3.11 Recitation #2 Fall 2003 Tuesday, September 16, 2003

Linear Elasticity Clarification:

Linear Elastic Deformation is instantly recoverable upon unloading. Rubbers (and some collagen/unfolding polymers) do not follow the rules of linear elasticity because as you stretch rubbers, they realign. (Chains slide over each other, and lose orientation)

Static Equilibrium: 3-D examples. (Useful on problem #1 on homework)

 $\sigma_{ij} = F_i/A_j \leftarrow A$ is in direction of normal area

For equilibrium: $\Sigma F = 0$ for x, y and z directions $\Sigma M = 0$ for xy, xz and yz directions

It may help to think of matrix in numbers rather than letters. (where σ_{12} , σ_{13} , σ_{23} are shear stresses)

$$egin{array}{cccc} \sigma_{11} & \sigma_{12} & \sigma_{13} \ \sigma_{21} & \sigma_{22} & \sigma_{23} \ \sigma_{31} & \sigma_{32} & \sigma_{33} \ \end{array}$$

So, to prove 3-D static equilibrium, show that $\Sigma M_{12} = 0 = F_{12} \times d + F_{21} \times d$. (d is a distance (the moment arm) that you can define on your 3-D system. I suggest having a dx, dy and dz for each axis (or d_1 , d_2 , d_3).

IMPORTANT NOTE: σ 12 is a shear stress (aka σ xy) so, the area it acts upon is not that normal to it. Think of σ 12 on a box. What side is being changed because of a shearing force.

Additional equations that are valid for 3-D static equilibrium: $d\sigma_{11}/dx_1 + d\sigma_{12}/dx_2 + d\sigma_{13}/dx_3$. Same for σ_2 , σ_3 . These may prove helpful when solving static equilibrium equations.

Matrix Notation for Generalized Hooke's Law for Anisotropic Materials:

6-independent components of ε

6-independent components of σ

Compliance (S) and Stiffness Matrix (D) are both symmetric (ie. 36 elastic components reduce to 21)

Matrix Notation:

σi, εi are pseudovectors

6-independent σ components:

- $\sigma 11 \rightarrow \sigma 1$
- $\sigma 22 \rightarrow \sigma 2$
- $\sigma 33 \rightarrow \sigma 3$
- σ 23 (τ 23, yz) $\rightarrow \sigma$ 4
- σ 13 (τ 13, xz) $\rightarrow \sigma$ 5
- $\sigma 12 (\tau 12, xy) \rightarrow \sigma 6$

(To better understand, picture the new 1-6 #'s where they would lie in a 3x3 matrix (the σ ij matrix above)

6-independent ε components:

- ε11 ->ε1
- ε22 **→**ε2
- ε33 →ε3
- $\varepsilon 23 (\gamma 23) \rightarrow \varepsilon 4$
- $\varepsilon 13 (\gamma 13) \rightarrow \varepsilon 5$
- $\varepsilon 12 (\gamma 12) \rightarrow \varepsilon 6$

So, for Compliance Matrix $\varepsilon i = Sij\sigma j$

Stiffness Matrix $\sigma i = Dij\epsilon j$

 $D=S^{-1}$

Showing that the Matrix is Symmetric: (note: all #'s are subscripts)

