
I. Experimental Evidence for Quantum 
Mechanics 

Quantum mechanics (QM) is a tool that was invented to explain 
experimental results.  It is nothing more and nothing less than that.  
The utility of QM is therefore based entirely upon its ability to predict 
and explain experimental results, and by this measure it is a 
phenomenal success.  There has yet to be an experiment of any type 
that violates the basic principles of QM.  Thus, to begin with, we 
should discuss some of the experimental results that illustrate key 
principles of QM.  Since this is a chemistry course, we will slant our 
perspective towards chemically relevant experiments, but similar 
effects can be found in any situation where the systems are small 
enough and the temperature is low enough. 

a. Polarization of Light 
Light waves can be polarized in any direction perpendicular to the 
direction of motion of the wave.  So, for example, if we have a laser 
propagating in the z

�  direction, the light beam can be polarized either 
along x

�  or y
� .  In this sense, light can be thought of as a transverse 

wave (i.e. one whose oscillations are perpendicular to the direction of 
propagation) and the two polarization directions can be thought of as: 
These two polarization components can be separated using a 

polarization filter.  Typically, the filter consists of a crystal composed 
of rows of aligned molecules.  Then, light whose polarization is not 
aligned with these rows will not pass through the crystal; meanwhile, 
light whose polarization is aligned with the crystal axis will be able to 
pass through the gaps between the rows. 
 

x 

y 

z 

x 

y 

z 

and 



Light from typical sources (such as a lamp or the sun) is not 
polarized; if you pass it though a polarization filter, some of the light 
passes though, and some does not.  We will depict this simple 
experiment by: 

Where the round circle represents a polarization filter, and the vertical 
lines indicate that it is a polarization filter in the x

�  direction.  The 
polarization filter performs a simple measurement; it tells us how 
much of the light is polarized in a given direction. 
 
This measurement is, however, very boring.  It gets interesting when 
we start to consider multiple polarization measurements being 
applied to one laser beam. For example, if the first filter is x

�while the 
second filter is y

� , we get no light transmitted: 

To put it another way, the first filter measures the polarization of the 
light and tells us that a certain part of the wave is x

� -polarized.  Then, 
the second filter measures how much of the resulting x

� -polarized 
beam is actually y

� -polarized.  The obvious result of this experiment 
is that none of the x

� -polarized light is simultaneously y
� -polarized.  

This makes sense from a physical perspective (none of the x
� -

polarized waves would fit between the y
� -oriented slits) and also from 
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a logical point of view (it is impossible to have the light polarized in 
two mutually exclusive directions). 
 
On the other hand, if we perform an experiment where the first filter is 
x
�  while the second filter is aligned at a 45º angle to x

�  (along a 
direction x′� ) we get do get some transmission: 

In fact, if we have very good filters, we can get 50% of the x
� -

polarized light to pass through the x′�  filter.  We can rationalize this, 
as well, because x′�  is half-way between x

�  and y
� , so having half of 

the x
� -polarized beam pass through the x′�  filter makes sense. 

 
Now, we come to the key experiment.  Let’s take the beam of light 
produced in Expt. 2 and measure its polarization in the y

�  direction:  

We find again that 50% of the light passes through the final filter.  
This may seem benign, but notice that if we remove the x′�  filter, we 
recover Expt. 1, where none of the light passed through the final 
filter.  So, basically, the x′�  filter takes in a beam of light that is 0% 
polarized in the y

�  direction, removes some of the light, and the 
resulting beam is then 50% y

� -polarized!  What is going on here? 
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Could the Filters Be Rotating the Polarization? 
 
In class, it was pointed out that there is one obvious explanation of 
these experiments: perhaps the polarization filters do not filter the 
light, but instead rotate the polarization.  This is a credible 
interpretation of the experiment, and is actually the explanation given 
in most freshman physics texts. However, we should note two things 
that make this a very strange rotation.  First, different polarizations of 
light are rotated in different directions.  For example, if we pass x

� -
polarized light through the x′�  filter, the light polarization is ‘rotated’ 
+45º to x′� .  On the other hand if we pass y

� -polarized light through 
the same filter, it again comes out x′� , a net rotation of -45º.  If we 
want to denote this with a picture, we might note that a normal 
rotation acts on the two independent polarizations like this: 

 
while the ‘rotation’ of polarizations looks quite different: 

where the double arrow on the right indicates that the two 
independent polarizations on the left get ‘collapsed’ into one 
polarization on the right.  The second weird feature of this ‘rotation’ is 
that we always get less light out after the rotation than we put in, and 
often the difference is significant.  This contradicts our notion that with 
perfect optics we should be able to get perfect transmission. 
 
