LECTURE \#19: 3.11 MECHANICS OF MATERIALS F03

INSTRUCTOR : Professor Christine Ortiz OFFICE : 13-4022 PHONE : 452-3084 WWW : http:/ / web.mit.edu/ cortiz/ www
-REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES

- QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

SUMMARY : LAST LECTURE

I. Basic Definitions :

- elasticity \& elastic moduli
- Young's modulus
- shear modulus
- bulk modulus
- length scales : macroscopic, microscopic, molecular

II. Questions :

$\Rightarrow 1$. What is the molecular origin of the elastic moduli? i.e. What provides the internal resistance to external mechanical forces and deformations and allows materials to hold their shape?
$\Rightarrow 2$. Why do different materials have vastly different elastic moduli?
$\Rightarrow 3$. Why do some materials have one elastic moduli ($\mathrm{E}=$ constant, isotropic) while other s have different ones in different directions (anisotropic, $\mathrm{E}=\mathrm{E}(\theta)$?

III. Answers :

$\Rightarrow 1$. The TYPE of internal "cohesive" forces/ bonding/ molecular structure holding the material together.
$\Rightarrow 2$. How these forces are ARRANGED within the material (e.g the placement, packing, and location).
$\Rightarrow 3$. The NUMBER of bonds/ unit volume or unit area IV. Thermodynamic Contributions to Elastic Moduli :

Molecular Origin	(1) E nergetic or Enthalpic	(2) E ntropic
macroscopic result	linear elasticity \Rightarrow Hoo ke's Law $\sigma=\mathrm{E} \varepsilon$	nonlinear elasticity $\Rightarrow \mathrm{Ru}$ bber Elasticity
strain range	small strains	large strains
material	metals,	polymers,
	ceramics,	rubber
	crystalline	networks
	materials	

V. Enthalpic Origin of Elastic Moduli:

- distortion of chemical and physical bonds : types
- lattice strain in crystalline materials

Summary of Types of Bonding

Type of Interaction	Classification	Charactenistics	Schematic
Covalent :	Primary or Chemical Bonds: - usually characterized as individually "strong" - outer orbital ecooperatively shared between two or more atoms so that discrete nature of atoms is lost - quantum mechanical in oriqin	- e- are localized - directional (i.e. oriented at welldefined angles to each other)	Oe-e-
Metallic :		- only metals atoms are involved - e- are completely delocalized and mobile throughout entire material - non-directional	$\begin{aligned} & \mathrm{e}-\oplus_{\mathrm{e}-} \oplus_{\mathrm{e}-}^{\mathrm{e}-} \oplus_{\mathrm{e}-}^{\mathrm{e}-} \\ & \mathrm{e}-\oplus_{\mathrm{e}}-\oplus_{\mathrm{e}-} \oplus_{\mathrm{e}-} \bigoplus_{\mathrm{e}-} \end{aligned}$
Ionic : - ion-ion		- coulombic in origin, occurs between oppositely charged species - electron transfer from one atom to another	
Polar Interactions : - charge-dipole - dipole-dipole - hydrogen bonding	Secondary or Physical Interactions: - usually characterized as individually "weak" - no e- sharing, more subtle attraction between $(+)$ and $(-)$ charges, discrete nature of atoms preserved - typically exhibits: - lack of specificity - lack of directionality - lack of stoichiometry	- force between an ion and a dipole or two dipoles where the (+) charge attracts the (-) charge (purely electrostatic) - H -bonding : a special type of dipole-dipole interaction that results from the bonding between a H atom which is partially (+) charged and a highly electronegative atom such as $0, \mathrm{~F}, \mathrm{~N}, \mathrm{Cl}$, (directional)	
Polarization Interactions: - charge-nonpolar (induced or instantaneous dipole) - dipole-nonpolar (induced dipole)		- an ion or dipole in the vicinity of a nonpolar atom or molecule causes instantaneous polarization and electrostatic attraction	
Dispersion or London Interactions : (*also called charge-fluctuation, electrodynamic, induced-dipoleinduced dipole forces) - nonpolar-nonpolar		- the (+) nucleus of a nonpolar atom attracts the $(-)$ charged electrons of another nonpolar atom resulting in instantaneous, induced, dipoles and fluctuating electron clouds - quantum mechanical in origin	
Hydrophobic :	Special Interactions : - not really true "bonds" - non-directional	- attraction between nonpolar molecules in aqueous solution caused by their inability to form Hbonds with HOH so as to minimize the disruption of H bonds in HOH - entropy-driven	
Entropic Elasticity :		- attractive, recoiling force produced via extensional deformation macromolecules	

Atomistic Basis for Elasticity: One Example : Crystalline Materials

Atomistic Basis for Elasticity: One Example : Crystalline Materials

Atomistic Basis for Elasticity:

covalent bond : outer orbitals cooperatively shared

lattice strain disturbs electronic configuration

Consider an Individual Bond

interatomic distance, r (nm)

interatomic
(bond) energy, W
(kJ/ mol)
interatomic force, \mathbf{F} ($\mathbf{n N}$)

Interaction Parameters

interatomic
distance, r (nm)

interatomic
(bond) energy, W
(kJ/ mol)
interatomic force, F (nN)

Molecular Origin of Repulsive Component

Molecular Origin of Repulsive Component

Molecular Origin of Attractive Component

Complete Interaction Potential : "The Lennard-Jones Potential"

Complete Interaction Potential : "The Lennard-Jones Potential"

Interaction Fonce :

Interaction Fonce :