$$\varepsilon 1 = S11\sigma 1 + S12\sigma 2 + S13\sigma 3 + \dots S16\sigma 6$$

 $Sij=Sji \rightarrow 21$ independent components

- 1) S11, S22, S33 \rightarrow Apply a Normal/True σ 1 only. ε 1 = S11 σ 1 \rightarrow S11= 1/E1, S22 = 1/E2, S33 = 1/E3. These are related to the Young's Modulus.
- 2) S44, S55, S66 \rightarrow S66 relates the shear strain, ε , 1-2 plane to shear stress, σ . in same plane. S66=1/G12 (could call this 1/G6), S44=1/G23, S55=1/G13
- 3) S12, S13, S23 \rightarrow These are related by the poisson's ratio. For example: if we apply $\sigma 2$ only. $\varepsilon 1 = S12\sigma 2$, $\varepsilon 2 = S22\sigma 2$ then $v 21 = -\varepsilon 1/\varepsilon 2 = (-S12\sigma 2)/(S22\sigma 2)$, S12 = -v 21/E 2 $\sigma 2 = E2\varepsilon 2$, $1/E 2 = \varepsilon/\sigma$, $\varepsilon 2 = S22\sigma 2$, $S22 = \varepsilon 2/\sigma 2 = 1/E 2$

- 4) S14, 15, 16, 24, 25, 26, 34, 35, 36 Physical non-intuitive for most materials. Relates a normal strain to shear stress for most materials. These will be zero.
- 5) S45, 46, 56 → Relate shear strain in 1 plane to shear stress in a different plane. for Most materials, these are zero.

Example Problems:

7.2-3 If element in plane stress is subjected to stress $\sigma x = -11,100$ psi, $\sigma y = -4,600$ psi, $\tau xy = 3,600$ psi, $\theta = 50^{\circ}$.

Determine the stresses acting on an element oriented at an angle 50 degrees from the x-axis, where the angle is positive when counterclockwise. Show these stresses on a sketch of an element oriented at the angle, θ .

See. Page 486 in Gere. Similar problem and extra explanation for pset.

$$\sigma x 1 = (\sigma x + \sigma y)/2 + (\sigma x - \sigma y)/2 * \cos 2\theta + \tau xy \sin 2\theta = -3740 psi$$

(b/c of Definition for biaxial stress—Gere Ch. 7)

$$\tau x 1y 1 = -((\sigma x - \sigma y)/2 * \sin 2\theta + \tau xy \cos 2\theta = 2580 \text{ psi}$$

$$\sigma y 1 = \sigma x + \sigma y - \sigma x 1 = -11,960 \text{ psi}$$

7.5-2

A rectangular steel plate with thickness t=10mm is subjected to uniform normal stresses σx and σy . Strain gages A & B, oriented in x and y dir. Are attached to the plate. The gage readings give normal strains $\varepsilon x = 350x10^{\circ}-6$, $\varepsilon y = 85x10^{\circ}-6$ (elongation). E = 200Gpa, v = 0.30. Determine σx and σy and change in t, thickness of the plate.

For Plane Stress: $\varepsilon x = 1/E (\sigma x - v \sigma y)$ for strain in x direction has two components $\sigma x/E$ and $-v \sigma y/E$ ($v = -\varepsilon'/\varepsilon$) \leftarrow given

$$\sigma x = E/(1-v)^2 * (\epsilon x + \nu \epsilon y) = 15,990 psi$$

$$\sigma v = E/(1-v)^2 * (\epsilon v + v \epsilon x) = -8,700 psi$$

$$\varepsilon' = -v/E (\sigma x + \sigma y) = -72.9x10^{-6}$$

```
\Delta t = \varepsilon' t = -1860 \times 10^{\circ} - 6 \text{ mm (decrease in thickness)}
```

Example 3-

A magnesium plate in biaxial stress is subjected to tensile stresses σx and σy . The corresponding strains are ϵx and ϵy . Determine the ν and ϵ for the material.

```
\sigma x=30Mpa

\sigma y=15Mpa

\varepsilon x=550x10^{\circ}-6

\varepsilon y=100x10^{\circ}-6

\varepsilon x=\sigma x/E-(\sigma yv)/E

\varepsilon y=-(v\sigma x)/E+\sigma y/E

\varepsilon z=-(v\sigma x)/E-(v\sigma y)/E (can ignore z direction)

E(550x10^{\circ}-6)=30 MPa - v(15MPa)

E(100x10^{\circ}-6)=15 MPa - v(30 MPa)

Solve simultaneously: v=0.35, E=45 GPa
```