[l. The Machinery of Quantum Mechanics

Based on the results of the experiments described in the previous
section, we recognize that real experiments do not behave quite as
we expect. This section presents a mathematical framework that
reproduces all of the above experimental observations. | am not
going to go into detail about how this framework was developed.
Historically, the mathematical development of QM was somewhat
awkward; it was only years after the initial work that a truly rigorous
(but also truly esoteric) foundation was put forth by Von Neumann. In
this section, we will instead take the mathematical rules of QM as a
hypothesis and proceed to show that this hypothesis is consistent
with all the experimental results we have encountered.

Now, there is no physics or chemistry in what we are about to
discuss; the physics always arises from the experiments. However,
just as Shakespeare had to learn proper spelling and grammar before
he could write Hamlet, so we must understand the mathematics of
QM before we can really start using it to make interesting predictions.
This is both the beauty and the burden of physical chemistry; the
beauty because once you understand these tools you can answer
any experimental question without having to ask a more experienced
colleague; the burden because the questions are very hard to
answer.

A. Measurements Happen in Hilbert Space

All the math of QM takes place in an abstract space that we call
Hilbert Space. The important point to realize is that Hilbert Space
has no connection with the ordinary three dimensional space that we
live in. For example, a Hilbert Space can (and usually does) have an
infinite number of dimensions. These dimensions do not
correspond in any way to the length, width and height we are used to.
However, QM gives us a set of rules that connect operations in
Hilbert Space to measurements in real space. Given a particular
experiment, one constructs the appropriate Hilbert Space, and then
uses the rules of QM within that space to make predictions. In what
follows, we will introduce what is called ‘Dirac notation’ for Hilbert
Space. We will use this notation throughout the semester.



1. Operators Correspond to Observables

As a short hand, we will call anything that can be measured in an
experiment an observable. The first rule of QM is: all observables are
associated with operators in Hilbert Space. Generically, operators
are things that do something to the system, and we will place a hat
(e.g. X) over operators to differentiate them from simple variables.
We have already encountered some operators; in the light

polarization experiment, we represented the different filters by I5X, I5y,

etc. I5X and I5y are the operators that represent measurements of the
polarization in the x and y directions.

Now, for most intents and purposes, operators behave like variables:
you can add them, subtract them, multiply them, etc. and many of the
familiar rules of algebra hold, for example (X,Y,Z are arbitrary
operators):
Addition Commutes: X +Y =Y + X
Addition is Associative: ()2 +\?)+ Z=X+ (\? + 2)
Multiplication is Associative: ()2\?)2 = )2(\?2)
However, the multiplication of operators does not commute:
Multiplication does not commute: XY #YX
We already knew that this was true; in the case of the polarization

operators we showed that P, and P. do not commute:

BB PP
Thus, the association of observables with operators allows us to
describe the first two quantum effects we discovered in the
experiments: non-commuting observations and uncertainty.
Recall that the uncertainty comes solely from the fact that the order of

measurements matters; hence we can’'t know the result of both
measurements simultaneously.

Now, deciding that operators have all the above features (e.g.
associative multiplication, commutative addition) may seem rather
arbitrary at first. For example, why does operator multiplication need
to be associative? The deep result that motivates this is a theorem
that asserts that if a set of operators satisfies the above relations
(together with a few other benign conditions) guarantees that



operators in Hilbert space can always be represented by
matrices. Hence a better way to remember how to multiply and add
operators is to remember that they work just like matrices; any
relation that is true for two arbitrary matrices is also true for two
arbitrary operators.

2. The System is Described by a State
Experiments are always performed on a physical system. In Hilbert
Space, the system is represented by a state. In order to differentiate
a wavefunction from operators and variables, we will enclose it in
brackets, \ > and call it a ‘ket’ state. In between the brackets, we will

write a label to tell us necessary information about the ket state. For
example, an x-polarized photon would be in a state \y> while an

electron that passed through the upper slit in the two-slit experiment
might be in the state \U> The ket state corresponds to a particular

means of representing the wavefunction of the system, and we will
use the two terms interchangeably. The important point is that the
state contains all the information that can be known about the
system. Thus, if one knows the state of the system, one can predict
the outcome of any experiment on the system (within the bounds of
the uncertainty principle).

Now, there are two simple operations one can execute on a state.
First, one can multiply it by a constant:

) =|w)c
In general, this constant can be complex. It does not matter which
side the constant appears on. The second thing one can do is to add
two states together to make a new state:

@) =) + )
What is the meaning of this new state? We interpret \(//> as a
superposition of the two states |¢,) and |¢,). We encountered this

in the case of the two slit experiment outlined in the previous section;
when there were no detectors to tell us which slit the particle went
through, the system existed in the superposition of two states that
went through the upper and lower slits:

@) =lU)+L).



