Architectonics Courseware


- Home -

Lecture 13:

Support and Connection Types
Factory BeamStructural systems transfer their loading through a series of elements to the ground. This is accomplished by designing the joining of the elements at their intersections. Each connection is designed so that it can transfer, or support, a specific type of load or loading condition. In order to be able to analyze a structure, it is first necessary to be clear about the forces that can be resisted, and transfered, at each level of support throughout the structure. The actual behaviour of a support or connection can be quite complicated. So much so, that if all of the various conditions were considered, the design of each support would be a terribly lengthy process. And yet, the conditions at each of the supports greatly influence the behaviour of the elements which make up each structural system.

Structural steel systems have either welded or bolted connections. Precast reinforced concrete systems can be mechanically connected in many ways, while cast-in-place systems normally have monolithic connections. Timber systems are connected by nails, bolts, glue or by engineered connectors. No matter the material, the connection must be designed to have a specific rigidity. Rigid, stiff or fixed connections lie at one extreme limit of this spectrum and hinged or pinned connections bound the other. The stiff connection maintins the relative angle between the connected members while the hinged connection allows a relative rotation. There are also connections in steel and reinforced concrete structural systems in which a partial rigidity is a desired design feature.

graphical representations of the four support types
SUPPORT TYPES
The three common types of connections which join a built structure to its foundation are; roller, pinned and fixed. A fourth type, not often found in building structures, is known as a simple support. This is often idealized as a frictionless surface). All of these supports can be located anywhere along a structural element. They are found at the ends, at midpoints, or at any other intermediate points. The type of support connection determines the type of load that the support can resist. The support type also has a great effect on the load bearing capacity of each element, and therefore the system.

The diagram illustrates the various ways in which each type of support is represented. A single unified graphical method to represent each of these support types does not exist. Chances are that one of these representations will be similar to local common practice. However, no matter what the representation, the forces that the type can resist is indeed standardized.



graphical representations of the four support types
REACTIONS
It is usually necessary to idealize the behaviour of a support in order to facilitate an analysis. An approach is taken that is similar to the massless, frictionless pulley in a physics homework problem. Even though these pulleys do not exist, they are useful to enable learning about certain issues. Thus, friction and mass are often ignored in the consideration of the behavior of a connection or support. It is important to realize that all of the graphical representations of supports are idealizations of an actual physical connection. Effort should be made to search out and compare the reality with the grpahical and/or numerical model. It is often very easy to forget that the assumed idealization can be strikingly different than reality!

The diagram to the right indicates the forces and/or moments which are "available" or active at each type of support. It is expected that these representative forces and moments, if properly calculated, will bring about equilibrium in each structural element.

ROLLER SUPPORTS
Roller supports are free to rotate and translate along the surface upon which the roller rests. The surface can be horizontal, vertical, or sloped at any angle. The resulting reaction force is always a single force that is perpendicular to, and away from, the surface. Roller supports are commonly located at one end of long bridges. This allows the bridge structure to expand and contract with temperature changes. The expansion forces could fracture the supports at the banks if the bridge structure was "locked" in place. Roller supports can also take the form of rubber bearings, rockers, or a set of gears which are designed to allow a limited amount of lateral movement.

A roller support cannot provide resistance to a lateral forces. Imagine a structure (perhaps a person) on roller skates. It would remain in place as long as the structure must only support itself and perhaps a perfectly vertical load. As soon as a lateral load of any kind pushes on the structure it will roll away in reponse to the force. The lateral load could be a shove, a gust of wind or an earthquake. Since most structures are subjected to lateral loads it follows that a building must have other types of support in addition to roller supports.

graphical representations of pinned supports
PINNED SUPPORTS
A pinned support can resist both vertical and horizontal forces but not a moment. They will allow the structural member to rotate, but not to translate in any direction. Many connections are assumed to be pinned connections even though they might resist a small amount of moment in reality. It is also true that a pinned connection could allow rotation in only one direction; providing resistance to rotation in any other direction. The knee can be idealized as a connection which allows rotation in only one direction and provides resistance to lateral movement. The design of a pinned connection is a good example of the idealization of the reality. A single pinned connection is usually not sufficient to make a structure stable. Another support must be provided at some point to prevent rotation of the structure. The representation of a pinned support includes both horizontal and vertical forces.

graphical representations of pinned supports

otto node

PINNED CONNECTIONS
In contrast to roller supports, a designer can often utilize pinned connections in a structural system. These are the typical connection found in almost all trusses.

