{-\mathrm{qx}^{2}}{2 \mathrm{~L}}+3.75$
$\mathrm{V}(\mathrm{x}=\mathrm{L})=\frac{-\mathrm{qL}}{2}+3.75=0$
$\mathrm{V}_{\text {max }}$ is then equal to $\mathrm{V}(\mathrm{x}=2.5)=+3.75 \mathrm{~N}$.

Bending Moment Diagram :

By definition: $M(x)=\int V(x) d x$
$\underline{0<x<1.0}$
$\mathrm{M}(\mathrm{x})=\int \mathrm{V}(\mathrm{x}) \mathrm{dx}=\int 2.75 \mathrm{dx}=2.75 x+C_{1}$
From the initial FBD, $\mathrm{M}(\mathrm{x}=0)=-12.63=C_{1}$
(the sign is determined from the FBD below)
$\mathrm{M}(\mathrm{x})=2.75 x-12.63$

Hence, the $\mathrm{M}(\mathrm{x})$ diagram is linear with slope +2.75 and y -intercept -12.63 . $\mathrm{M}(\mathrm{x}=1)=2.75(1)-12.63=-9.88 \mathrm{Nm}$.
$\underline{1.0}<x<2.0$ Following the same methodology abovethe $M(x)$ diagram is linear with slope +1.75 and $\mathrm{M}(\mathrm{x}=2)=-8.13 \mathrm{Nm}$.
$\underline{\mathbf{2 . 0}}<\mathrm{x}<\mathbf{2 . 5}$ Following the same methodology above the $\mathrm{M}(\mathrm{x})$ diagram is linear with slope +3.75 and $\mathrm{M}(\mathrm{x}=2.5)=-6.25 \mathrm{Nm}$.

$\underline{2.5<x<5.0}$

$M(x)=\int\left(\frac{-q x^{2}}{2 L}+3.75\right) d x=\frac{-q x^{3}}{6 L}+3.75 x+C_{1}$
$\mathrm{M}(\mathrm{x}=0)=-6.25 \rightarrow \mathrm{C}_{1}=-6.25$
$M(x)=\frac{q x^{3}}{6 L}-3.75 x-6.25$

3. A state of plane stress consists of the following stresses : $\sigma_{x}=-5 \mathrm{kPa}, \sigma_{\mathrm{y}}=+10 \mathrm{kPa}$, and $\tau_{\mathrm{xy}}=+7 \mathrm{kPa}$.
(a) Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates.
(b) Calculate the principal stresses, σ_{1} and σ_{2} and their corresponding principal angles, $\boldsymbol{\theta}_{\mathrm{p} 1}, \boldsymbol{\theta}_{\mathrm{p} 2}$ and show all of these on your Mohr's circle construction.
(c) Calculate the maximum shear stresses, $\pm \tau_{\text {MAX }}$, and their corresponding angles of maximum shear stress, $\theta_{\mathrm{s} 1}, \theta_{\mathrm{s} 2}$ and show all of these on your Mohr's circle construction.
(d) Calculate the stresses on an element rotated by 75 degrees.

$\theta_{P 1}=\frac{136.97^{\circ}}{2}=68.4^{\circ}, \theta_{P 2}=158.4^{\circ}$
$\theta_{s 1}=113.4^{\circ}, \theta_{s 2}=203.4^{o}$
(d) $\quad \sigma_{x^{\prime}}=12.5 \mathrm{kPa}$ Tension $(+)$

$$
\sigma y^{\prime}=7.5 \mathrm{kPa} \text { Compression (-) }
$$

$$
\tau_{x^{\prime} y^{\prime}}=2.3 \mathrm{kPa} \text { CW on } \mathrm{x} \text { face }(-)
$$