So we are left with one of two ‘weird’ interpretations of the 
experiment: either we somehow increase the y

� -polarization when we 
measure the x′�  polarization, or else the filters generate some kind of 
strange ‘rotation’ of the polarization. 
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Quantum Interpretation of Polarization Experiments 
 
This experiment illustrates two key concepts of quantum mechanics.  
The first is the idea that the order in which we perform experiments 
matters.  Consider the following set-up: 

This differs from Expt. 3 only in the order in which the filters are 
applied (i.e. y

�
x′� x

�  versus x′� y
�

x
� ), but in the one case, we get light 

transmittance and the other we do not.  If the order of two 
experimental observations does not change the result, the two 
observations are said to commute.  The surprise that QM brings is 
that, in general, experimental observations do not commute with 
one another.  In this case, for example, the action of applying the y

�  
filter does not commute with the use of an x′�  filter. 
 
In describing these polarization experiments, it is often useful to use a 
shorthand notation.  Represent the polarization filter in the x

�  direction 
by xP̂ , and similarly for 'x̂P  and yP̂ .  Further, a string of these symbols 

placed next to one another can be interpreted as sequential 
measurements read off, by convention, from right to left.  Thus 

xx PP ˆˆ
'  

translates into “first apply an x
� -filter and then apply an x′�  filter”.  

Using this shorthand, we can denote the inequivalence of Expts. 3 
and 3a by the symbolic equation: 

xyxxxy PPPPPP ˆˆˆˆˆˆ
'' ≠  

or, if we strip off the leading factor of xP̂  on both sides: 

yxxy PPPP ˆˆˆˆ
'' ≠  

 



A consequence of non-commuting observables is the uncertainty 
principle.  If two observations do not commute, it is impossible to 
predict exactly what the result of each observation will be; by 
measuring one, you automatically disturb the state of the other, and 
so one cannot know both values at the same time.  In the polarization 
experiments, for example, we established that the y

�  filter and the x′�  
filter do not commute.  This means it is impossible for us to know the 
degree of polarization of the light in both directions simultaneously.  
This may seem trivial in the present case (after all, how could light be 
polarized in two different directions at once?) but we will see that the 
same effect appears again and again. 
 

b. Single Molecule Fluorescence 
Suppose we want to measure the properties of individual sodium 
atoms.  To do this, we can begin with sodium vapor at high pressure, 
and allow the gas to expand through a small nozzle to an area of 
lower pressure (supersonic expansion).  The expanding gas can be 
collimated by placing a sceen a distance away from the nozzle.  This 
results in a very cold, very dilute beam of atoms.   

Now, sodium has an important excited state (the ‘D line’ state) and 
we are interested in measuring its lifetime.  That is, we are interested 
in determining how long it takes an excited sodium atom to emit a 
photon: 

photonNa*Na +→  
 
We know from experience that fluorescence typically occurs on the 
nanosecond time scale, so our measurements need to be fast.  In 
order to accomplish this task, a team of graduate students working 
round the clock for three years designs a tuneable ultrafast laser that 
operates in the region of spectral interest (in this case, about 589 nm)  

 
High 

Pressure 

Low Pressure 

Screen 

Beam of 
Atoms 



with picosecond time resolution.  They also design a very accurate 
detector with similar time resolution in the same spectral range.  
Using these two devices, we can measure the lifetime of the sodium 
‘D line’ state by hitting the molecular beam with a laser pulse at one 
point along the beamline at time t1 and placing a detector further 
down the line to register any sodium fluorescence at a later time t2: 

The lifetime is then determined by the time delay between excitation 
and emission (t2-t1).  Now, even a very accurate detector misses 
many photons; further, very often, the pulse will not succeed in 
exciting a sodium atom, because sometimes there won’t be any 
atoms in the path of the laser beam (recall that the molecular beam is 
very dilute).  Hence, we will have to try this many, many times before 
we get a successful result.  But when we do, we can be very 
confident that the count came from the fluorescence decay (assuming 
we are careful to isolate our experiment from outside light sources). 
 
So, we do this experiment several thousand times (we can fire the 
laser every microsecond, so this doesn’t take as long as you might 
think) and eventually we register a successful count at the detector, 
and determine that the lifetime is 12.554(2) ns, where the uncertainty 
results from our picosecond time resolution in the excitation and 
detection.  Just to check our results, we run the experiment again.  
This time we register a lifetime of 8.492(2) ns.  If we run the 
experiment a third time, we register a lifetime of 22.100(2) ns.  Again, 
we have been very careful to ensure that we have ps time resolution, 
and the initial states of the sodium atoms are absolutely identical in 
the repeated experiments.  What could be going on here? 
 

