
3.11 Mechanics of Materials F00
Exam #3 SOLUTIONS

1. Q.  (a) A sheet of rubber is 200 mm square and 100 mm thick. Its edges are aligned
parallel to the x1 and x2 axis. The forces F1 and F2 are applied to the x1 and x2
directions respectively to stretch the sheet homogeneously and bring the x1
dimension to 400 mm and the x2 dimension to 300 mm. Calculate :

(1) F1 and F2 (kN)
(2) σσσσt1 and σ σ σ σt2 (MPa) (the true stresses in the x1 and x2 directions)

assuming the rubber follow Gaussian rubber elasticity theory and has a Young's
modulus of 1.5 MPa.
(b) It is typically observed that real elastomers, such as car tires, become softer (less
stiff) as the temperature is increased.  Explain in a few sentences this apparent
discrepency with Gaussian rubber elasticity theory (HINT: start by explaining the
equation for the elastic Young's modulus you derived on a recent problem set).

A. (a) Starting with the constant volume constraint :
λ1λ2λ3 =1
λ1=λ1=Lf1/Lo1=400mm/200mm=2 (extension)
λ2=λ2=Lf2/Lo2=300mm/200mm=1.5 (extension)
λ3=1/λ1λ2=1/(2•1.5)=0.33 (contraction)

The nominal stress versus extension ratio equations for biaxial tension were derived in the
homework :
σ1=kBTνx[λ1−1/λ2

2λ1
3] (1)

σ2=kBTνx[λ2−1/λ1
2λ2

3] (2)

E=3νxkBT 
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νxkBT=E/3=1.5MPa/3=0.5 MPa

Substituting in values of νxkBT=0.5 MPa, λ1=2, and λ2=1.5 into equations (1) and (2) we
obtain :

σ1=0.5[2−1/1.5223]=0.97225 ΜPa
σ2=0.5 [1.5−1/221.53]=0.7129 ΜPa

σ1=F1/Ao (x2/x3 plane)� F1=σ1Ao=0.97225 MPa (200 mm•10 mm)
σ2=F2/Ao (x1/x3 plane)� F2=σ2Ao=0.7129 MPa (200 mm•10 mm)

σσσσ1111=1.94 kN
σσσσ2222=1.43 kN

σt1=σ1(ε1+1)
σt2=σ2(ε2+1)

where: λ=1+ε 

σt1=σ1λ1=0.97225 ΜPa • 2
σt2=σ2λ2=0.7129 ΜPa • 1.5

σσσσt1====1.9445 MPa
σσσσt2=1.06935 MPa

(b) The equation for the elastic Young's modulus in uniaxial tension derived from Gaussian
rubber elasticity theory is :

E=3νxkBT

Hence, the modulus is predicted to increase linearly with temperature and with network
strand density. In reality, the network strand density decreases rapidly with temperature due
to covalent bond scission and/or disentanglement of physical crosslinks as the molecular
mobility and thermal oscillations of the chain increase.



2. Q. Two atoms interact at T=0ºK via a van der Waals Lennard-Jones potential. The
interaction energy versus separation distance plot is given in the following figure.
(a) Calculate the bond stiffness (N/m) (HINT : calculate A and B first).
(b) When is the bond stiffness proportional to ~ the Young's modulus, E? (e.g.
thermodynamically, in what strain range, which types of materials)

A.(a) ro can be read directly off the plot :

ro=0.3 nm=[B/A]1/6

B/A=7.2899•10-58m6

B=7.2899•10-58m6A (1)
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The binding energy EB can be read directly off the plot :
EB=-1.4kBT=-1.4•4.1•10-21J=5.74•10-21J (2)
EB=-[A2/4B] (3)

Substitute equation (1) into (3), set equal to (2), and solve for A:
-5.74•10-21J=-[A2/4•7.2899•10-58m6•A]=-A/2.916•10-57m6

