

3.11 Fall 2003 TA: Kristin Domike

Nominal (Engineering) σ & ε

- $\sigma = P/A_o$ Force/Original x-sectional area
 - Tensile stress (+)
 - Compressive stress (-)
 - Only valid if uniformly distributed force over entire area, A.
- $\varepsilon = \delta / L_o$, elongation/original length
 - Ratio of two lengths (unitless)

• Also,
$$\varepsilon = L-L_o/L_o = L/L_o-1 = \lambda-1$$

Normal (True) σ & ε

- $\sigma = P/A$ Force/Area $\leftarrow A$ changes with time
 - Tensile stress (+)
 - Compressive stress (-)
 - Only valid if uniformly distributed force over entire area, A.
- $\varepsilon = \delta/L'$ elongation/length \leftarrow This changes with time
 - Ratio of two lengths (unitless)
 - $\varepsilon = int(dL/L)$ from Lo to L = ln(L/Lo)

Small ε (strain) condition

- *E* ~ *E*nominal
 - Because, $\varepsilon = \ln(1 + \varepsilon_{\text{nominal}})$
- $\sigma \sim \sigma_{\rm nominal}$
 - Because, $\sigma = \sigma_{\text{nominal}} (1 + \varepsilon_{\text{nominal}})$
- This shows that when dealing w/ elastic strains (not rubbers), it doesn't matter whether true or normal or nominal stresses/strains are used in calculation

Hooke's Law

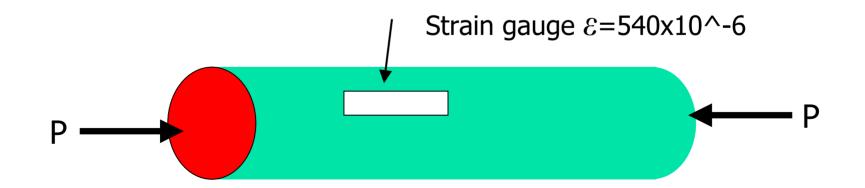
- Linear Elasticity allows conversion from raw data to stress vs. strain curves
- *σ*=Eε
- E= Young's Modulus (Elastic Modulus)
- Similarly,
 - F=kd (force = constant*distance)
 - P=k \delta (force = spring constant*displacement)

Elasticity & Poisson's ratio

- Linear (metals, ceramics) \rightarrow ALL mat'ls exhibit elastic behavior at ε < 0.001%
- Nonlinear (polymers, rubbers)→Some mat'ls exhibit large strain elasticity
- $v = -\varepsilon' / \varepsilon$ (if bar stretched in x-direction)
 - ε is axial strain (the x-related strain)
 - ε' is lateral (either y or z strain)

Example Problem 1

A circular aluminum tube of length L=500mm is loaded in compression by forces P. The outside & inside diameters are 60mm & 50mm, respectively. A strain gage is placed on the outside to measure normal strains in the longitudinal direction.



Problem 1 Continued...

(a) If the measured strain is ε =540x10^-6, what is the shortening δ of the bar? $\delta = \varepsilon L = 0.270 \text{mm}$

(b) If the compressive stress in the bar is intended to be 40 MPa, what should be the load, P ?

 σ = 40MPa, A = $\pi/4[d_2^2 - d_1^1] = 863.9$ mm^2,

 $P = \sigma A = 40 MPa * 863.9 mm^2 = 34.6 kN$

Example Problem 2

Imagine a long copper wire hangs virtically from a high-altitude balloon.

- (a) What is the greatest length (feet) it can have without yielding if the copper yields at 25 ksi?
- (b) If the same wire hangs from a ship at sea, what is the greatest length?
- γ c = wt. Density of copper = 556 lb/ft^3 γ w = wt density of sea water = 63.8lb/ft^3

Problem 2 Continued...

- (a) W = total weight of copper wire = $\gamma_c AL$, $\sigma max = W/A = \gamma cL$, Lmax = $\sigma max/\gamma c = 25,000 psi/556 lb/ft^3$ (b/c 1,000 psi in 1 ksi)
- (b) F = tensile force at top of wire, F= (γ c- γ w)AL, σ max =F/A = (γ c- γ w)L, Lmax = σ max/ (γ c- γ w) = 7310 ft.

Example Problem 3

A prismatic bar of circular cross section is loaded by tensile forces, P. The bar has length, L=3.0m and diameter d=30mm. It is made of an aluminum alloy with modulus of elasticity E=73 GPa. And Poissons ratio v = 1/3. If th bar elongates by 7.0mm, what is the decrease in diameter Δd ? What is the magnitude of the load P?

Problem 3 Continued...

Axial strain: $\varepsilon = \delta/L = 7$ mm/3m = 0.002333

Lateral strain: $\varepsilon' = -v \varepsilon = -1/3 (0.002333) = -0.000778$

(Minus sign means shortening)

Decrease in diameter: $\Delta d = |\varepsilon'|d = (0.000778)(30mm)$

Tensile loads: Axial stress $\sigma = E \varepsilon = 73$ GPa*0.002333 = 170.3MPa

(This stress is less than the yield stress, so Hooke's law is applicable)

 $P = \sigma A = (170.3 MPa)(\pi/4)(30 mm)^2 = 120 kN$