3. Measurements Always Give Eigenvalues

Now, as we mentioned above, operators are associated with things
that can be observed by performing an experiment on the system. It
is therefore not surprising that operators act on states, which we will
write as:

Ol)
An operator acting on a ket state just gives another ket state. Further,
observable operators are always linear, which means:

OQ¢1> +‘¢2>)=O‘¢1> +0¢,)
This is another one of the traits that allows operators to be
represented in terms of a matrix algebra (they call it linear algebra for
a reason).

Now, one can associate a set of eigenvalues, o,, and eigenstates,

\(/la>, with each operator, 0, by finding all of the solutions of the
eigenvalue equation:

Ou,)=0,¢,)
The next fundamental rule of QM is that when measuring the value of
the observable O, the only possible outcomes are the eigenvalues

of O. If the spectrum of eigenvalues of O is discrete, this
immediately implies that the resulting experimental results will be
guantized, as we know is quite often the case. If the spectrum of

eigenvalues of O is continuous, then this rule gives us little
information.

Now, after O_has been observed and found to have a value o, then
the wavefunction of the system collapses into the eigenstate |¢,). In

a rigorous justification of QM, this has to be taken as an independent
rule. It is perhaps the most disturbing of the basic principles of QM:
how can an observation (especially a very delicate one) have such a
drastic effect on the system? However, in most applications, the
collapse of the wavefunction after a measurement follows naturally,
based on some assumptions about what it is we mean by
‘measurement’ and ‘observation’. Hence, we will almost never need
to refer to this postulate in practice. However, at least at first, it is
conceptually simpler to take this as a basic rule.




4. Bra-Ket Gives Probability

As mentioned above, operators can be associated with matrices. Itis
therefore natural to associate an operator acting on a ket state with a
matrix-vector product:

é‘(ﬂ> N X

This qualitative association is actually rigorous as we will show
shortly. For the moment, however, we only want to use this
illustration to motivate the definition of bra states. Note that when
performing (matrix)x(vector), the vector must be a column vector. If
one has a row vector, the operation is reversed: (vector)x(matrix).
Just as we can place ket states in correspondence with column
vectors, we propose that there are also states (‘bra’ states) that
correspond to row vectors:

¥) - )= ( )
and for which the operator should be placed on the right:
[0 - ( )x

To be mathematically precise, bra and ket states are dual to one
another. By defining the bra states we are really postulating the
existence of a dual space. The illustration in terms of vectors is
invaluable in understanding what this means, because column
vectors and row vectors are also dual to one another. Thus,
essentially all the properties of row and column vectors can be
transferred over to bra and ket states. Most notably, one can define
an overlap (or inner product) analogous to the dot product for
ordinary vectors.

(Xl = ( )

The overlap between a bra and a ket has all the same intuitive
content as the dot product: it tells you how similar the two states are.



If the overlap is zero, the two states are orthogonal. The overlap
between bra and ket has the ubiquitous “bra-ket”, or bracket,
structure. | assume this is what passed for humor in the early days of

QM.

It is important to notice that the order of operations is crucial at this
point. Operators will always appear to the left of a ket state and to
the right of a bra state. The expressions

Ol| and |¢)O
are not incorrect; they are simply useless in describing reality. This
might be clearer if we write the associated matrix expressions:

( ) and

One can give meaning to these expressions (in terms of a tensor
product) but the result is not useful.

Another key aspect of row and column vectors is that they can be
placed in one-to-one correspondence with one another. Each column
vector is clearly associated with a unique row vector — its transpose.
There is an analogous operation that takes each ket to a
corresponding bra and vice versa — this operation is called Hermitian
conjugation and is denoted by a superscript ‘1’ (a ‘dagger’). Each
ket is then associated with a unique bra via Hermitian conjugation:

() =@l () =le)
We can also define the Hermitian conjugate (HC) of an operator in
the logical way, by forcing the HC Oly/) to be the HC of |¢) times the

HC of O:

(Bl =i
This defines 0", the HC of 0. This is also called the adjoint of the
operator O. If an operator is equal to its adjoint, it is hermitian. This

Is analogous to a symmetric matrix. If we multiply the state by a
constant, then we find that the adjoint becomes:

(o)) =(wlc*

where c* is the complex conjugate of c.



The inner product together with the HC relationship allows us to
define the norm of a state:

Wl =wly)
It turns out that the norm of the state has no physical relevance; any
value between 0 and « gives the same physical answer. In practice it
is often easiest to multiply the wavefunction by a normalization

constant, c=(y|¢) ™", that makes the norm 1. This does not affect

our predictions but often makes the expressions simpler. If two
states are both orthogonal to one another and normalized, they are
said to be orthonormal.

