Recitation \#1

3.11 Fall 2003

TA: Kristin Domike

Nominal (Engineering) $\sigma \& \varepsilon$

- $\sigma=\mathrm{P} / \mathrm{A}_{o}$ Force/Original x-sectional area
- Tensile stress (+)
- Compressive stress (-)
- Only valid if uniformly distributed force over entire area, A .
- $\varepsilon=\delta / \mathrm{L}_{\mathrm{o}}$, elongation/original length
- Ratio of two lengths (unitless)
- Also, $\varepsilon=\mathrm{L}-\mathrm{L}_{0} / \mathrm{L}_{\mathrm{o}}=\mathrm{L} / \mathrm{L}_{0}-1=\lambda-1$

Normal (True) $\sigma \& \varepsilon$

- $\sigma=\mathrm{P} / \mathrm{A}$ Force/Area $\leftarrow \mathrm{A}$ changes with time
- Tensile stress (+)
- Compressive stress (-)
- Only valid if uniformly distributed force over entire area, A.
- $\varepsilon=\delta / L^{\prime}$ elongation/length $<$ This changes with time
- Ratio of two lengths (unitless)
- $\varepsilon=\operatorname{int}(\mathrm{dL} / \mathrm{L})$ from Lo to $\mathrm{L}=\ln (\mathrm{L} / \mathrm{Lo})$

Small ε (strain) condition

- $\varepsilon \sim \varepsilon_{\text {nominal }}$
- Because, $\varepsilon=\ln \left(1+\varepsilon_{\text {nominal }}\right)$
- $\sigma \sim \sigma_{\text {nominal }}$
- Because, $\sigma=\sigma_{\text {nominal }}\left(1+\varepsilon_{\text {nominal }}\right)$
- This shows that when dealing w/ elastic strains (not rubbers), it doesn't matter whether true or normal or nominal stresses/strains are used in calculation

Hooke's Law

- Linear Elasticity - allows conversion from raw data to stress vs. strain curves
- $\sigma=\mathrm{E} \varepsilon$
- E= Young's Modulus (Elastic Modulus)
- Similarly,
- F=kd (force = constant*distance)
- $\mathrm{P}=\mathrm{k} \delta$ (force = spring constant*displacement)

Elasticity \& Poisson's ratio

- Linear (metals, ceramics) \rightarrow ALL mat'ls exhibit elastic behavior at $\varepsilon<0.001 \%$
- Nonlinear (polymers, rubbers) \rightarrow Some mat'ls exhibit large strain elasticity
- $\nu=-\varepsilon^{\prime} / \varepsilon$ (if bar stretched in x-direction)
$-\varepsilon$ is axial strain (the x-related strain)
- ε^{\prime} is lateral (either y or z strain)

Example Problem 1

A circular aluminum tube of length $L=500 \mathrm{~mm}$ is loaded in compression by forces P . The outside \& inside diameters are $60 \mathrm{~mm} \& 50 \mathrm{~mm}$, respectively. A strain gage is placed on the outside to measure normal strains in the longitudinal direction.

Problem 1 Continued...

(a) If the measured strain is $\varepsilon=540 \times 10^{\wedge}-6$, what is the shortening δ of the bar?
$\delta=\varepsilon L=0.270 \mathrm{~mm}$
(b) If the compressive stress in the bar is intended to be 40 MPa , what should be the load, P ?

$$
\begin{aligned}
& \sigma=40 \mathrm{MPa}, \mathrm{~A}=\pi / 4\left[\mathrm{~d}_{2}^{2}-\mathrm{d}_{1}^{1}\right]=863.9 \mathrm{~mm}^{\wedge} 2, \\
& \mathrm{P}=\sigma \mathrm{A}=40 \mathrm{MPa} * 863.9 \mathrm{~mm}^{\wedge} 2=34.6 \mathrm{kN}
\end{aligned}
$$

Example Problem 2

Imagine a long copper wire hangs virtically from a high-altitude balloon.
(a) What is the greatest length (feet) it can have without yielding if the copper yields at 25 ksi ?
(b) If the same wire hangs from a ship at sea, what is the greatest length?
$\gamma \mathrm{c}=\mathrm{wt}$. Density of copper $=556 \mathrm{lb} / \mathrm{ft} \wedge 3 \gamma \mathrm{w}=\mathrm{wt}$ density of sea water $=63.8 \mathrm{lb} / \mathrm{ft} \wedge 3$

Problem 2 Continued...

(a) $\mathrm{W}=$ total weight of copper wire $=\gamma_{\mathrm{c}} \mathrm{AL}, \sigma$ max $=\mathrm{W} / \mathrm{A}$ $=\gamma \mathrm{cL}, \operatorname{Lmax}=\sigma \mathrm{max} / \gamma \mathrm{c}=25,000 \mathrm{psi} / 556 \mathrm{lb} / \mathrm{ft} \wedge 3(\mathrm{~b} / \mathrm{c}$ 1,000psi in 1 ksi)
(b) $\mathrm{F}=$ tensile force at top of wire, $\mathrm{F}=\left(\gamma^{c}-\gamma^{\prime} \mathrm{w}\right) \mathrm{AL}, \sigma$ max $=\mathrm{F} / \mathrm{A}=(\gamma \mathrm{c}-\gamma \mathrm{w}) \mathrm{L}, \operatorname{Lmax}=\sigma \mathrm{max} /\left(\gamma \mathrm{c}-\gamma^{\mathrm{w}}\right)=7310 \mathrm{ft}$.

Example Problem 3

A prismatic bar of circular cross section is loaded by tensile forces, P . The bar has length, $\mathrm{L}=3.0 \mathrm{~m}$ and diameter $\mathrm{d}=30 \mathrm{~mm}$. It is made of an aluminum alloy with modulus of elasticity $\mathrm{E}=73 \mathrm{GPa}$. And Poissons ratio $v=1 / 3$. If th bar elongates by 7.0 mm , what is the decrease in diameter $\Delta \mathrm{d}$? What is the magnitude of the load P ?

Problem 3 Continued...

Axial strain: $\varepsilon=\delta / \mathrm{L}=7 \mathrm{~mm} / 3 \mathrm{~m}=0.002333$
Lateral strain: $\varepsilon^{\prime}=-v \varepsilon=-1 / 3(0.002333)=-0.000778$
(Minus sign means shortening)
Decrease in diameter: $\Delta \mathrm{d}=\left|\varepsilon^{\prime}\right| \mathrm{d}=(0.000778)(30 \mathrm{~mm})$
Tensile loads: Axial stress $\sigma=\mathrm{E} \varepsilon=73 \mathrm{GPa} * 0.002333$
$=170.3 \mathrm{MPa}$
(This stress is less than the yield stress, so Hooke's law is applicable)
$\mathrm{P}=\sigma \mathrm{A}=(170.3 \mathrm{MPa})(\pi / 4)(30 \mathrm{~mm})^{\wedge} 2=120 \mathrm{kN}$