Quantum Interpretation of Fluorescence Experiments 
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These experiments illustrate another tenet of QM; all observations 
are by their nature probabilistic: one cannot in general predict the 
precise outcome of an experiment.  The best one can do is predict 
the probability that one outcome will be observed as compared to 
another.  In fluorescence experiments above, we found that decay 
times around 10-20 ns are very common, while a decay time of, say 2 
hours is very uncommon.  If we repeat the experiment many, many 
times and make a histogram plot of the number of counts that appear 
after a given elapsed time (t2-t1), we obtain a probability distribution 

that looks like: 
This tells us how likely it is that the molecule will fluoresce within a 
given period of time.  The shocking thing is that this is absolutely the 
best one can do in terms of predicting the fluorescence time 
accurately. This limitation is closely related to the uncertainty 
principle discussed above.  The best one can hope for in practice is 
a very narrow probability distribution (or, equivalently, a small 
uncertainty).  It is important to recognize that this is not due to some 
weakness of our experiment, nor to any inhomogeneity of our 
sample.  Instead, this arises from a very deep limitation on what we 
can know about a quantum system. If we are interested in knowing 
whether the system is in a given state, α , the best one can hope for 
is a way to predict the probability, αP , that we will find the system in 
that state.  If we perform the measurement of (t2-t1) once, we cannot 
predict the result; but if we perform the experiment many, many times 
and keep track of the individual times, we will always obtain the 
distribution above.  In this sense our experiments are reproducible. 
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c. Nanoscale Electrical Conduction 

The experiments described in this section are inspired by some work 
done recently in Bob Westervelt’s group at Harvard 
(http://meso.deas.harvard.edu/).  The details of the experiments are 
really quite challenging, but the general set-up is quite intuitive.  They 
study electron motion in a thin layer of semiconductor sandwiched 
between two insulating layers – a so-called 2 dimensional electron 
gas (2DEG).   

 

By attaching a metallic lead to the outer oxide layer, they create a 
non-invasive but localized source of electrons within the 
semiconductor: 

 

They can then use lithographic techniques to deposit negatively 
charged dopants on the surface.  Since electrons are also negatively 
charged and like charges repel one another, these deposited features 
act like huge repulsive barriers within the semiconductor layer.  A 
simple configuration might consist of a ‘wall’ with a small gap in it: 
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Now, we’re interested in being able to tell how the electrons emitted 
by the source behave after they pass through the gap.  This is a very 
difficult question, since it is difficult to conceive of a microscope small 
enough to ‘see’ an individual electron.  The elegance of their 
experiment is that they can measure the electron’s location with an 
atomic force microscope (AFM) even though the AFM tip is much 
larger than an electron!  So the final set up looks like this: 

We’re going to look at the results one gets with a bunch of different 
barrier configurations.  In this case, it is a lot of work to re-draw the 
above picture every time, so we will resort to the following simplified 
cartoon: 
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In this case, we expect a rather simple result: we should detect 
electrons at the detector only in the region of space that was not 
blocked by the barrier.  This is essentially right.  In practice the 
observed electron distribution is slightly smeared out (due, in part, to 
the uncertainty principle): 

 

Now, we consider a second experiment where we put two small 
holes in the barrier: 

 

In this case, one might expect the distribution of electrons at the 
detector to look something like: 

However, this is not what is seen in an experiment.  Instead, the 
distribution of the electrons that arrive at the detector after passing 
through the two slits is: 
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This is somewhat surprising, but it is similar to something we have 
seen before: the interference of two waves.  If we add up two equal 
waves where one is shifted in phase by an amount  relative to the 
other, we find that the waves add in a non-intuitive way: 

We see that for this relatively small value of  the amplitude of the 
resulting wave is much larger than either wave by itself: constructive 
interference. On the other hand, if we have =  we get completely 
destructive interference: 

Thus, the somewhat surprising conclusion of this experiment is that 
electrons can behave as waves.  This is an illustration of the wave-
particle duality: things we normally think of as particles (like 
electrons) sometimes behave like waves, while things we normally 
think of as waves (like light) sometimes behave as particles. 
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So, then the question arises: what is the electron realy doing when it 
encounters the barrier?  When is it a particle and when is it a wave? 
To address this, let us slow down the experiment above.  Instead of a 
continuous stream of electrons, let’s make the source emit at most 
one electron at a 
time:

 

Now, according to the probabilistic nature of QM, we do not expect 
to be able to predict exactly where this one electron will hit the 
detector.  However, we can predict the distribution of electrons; that 
is, the result expected if one performs the experiment many, many 
times and tabulates the results.  If we do this in the “slowed down” 
experiment, we find: 

 

Thus, the form of the distribution does not depend on how many 
electrons we send at once.  This may not seem surprising; if the 
electron leaves the source as a wave and then passes through the 
two slits as a wave, we expect the interference pattern to show up 
through the interference of different parts of this wave. 