A=1.673784•10-77J m6

From equation (1):
B=7.2899•10-58m6•1.673784•10-77J m6=1•10-135Jm12

re=1.12ro=1.12•0.3 nm=0.336 nm

kbond=42A/re
8-156B/re

14=42•1.7•10-77Jm6/(0.336•10-9)8-1•10-135 Jm12/(0.336•10-9)14

kbond=0.38 N/m

(b) The bond stiffness is ~ the Young's modulus, E, when the molecular origin of
the elastic moduli is enthalpic or energetic in origin, i.e. when the resistance to
deformation is provided by bond stretching / twisting / bending away from their
equilibrium configuration. For most materials (e.g. metals, ceramics, crystalline
materials) this occurs at small strains in the linear elastic, Hookean regime. For
polymers this occurs at temperatures T<Tg.



 3. Q. The following Figure is experimental data for the macroscopic uniaxial
engineering stress versus strain curve I conducted as an undergrad in a lab course on
iron, a ductile polycrystalline metal.

(a) From the above plot, approximate the following numerically and briefly ( one
sentence) explain how you obtained each value :

(1) Young's modulus, E (GPa)
(2) 0.2% yield stress (MPa)
(3) ultimate tensile strength (MPa)
(4) % strain at failure
(5) failure strength (MPa)
(6) tensile ductility (% strain)
(7) modulus of toughness (MPa)
(8) modulus of resilience (MPa)

(b) On the same graph plot the true stress versus true strain curve.
(c) Below are four schematics of how this sample possibly fractured. Choose one
which is most likely and explain why.
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A. (a) (1) Young's modulus, E (GPa) : ≈20 GPa
(2) 0.2% yield stress (MPa) ≈240 MPa
(3) ultimate tensile strength (MPa) ≈ 340 MPa
(4) % strain at failure=24%
(5) failure strength (MPa) ≈340 MPa
(6) tensile ductility (% strain) ≈22%
(7) modulus of toughness (MPa) ≈ 75 MPa
(8) modulus of resilience (MPa) ≈ 1.2 MPa

(b)
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(c) (1) slip in a single crystal
(2) brittle fracture of for example, ceramics
(3) drawing in polymers
(4) ductile fracture due to multiple slip within grains
just after formation of a neck (ANSWER)

4. Q. (a) Derive the governing differential equation (σσσσT as a function of εεεεT) for the
following viscoelastic model in terms of k1, k2, η.η.η.η.

(b) Explain in a few sentences the term "Relaxation Modulus."

A.  The governing equations for the individual elements are shown below :

σσσσT,εεεεT

k2

k1

σσσσT,εεεεT

ηηηη

σσσσ2=k2εεεε2 

σσσσD=ηηηη εεεεD
σσσσ1=k1εεεε1

�

σσσσT,εεεεT

σσσσT,εεεεT



In series � the strains are additive, stresses equal
In parallel � the strains are equal, stresses additive

εT=ε2+ε (1)
where : ε=ε1=εD(2)

σT=σ2=σ1+σD (3)

Substitute governing stress / strain laws for individual elements into equation (3) :
σT=k1ε1+ηdεD/dt
σT=k1ε+ηdε/dt (4)

For equation (4) : we need ε and dε/dt in terms of εT and σT :

From (1) :
εT=σ2/k2+ε=σT/k2+ε (5)
rearrange equation (5) :
ε=εT−σT/k2 (6)

Take time derivitive of equation (1) :
dεT/dt=dε2/dt+dε/dt
dεT/dt=(dσ2/dt)/k2+dε/dt=(dσΤ/dt)/k2+dε/dt
Solve for dε/dt :
dε/dt=dεT/dt-(dσΤ/dt)/k2(7)

Substitute (6) and (7) into (4) :
σT=k1(εT−σT/k2)+η(dεT/dt-(dσΤ/dt)/k2) 
σT=k1εT−k1σT/k2+η(dεT/dt)-(dσΤ/dt)η/k2 

rearrange :
σσσσT(1(1(1(1+k1////k2222))))+((((dσσσσΤΤΤΤ/dt)ηηηη/k2====k1εεεεT+η(+η(+η(+η(dεεεεT////dt)    