Now, we have already established that it is not generally possible to
predict the precise outcome of an experiment in QM. We can,
however, predict what the average outcome of an experiment would
be if we performed it many, many times and summed the results.
This is called an expectation value and according to the rules of QM,
for a system in the sate |¢),the expectation value of an observable,

0, is given by:

- 0
(6)= (w[oly)
wl4)
Note that this equation simplifies if |¢) is normalized, in which case

(0)={w|olw).
This final rule is the key result that allows one to make predictions
about the outcome of experiments in QM.

5. Some Interesting Facts

Before moving on to describe the experiments from the previous
section in terms of our newly proposed rules, it is useful to define a
few concepts. The first is the idea of an outer product. Just as we
can write the inner product as (bra)x(ket), we can write the outer
product as (ket)x(bra). This is in strict analogy to the case of vectors
where the outer product is a column vector times a row vector:

w0 )

Notice that the outer product is an operator; if we act on a state with
it, we get another state back:



(nwla=lnwld=dn k=0
This is, again, in direct analogy with vector algebra, where the outer
product of two vectors is a matrix. One interesting operator is the
outer product of a ket with its own bra, which is called the density
operator:
R =)
If |) is normalized, this operator happens to be equal to its own

square: B )
55, =|ww><wl=|w><w|=m

1
This property is called idempotency. Hence, we see that the density
operator for any quantum state is idempotent. Further, we see that

A

P, acting on any state gives back the state |¢) times a constant:

(w)wlo =lw)wlo =dw)  (c=|9)
By this token, density operators are also called projection
operators, because they project out the part of a given wavefunction
that is proportional to |¢).

One very important fact about Hilbert space is that there is always a
complete orthonormal basis, {g)}, of ket states. As the name

implies, these states are orthonormal: the overlap between different
states is zero and each state is normalized. We can write this in
shorthand as

(l@)=2
Where we have defined the Kroenecker delta- a symbol that is one if

i=j and zero otherwise. The fact that these kets form a complete
basis means that one can write any state, |¢),in Hilbert space as a

linear combination of the |g):
) =cla)+cle)efa)+..= 2 cla)

Finally, it is also useful to define the commutator of two operators:
|A.B|= AB-BA

If two operators commute, then the order in which they appear does

not matter and the commutator vanishes. Meanwhile, if the operators



do not commute, then the commutator measures “how much” the
order matters.

B.Description of Model Experiments

Both to familiarize ourselves with Dirac notation and to prove that the
rules of QM actually do describe the weird effects seen in
experiments, we proceed to re-formulate the three experiments
discussed in the introductory lectures in terms of operations in Hilbert
Space.

1. Polarization of Light

We have already seen that the polarization filters in this experiment
can be represented by operators: P,, |5y, etc. But how do they act on

the states? And what are the states, anyway? These two questions
arise any time one treats a new class of systems, and the solution to
this dilemma is properly considered an additional rule of QM. Indeed,
many of the early difficulties in the field came not in the definition of
the basic principles but in the practical association of real
observables with appropriate operators. In the end, once again, the
correctness of our association of operators with observables must be
verified by testing the agreement with experimental observations.

Defining the state space is fairly straightforward. The set of all
possible polarizations for the photon is just the set of all unit vectors
perpendicular to the direction the photon is traveling (recall that light
is a transverse wave). Hence, we will denote the photon’s state by
/i), where 4 is the unit vector pointing in the direction of the photon’s

polarization. Then, it makes sense to define the overlap between two
polarization states to be the same as the dot product of their
polarization vectors:
(alvy=d

This agrees with our idea that if the polarizations point in orthogonal
directions, there is no overlap between the states. Notice that, in
general:

at)+h V) #|at +bv)
The state on the right corresponds to a photon with polarization in the
direction aii+bv; the state on the left corresponds to a photon in a



superposition of the two states |d) and |v). As an example of the

inequality of these two states, consider the superposition:
HR*+EY)

clearly this cannot be equivalent to %)‘( +5 y>, since a complex

polarization direction has no meaning. Indeed, the above state
cannot be assigned a definite polarization direction; as it turns out,
L|%)+-]y) corresponds to circularly polarized light, and our basis

states correspond to the various possible linear photon polarizations.

What about the reverse statement? Well, if |G) and |v) are

independent vectors, they form a complete basis. As a result, we can
always write:
|ali +bv) = ¢ |0) +¢,|V)
for some constants, c, and c,. Our task is to determine these
constants. First, note that for the state on the left to be admissible, a
and b must be real. Given this, we determine the to constants by
taking the inner product of the above equation with |d) and |v):
(U|at +bv) = c,(4|d) +c,(T|v) =c, +c,(U|V)
(V]ali +bV) = c,(V|U) +c,(V|V) = c,(V|0) +c,
Simplifying the left hand side:
= a+blil¥=c +c,(U|V)
= av i +b=c,(V|U) +c,
This is a set of two equations for two unknowns, and by inspection we
see that ¢, =a and c, =b. Thus, for real aand b:
|ati +bv) =all) +b|V).
The important point is that every state can be written as a
superposition, but not every superposition has a definite polarization.