This is an illustration of one of the elements at the Olympic Stadium in Munich. It is a cast iron connector that acts as a node to resolve a number of tensile forces. Upon closer examination one can notice that the connection is made of a number of parts. Each cable is connected to the cast iron node by an end "bracket" which is connected to a large pin. This is quite literally a "pinned connection." Due to the nature of the geometry of the bracket and pin, a certain amount of rotational movement would be permitted around the axis of each pin.

One of the connections from the pyramid of I.M. Pei's Loiuvre addition follows below. Notice how it too utilized pinned connections.

otto node

hinge

Pinned connections are confronted daily. Every time a hinged door is pushed open a pinned connection has allowed rotation around a distinct axis; and prevented translation in two. The door hinge prevents vertical and horizontal translation. As a matter of fact, if a sufficient moment is not generated to create rotation the door will not move at all.

Have you ever calculated how much moment is required to open a specific door? Why is one door easier to open than the another?

hinge hinge



examples of fixed supports

FIXED SUPPORTS
Fixed supports can resist vertical and horizontal forces as well as a moment. Since they restrain both rotation and translation, they are also known as rigid supports. This means that a structure only needs one fixed support in order to be stable. All three equations of equilibrium can be satisfied. A flagpole set into a concrete base is a good example of this kind of support. The representation of fixed supports always includes two forces (horizontal and vertical) and a moment.

examples of fixed supports

a chair

FIXED CONNECTIONS
Fixed connections are very common. Steel structures of many sizes are composed of elements which are welded together. A cast-in-place concrete structure is automatically monolithic and it becomes a series of rigid connections with the proper placement of the reinforcing steel. Fixed connections demand greater attention during construction and are often the source of building failures.

Let this small chair illustrate the way in which two types of "fixed" connections can be generated. One is welded and the other is comprised to two screws. Both are considered to be fixed connections due to the fact that both of them can resist vertical and lateral loads as well as develop a resistance to moment. Thus, it it found that not all fixed connections must be welded or monolithic in nature.

Let the hinges at locations A and B be examined in closer detail. a chair

a chaira chair

chair supports SIMPLE SUPPORTS

Simple supports are idealized by some to be frictionless surface supports. This is correct in as much as the resulting reaction is always a single force that is perpendicular to, and away from, the surface. However, are also similar to roller supports in this. They are dissimilar in that a simple support cannot resist lateral loads of any magnitude. The built reality often depends upon gravity and friction to develop a minimal amount of frictional resistance to moderate lateral loading. For example, if a plank is laid across gap to provide a bridge, it is assumed that the plank will remain in its place. It will do so until a foot kicks it or moves it. At that moment the plank will move because the simple connection cannot develop any resistance to the lateral loal. A simple support can be found as a type of support for long bridges or roof span. Simple supports are often found in zones of frequent seismic activity.

simple beamsFactory Beam detail


IMPLICATIONS
The following movies illustrate the implications of the type of support condition on the deflection behavior and on the location of maximum bending stresses of a beam supported at its ends.

Simple Beams that are hinged on the left and roller supported on the right.
hinged-roller hinged-roller

Simple Beams that are hinged on the left and fixed on the right.
hinged-fixed hinged-fixed

Simple beams that are fixed at both ends.
fixed-fixed fixed-fixed

Questions for Thought

hmmm.....

Homework Problems

Additional Reading

TBA


Copyright © 1995 by Chris H. Luebkeman and Donald Peting
Copyright © 1996, 1997 by Chris H. Luebkeman