LECTURE #19: 3.11 MECHANICS OF MATERIALS F03

INSTRUCTOR : Professor Christine Ortiz **OFFICE :** 13-4022 **PHONE :** 452-3084 **WWW :** http://web.mit.edu/cortiz/www

• **REVIEW** : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES

• QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

SUMMARY : LAST LECTURE

I. apply load L

II.

T, remove load

I. Basic Definitions :

- elasticity & elastic moduli
 - Young's modulus
 - shear modulus
 - bulk modulus
- *length scales* : macroscopic, microscopic, molecular

II. Questions :

 \Rightarrow 1. What is the molecular origin of the elastic moduli? i.e. What provides the internal resistance to external mechanical forces and deformations and allows materials to hold their shape?

 \Rightarrow 2. Why do different materials have vastly different elastic moduli?

 \Rightarrow 3. Why do some materials have one elastic moduli (E=constant, isotropic) while other s have different ones in different directions (anisotropic, E=E(θ)?

III. Answers :

 \Rightarrow 1. The **TYPE** of internal "cohesive" forces/ bonding/ molecular structure holding the material together.

 \Rightarrow 2. How these forces are **ARRANGED** within the material (e.g the placement, packing, and location).

 \Rightarrow 3. The **NUMBER** of bonds/unit volume or unit area

IV. Thermodynamic Contributions to Elastic Moduli :

Molecular Origin	(1) Energetic or Enthalpic	(2) Entropic
macroscopic	linear	nonlinear
result	elasticity⇒Hoo	elasticity⇒Ru
	ke's Law	bber
	$\sigma = E \epsilon$	Elasticity
strain range	small strains	large strains
material	metals,	polymers,
	ceramics,	rubber
	crystalline	networks
	materials	

V. Enthalpic Origin of Elastic Moduli:

- distortion of chemical and physical bonds : types
- lattice strain in crystalline materials

	Type of Interaction	Classification	Characteristics	Schematic
	Covalent :	Primary or Chemical Bonds : • usually characterized as individually "strong"	 e- are localized directional (i.e. oriented at well-defined angles to each other) 	Oe-e-O
	Metallic :	 outer orbital e- cooperatively shared between two or more atoms so that discrete nature of atoms is lost quantum mechanical in origin 	 only metals atoms are involved e- are completely delocalized and mobile throughout entire material non-directional 	$\stackrel{e-\bigoplus_{e}\bigoplus_{e}\oplus_{e}\oplus_{e}\oplus_{e}\oplus_{e}\oplus_{e}\oplus_{e}\oplus_{e}\oplus$
•	Ionic : • ion-ion		 coulombic in origin, occurs between oppositely charged species electron transfer from one atom to another 	cation anion
	Polar Interactions : • charge-dipole • dipole-dipole • hydrogen bonding	Secondary or Physical Interactions : • usually characterized as individually "weak" • no e - sharing, more subtle attraction between (+) and (-) charges, discrete nature of atoms preserved • typically exhibits : • lack of specificity	 force between an ion and a dipole or two dipoles where the (+) charge attracts the (-) charge (purely electrostatic) <i>H-bonding</i>: a special type of dipole-dipole interaction that results from the bonding between a H atom which is partially (+) charged and a highly electronegative atom such as O, F, N, Cl, (directional) 	
•	Polarization Interactions : • charge-nonpolar (induced or instantaneous dipole) • dipole-nonpolar (induced dipole)	 lack of stoichiometry 	• an ion or dipole in the vicinity of a nonpolar atom or molecule causes instantaneous polarization and electrostatic attraction	
	Dispersion or London Interactions : (*also called charge-fluctuation, electrodynamic, induced-dipole- induced dipole forces) • nonpolar-nonpolar		 the (+) nucleus of a nonpolar atom attracts the (-) charged electrons of another nonpolar atom resulting in instantaneous, induced, dipoles and fluctuating electron clouds quantum mechanical in origin 	
	Hydrophobic :	Special Interactions : • not really true "bonds" • non-directional	 attraction between nonpolar molecules in aqueous solution caused by their inability to form H- bonds with HOH so as to minimize the disruption of H- bonds in HOH entropy-driven 	
↓	Entropic Elasticity :		• attractive, recoiling force produced via extensional deformation macromolecules	

Summary of Types of Bonding

Atomistic Basis for Elasticity: One Example : Crystalline Materials

Atomistic Basis for Elasticity: One Example : Crystalline Materials

Atomistic Basis for Elasticity:

covalent bond : outer orbitals cooperatively shared

lattice strain disturbs electronic configuration

Consider an Individual Bond

interatomic (bond) energy, W (kJ/mol)

interatomic force, F (nN)

Interaction Parameters

interatomic (bond) energy, W (kJ/mol)

interatomic force, F (nN)

Molecular Origin of Repulsive Component

Molecular Origin of Repulsive Component

Interaction Force :

Interaction Force :

