3.11 Recitation #9

November 4, 2003
Rubber Elasticity
The Entropic Spring
More . Less
Disorder Entropy - a natural law that expresses the driving force towards Disorder
disorder
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Polymer chains are crosshinked to one another
Prevents chaims from flowmg over one anothey

Rubber bands are made from polymers, but the chains are crosslinked to provide
a network.

The amorphous phase in PE is also said to be rubbery — it is above its T, but is
constrained by the surrounding crystals and so cannot be said to be liquid-like.

For the rubber bands, it is the crosslinks which determine the properties.
The crosslinks provide a 'memory’.
When the network is stretched, entropic forces come

into play which favour retraction, returning the network to its original
unstretched/equilibrium state.



Changes to the Rubber Network upon stretching
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Loss of entropy upon stretching, means that there is a retractive force for recovery
when external stress removed.

This is why a rubber band returns to its original shape.
Less Disorder

More Disordetr
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Entropy - a natural law that expresses the driving force towards disorder

poly(styrene)




Random Coil Configurations of Polymers:

simulation

DNA

(*Z. Shao, http://www.people.Virginia. EDU/~js6s/zsfig/figureindex.html)
Let’s look at Freely Jointed Chain Model

consider stretching a single random coil polymer chain :
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Polymer Chain : Random walk in space. (Gaussian)

mean

Can be thought of as a freely jointed chain. Joint length is b. An independently oriented
segment. It is NOT usually a monomer length, usually 4 or 5 monomers long.

A simple reminder of polymer statistics.



Suppose the walk has N links:
End to end distance R(N)

From Rubber elasticity :

r = instantaneous chain end-to-end separation distance

(Draw on board--- squiggly lines with beginning and end separated by r)
<r*> = na’ root mean square end to end distance

a = statistical segment length—Tlocal chain stiffness

n=#ofa’s

Lc = contour length—Iength of fully extended chain.

Probability of finding a free chain end a radial distance, r, away from a fixed chain end
(origin) ~ omega = P(R) = (4b’r*)/sqrt(pi)*exp(-b’r’)
where b = sqrt (3/(2na’))

This 1s Gaussian form
Macrostate is defined by the length r.
Microstates are the different random walks. So..
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P(R) ~e /I~ Q(R)(# of pstates with length R) (N=n and b=a)
Configurational Entropy (measure of disorder) = S = kb*In[P(1)]
Helmholtz Free Energy = A or H = -Tkb*In[P(r)]

Entropic elastic force, linear elasticity (hookean spring) f or F = -dA(r)/dr"2
Entropic chain stiffness = k = dF(r)/dr or second derivative of A.

=>»a random walking polymer at finite T is a Hookean spring

Why is this useful?
Because these equations define the stretching of a single polymer chain.

The following chart defines several types of Elasticity Models for Single Polymer
Chains—you may need to describe the difference between a couple of these on your
problem set.



MODEL SCHEMATIC FORMULAS
Gaussian :
Freely-Jointed | __ S zz\/z/-F F e = 3K6T L] ¥
Chain (FJ C) - stic ! Felas;c_ Non-Gaussian :
(Kuhn and Griin, 1942 Fousic= ke T/2) L*(F Ly
James and Guth, 1943) (a,n) lowsitts: Catsin, L) v it ocion'—

high stretches : ¥, . =(kyT/a)(1-r/L_, )"

(Odijk, 1995)

Extensible \ Non-Causst
p y ey on-Gaussian :
Freely-JOlnted — F I . F X ela\m (kBT/a) L*(F/mel)
C h ain elastie elastie where : Ltotal Lcontour+ nFelastu' /ksegment
(Smith, et. al, 1996) (a egm em)
Worm-Like Exact : Numerical solution
Chain (WLC) F ./\F /\M.ra = F Interpolation Formula :
(Kratky and Porod, 1943 =¥ tastic F Fyastic = (kg T/P)1/4(1-/L 1 100) 2= 1/4+T/L ]
Fixman and Kovac, 1973 low stretches : Gaussian, F ;. = [3ksT /2memw] r
Bustamante, et. al 1994) (p ) n) high stretches : F g, = (kg T/APYI-I/L, ,10,,)
EXtenSlble Fe— M_’F Interpolation Formula :
r P
Worm-Like Felastic Felasttc elastw (k T/ p)[l/ 4(1 r/ Llalal)_z -1/4 +r/ Ltozal]
low stretches : Gaussian
C h ain ( ) high stretches :
p 2 n’ ks eg m ent r= Lcnntour [I-OS(kBT /F, elasticp)”2 +F elastic/ksegmenl]

Freely Jointed Chain Equations:

Gaussian :

Felastic = [3kBT /Lcontoura] r
Non-Gaussian :

Felastic= (kBT/a) L*(r/Lcontour)

low stretches : Gaussian, L*(x)= “inverse Langevin function”=

3x+(9/5)x"3+(297/175)x"5+(1539/875)x"7+...
high stretches : Felastic=(kBT/a)(1-r/Lcontour)-1

Worm-like chain Equations:

Exact : Numerical solution

Interpolation Formula :

Felastic = (kBT/p)[1/4(1-r/Lcontour)-2-1/4+r/Lcontour]
low stretches : Gaussian, Felastic = [3kBT /2pLcontour] r
high stretches : Felastic = (kBT/4p)(1-r/Lcontour)-2




Example Problem:

In an atomic force microscopy experiment, a force is applied to a DNA strand
with L .. = 100nm, to induce a low stretch. Determine the persistence length if
the global stiffness of the chain is 1.23 uN/m. (HINT: Which elasticity model is
often used to model DNA?) Assume experiment is conducted at room temperature
=20°C.

DNA is often modeled using the Worm-Like Chain model. For the extensible or
inextensible Worm-Like Chain model, the low stretch regime follow a Gaussian
equation:

Fclaslic = [31([1—1-.-""2]) Lcunloul']r

This equation resembles that for a Hookean linear elastic spring with spring constant of
[3kyT/2pLeontour] Which can be considered the global stiffness of the chain. Thus,

1.23uN = 3(1.38106e-23 J/K)(293K) / 2p(100nm)

Solving for p, persistence length: p =49.2nm

If extra time, [ will talk a bit about the stress vs. strain equations for Gaussian constant volume
deformation (discussed Monday in class).



