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Rubber Elasticity 
 

The Entropic Spring 
 More 

Disorder Entropy - a natural law that expresses the driving force towards 
disorder 

Less 
Disorder 

 
 
  
Rubber bands are made from polymers, but the chains are crosslinked to provide 
a network. 
  
The amorphous phase in PE is also said to be rubbery – it is above its Tg but is 
constrained by the surrounding crystals and so cannot be said to be liquid-like. 
  
For the rubber bands, it is the crosslinks which determine the properties.   
 
The crosslinks provide a 'memory'.    
 
When the network is stretched, entropic forces come  
into play which favour retraction, returning the network to its original 
unstretched/equilibrium state. 
  
 
 
 
 



Changes to the Rubber Network upon stretching 

 
 
 

Loss of entropy upon stretching, means that there is a retractive force for recovery 
when external stress removed. 
  
This is why a rubber band returns to its original shape. 
 

More Disorder Less Disorder

Entropy - a natural law that expresses the driving force towards disorder
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Random Coil Configurations of Polymers:  

DNA simulation

(*FEBS Lett. 371:279-282)

(*Z. Shao, http://www.people.Virginia.EDU/~js6s/zsfig/figureindex.html)
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Let’s look at Freely Jointed Chain Model 
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consider stretching a single random coil polymer chain :
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Polymer Chain : Random walk in space. (Gaussian)  

 mean

b 

Can be thought of as a freely jointed chain. Joint length is b. An independently oriented 
segment. It is NOT usually a monomer length, usually 4 or 5 monomers long. 
 
 
A simple reminder of polymer statistics. 



Suppose the walk has N links:  
End to end distance R(N) 
 
From Rubber elasticity :  
r = instantaneous chain end-to-end separation distance 
(Draw on board--- squiggly lines with beginning and end separated by r)  
<r2> = na2 root mean square end to end distance 
a = statistical segment length—local chain stiffness 
n = # of a’s  
Lc = contour length—length of fully extended chain. 
 
Probability of finding a free chain end a radial distance, r, away from a fixed chain end 
(origin) ~ omega = P(R) = (4b3r2)/sqrt(pi)*exp(-b2r2)  
where b = sqrt (3/(2na2))  
 
This is Gaussian form  
Macrostate is defined by the length r. 
Microstates are the different random walks. So.. 
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 (N=n and b=a) 
Configurational Entropy (measure of disorder) = S = kb*ln[P(r)] 
Helmholtz Free Energy = A or H = -Tkb*ln[P(r)] 
Entropic elastic force, linear elasticity (hookean spring) f or F = -dA(r)/dr^2 
Entropic chain stiffness = k = dF(r)/dr or second derivative of A. 
 

a random walking polymer at finite T is a Hookean spring 
 
Why is this useful?   
Because these equations define the stretching of a single polymer chain.  
 
 
 
The following chart defines several types of Elasticity Models for Single Polymer 
Chains—you may need to describe the difference between a couple of these on your 
problem set.  



Freely-Jointed 
Chain (FJC)
(Kuhn and Grün, 1942 
James and Guth, 1943)

Extensible
Freely-Jointed 

Chain
(Smith, et. al, 1996)

Worm-Like 
Chain (WLC)
(Kratky and Porod, 1943
Fixman and Kovac, 1973
Bustamante, et. al 1994)

Extensible
Worm-Like 

Chain 
(Odijk, 1995)

Gaussian : 

Non-Gaussian : 

low stretches : Gaussian, L*(x)= “inverse Langevin function”= 
3x+(9/5)x3+(297/175)x5+(1539/875)x7+...

high stretches : Felastic=(kBT/a)(1-r/Lcontour)-1

Non-Gaussian : 

where : Ltotal = Lcontour+ nFelastic /ksegment

Exact :

Interpolation Formula :

low stretches : Gaussian, Felastic = [3kBT /2pLcontour] r
high stretches : Felastic = (kBT/4p)(1-r/Lcontour)-2

Interpolation Formula :

low stretches : Gaussian
high stretches : 

r = Lcontour [1-0.5(kBT /Felasticp)1/2 + Felastic/ksegment]
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Felastic = [3kBT /Lcontoura] r

Felastic= (kBT/a) L*(r/Lcontour)

Felastic = (kBT/a) L*(r/Ltotal ) 

Numerical solution 

Felastic = (kBT/p)[1/4(1-r/Lcontour)-2-1/4+r/Lcontour]

Felastic = (kBT/p)[1/4(1-r/Ltotal)-2 -1/4 + r/Ltotal]
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MODEL SCHEMATIC FORMULAS
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Freely Jointed Chain Equations:  
 
Gaussian :  
Felastic = [3kBT /Lcontoura] r 
Non-Gaussian :  
Felastic= (kBT/a) L*(r/Lcontour) 
low stretches : Gaussian, L*(x)= “inverse Langevin function”= 
3x+(9/5)x^3+(297/175)x^5+(1539/875)x^7+... 
high stretches : Felastic=(kBT/a)(1-r/Lcontour)-1 
 
Worm-like chain Equations:  
Exact : Numerical solution  
Interpolation Formula :  
Felastic = (kBT/p)[1/4(1-r/Lcontour)-2-1/4+r/Lcontour] 
low stretches : Gaussian, Felastic = [3kBT /2pLcontour] r 
high stretches : Felastic = (kBT/4p)(1-r/Lcontour)-2 



Example Problem:  

 
 

 
Solving for p, persistence length:  p = 49.2nm 
 
 
If extra time, I will talk a bit about the stress vs. strain equations for Gaussian constant volume 
deformation (discussed Monday in class). 
 
 