There is, however, one huge wrench that QM throws in this 
interpretation.  Suppose we put two detectors in the two holes in the 
barrier: 
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These detectors will tell us if the electron goes through the upper 
hole, the lower hole or both.  This is actually very difficult to 
accomplish within the Westervelt experiments.  However, other 
experiments have been constructed that perform essentially these 
measurements.  For our purposes, it is enough that it can be done.  
The detectors do not deflect the electron any significant amount; they 
merely tell us which path(s) it takes by flashing (purple for the upper 
slit, orange for the lower).  So, we can perform this experiment many 
times and we find: 
   upper   lower   both 
Run 1  X 
Run 2     X 
Run 3     X 
Run 4     X 
Run 5  X 
Run 6     X 
….. 

If we add it up, we find the purple light turns on 50% of the time, and 
the orange light turns on 50% of the time, but they are never on 
simultaneously.  The conclusion of this is clear: the electron always 
passes through one slit or the other, but never through both at the 
same time.  This is consistent with our understanding of the behavior 
of a particle: it always exists in a definite place, and never in two 
places at once.  However, this poses a rather serious difficulty for 
Expt. 3: each electron is passing through one slit or the other, but in 
order to generate an interference pattern, it must somehow “know” 
that the other slit is there.  This conundrum is complicated by the fact 
that the transmitted particle distribution in Expt. 4 is different from that 
in Expt. 3: 

Expt. 4 

e



 

Thus, the interference pattern disappears when we detect which slit 
the electron passed through! 

Quantum Interpretation of Two Slit Experiment 

First, we address the point of why the interference pattern is present 
in Expt. 3 but absent in Expt. 4.  As was mentioned above, the 
detectors are sufficiently non-invasive that we are confident they do 
not disturb the path of the electron.  The reason the results are 
different is that observing which slit the particle goes through does 
not commute with the observation of its position at the detector.  
Hence, no matter how delicate the detectors at the slits are, they will 
influence the outcome of the second experiment.  This is very similar 
to our experiments inserting an x′�  polarization filter drastically alters 
the degree of y

�  polarization in the light. 

The other difficulty is understanding how the electron can generate 
an interference pattern in Expt. 3 when it is apparently only passing 
through one of the slits.  The trick here is that we don’t actually know 
that it doesn’t pass through both slits in Expt. 3; Expt. 4 tells us with 
certainty that the electron is not passing through both slits at once, 
but in making this measurement, we affect the outcome of the 
experiment!  Thus, in practical experiments, there is never a 
contradiction: one cannot know that it passed through one slit or the 
other and simultaneously observe an interference pattern.  We can 
describe Expt. 3 and Expt. 4 individually; the challenge is to describe 
them together in a consistent manner. 

QM accomplishes this by inventing the concept of a superposition of 
states.  A superposition of states exists in any system that has 
multiple physically accessible states (e.g. particle goes through upper 
slit and particle goes through lower slit) and no measurement has 
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been made to tell us which one is actually realized.  When a 
measurement is made, the superposition collapses to one of the 
observable states.  Thus, in Expt. 3, the electron is said to be in a 
superposition of two states while it is between the source and the 
detector; one state goes through the upper slit, and the other goes 
through the lower slit.  The two states can interfere with one another, 
and this gives rise to the interference pattern.  In Expt. 4 we destroy 
the superposition by making a measurement.  The measurement 
always gives us one of the two superposed states, but never both.  
After the superposition collapses to one state, the interference 
between states is destroyed.   

This is popularly recounted in the Schrödinger’s cat paradox.  
Suppose you have a sick cat and you put it in a box for a long time, 
and do not look at for a long time. Then according to quantum 
mechanics, it exists in a superposition of two states: “cat is dead” 
and “cat is alive”.  Once you open the box, however, it will either be 
dead or alive – the superposition will have collapsed to a single 
state.  This is a bit of an unrealistic experiment, but it does illustrate 
one key point: Schrödinger did not like cats.  This also illustrates the 
point that QM assumes no knowledge of anything that is not 
experimentally observable, because observation has the potential to 
change the outcome of later experiments.  In between experiments 
our uncertainty about how the system evolves factors very heavily in 
how we make predictions about future experiments. 
 


