Matrix and Index Notation

David Roylance
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

September 18, 2000

A vector can be described by listing its components along the \(xyz \) cartesian axes; for instance the displacement vector \(\mathbf{u} \) can be denoted as \(u_x, u_y, u_z \), using letter subscripts to indicate the individual components. The subscripts can employ numerical indices as well, with 1, 2, and 3 indicating the \(x \), \(y \), and \(z \) directions; the displacement vector can therefore be written equivalently as \(u_1, u_2, u_3 \).

A common and useful shorthand is simply to write the displacement vector as \(u_i \), where the \(i \) subscript is an index that is assumed to range over 1,2,3 (or simply 1 and 2 if the problem is a two-dimensional one). This is called the range convention for index notation. Using the range convention, the vector equation \(u_i = a \) implies three separate scalar equations:

\[
\begin{align*}
 u_1 &= a \\
 u_2 &= a \\
 u_3 &= a
\end{align*}
\]

We will often find it convenient to denote a vector by listing its components in a vertical list enclosed in braces, and this form will help us keep track of matrix-vector multiplications a bit more easily. We therefore have the following equivalent forms of vector notation:

\[
\mathbf{u} = u_i = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}
\]

Second-rank quantities such as stress, strain, moment of inertia, and curvature can be denoted as \(3 \times 3 \) matrix arrays; for instance the stress can be written using numerical indices as

\[
[\sigma] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}
\]

Here the first subscript index denotes the row and the second the column. The indices also have a physical meaning, for instance \(\sigma_{23} \) indicates the stress on the 2 face (the plane whose normal is in the 2, or \(y \), direction) and acting in the 3, or \(z \), direction. To help distinguish them, we’ll use brackets for second-rank tensors and braces for vectors.

Using the range convention for index notation, the stress can also be written as \(\sigma_{ij} \), where both the \(i \) and the \(j \) range from 1 to 3; this gives the nine components listed explicitly above.
(Since the stress matrix is symmetric, i.e. $\sigma_{ij} = \sigma_{ji}$, only six of these nine components are independent.)

A subscript that is repeated in a given term is understood to imply summation over the range of the repeated subscript; this is the summation convention for index notation. For instance, to indicate the sum of the diagonal elements of the stress matrix we can write:

$$\sigma_{kk} = \sum_{k=1}^{3} \sigma_{kk} = \sigma_{11} + \sigma_{22} + \sigma_{33}$$

The multiplication rule for matrices can best be stated formally by taking $A = (a_{ij})$ to be an $(M \times N)$ matrix and $B = (b_{ij})$ to be an $(R \times P)$ matrix. The matrix product AB is defined only when $R = N$, and is the $(M \times P)$ matrix $C = (c_{ij})$ given by

$$c_{ij} = \sum_{k=1}^{N} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \cdots + a_{iN} b_{Nj}$$

Using the summation convention, this can be written simply

$$c_{ij} = a_{ik} b_{kj}$$

where the summation is understood to be over the repeated index k. In the case of a 3×3 matrix multiplying a 3×1 column vector we have

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_{11} b_1 + a_{12} b_2 + a_{13} b_3 \\ a_{21} b_1 + a_{22} b_2 + a_{23} b_3 \\ a_{31} b_1 + a_{32} b_2 + a_{33} b_3 \end{bmatrix} = a_{ij} b_j$$

The comma convention uses a subscript comma to imply differentiation with respect to the variable following, so $f_{,2} = \partial f / \partial y$ and $u_{i,j} = \partial u_i / \partial x_j$. For instance, the expression $\sigma_{ij,j} = 0$ uses all of the three previously defined index conventions: range on i, sum on j, and differentiate:

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = 0$$
$$\frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = 0$$
$$\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zy}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} = 0$$

The Kroenecker delta is a useful entity is defined as

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

This is the index form of the unit matrix I:

$$\delta_{ij} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So, for instance
\[
\sigma_{kk}\delta_{ij} = \begin{bmatrix} \sigma_{kk} & 0 & 0 \\ 0 & \sigma_{kk} & 0 \\ 0 & 0 & \sigma_{kk} \end{bmatrix}
\]

where \(\sigma_{kk} = \sigma_{11} + \sigma_{22} + \sigma_{33} \).