Now, given that we know what the states are, we come to the difficult
part of determining what the operators P, and |5y are. We are given a

hint by the fact that, experimentally, we know that given any initial

state, we always end up with an x-polarized photon after we act with
P, and a y-polarized photon after we act with |5y. Thus the filters

must be represented by projection operators and it is easily guessed
that the correct forms are:



B=[X)(x] P, =[y)], etc.
Again, these operators are to be associated with the observable “how
much of the light passes through the filter”.

To verify our guess, we proceed to ‘predict’ the results of the
polarization experiments we already discussed.

Experiment 0: In this case, we begin with initially unpolarized light
and pass it through an x-filter. This immediately poses a difficulty
because we haven’t defined what “initially unpolarized light” means,
and for good reason. By saying the light is ‘unpolarized’, we
essentially mean we don’t know what the state of the system is’. How
then do we make a prediction? First, we must recognize that the
beam of light consists of many, many photons, each of which must
have a definite polarization — we just don’t know what each
polarization is. However, since we are only asked to predict the
average outcome, this does not pose a problem; we merely assume
an arbitrary polarization direction for the photon and then average
over this direction. So, our arbitrary polarization direction will be:
|U) =|costk +sin &)

Then, using the rules of QM, we predict that the probability that a
photon in this state will make it through the x-filter is:

<U|IE>X|G> = (0| X)(X|0) = (costk + sin | X)(X|costk +sin &) = cos’ &
The effect of measuring the polarization of many, many photons in
different states is to average over the value of . So the fraction of
the light that passes through the filter will be:

[(u[pa) =,—1TJ'O”co§ 6d6 =1.
And hence, our rules predict (correctly) that half the initially

unpolarized light will pass through the —filter, assuming that
unpolarized light is made up of many randomly polarized photons.

Experiment 1: In this case, we are making two successive

measurements: an X-filter followed by a y-filter. We have already

determined that half of the unpolarized light passes through the first

filter. After the first measurement, the state of the system is given by:
@) = PB,|d) = |X)(X|d) = |X)(%|costk +sin &) = cosd|X)




Note that, because of our definition of the P, operators, the
polarization automatically collapses to |x) after the measurement has

been made (recall that the norm of the state is unimportant). Hence,
our task is now to figure out how much of the x-polarized light that
comes out of the first filter passes through the second filter.
According to the rules:

(X[R,[%) = (x| y)(¥|%) =

Thus, none of the light makes it through the second filter.

Experiment 2: In this case, we again make two measurements: X first
and then x'=-L(x+y). As before, half the light passes through the first

filter, ending up with x-polarization. For the second filter:

1B o\ — ol o 1Y 1)_1

(X80 = ()10 = (2 e )8 = 55 | 55 )=
Thus, half the x-polarized light passes through the second filter, and
on quarter of the total intensity is transmitted.

Experiment 3: Here, we perform three measurements: first x, then

x'=L(x+y), then y. The results of the first two measurements were

already computed in Expts. 0 and 2. Hence, we only need to predict
the effect of the final polarization filter. The light coming out of the x'-
filter is x'-polarized since:

) = B.RJa) =[%)(x|x)(x|) =|x){% cosd) O] )

Hence, the outcome of the third measurement is:

(%18 x) = (R15)091%) = (2 0+ 9 )3k 9) = 55 | 5 ) =3

So, we loose half the intensity of the light by passing it through the
third filter. Thus, 1/8 of the total initial intensity makes it through.

So, to recap, once we correctly identified the possible states of the
system (|%),|y),etc.) and made an ansatz for the operators

(P, =|%)(x|,P, =|y)(y| etc) we were able to correctly predict the results

of all the polarization experiments using the rules of QM. Score one
for Dirac notation.



2. Single Molecule Fluorescence

There really isn’t anything for QM to predict here. The main thrust of
this experiment was to prove that observations are probabilistic;
however, QM only predicts probabilities and so there can be no
contradiction here.

3. Nanoscale Electrical Conduction

These experiments illustrated several important physical principles:
interference, superposition and the influence of measurement. The
new facet here is that we must deal with the evolution of the electrons
between the measurements. In the polarization experiments, the light
propagates essentially undisturbed between the filters. In the
conduction case, the electrons take different paths and the difference
between the paths matters. We will not be able to make quantitative
predictions, since there is too much we do not know about the
structure of the semiconductor, width of the slits, etc. However, we
will focus on isolating the qualitative effects.

Interference Between Two Slits:

Just as before, we need to define the possible states of the system.
For the states, it is most convenient here to work in terms of the paths
that the system can take. Then, if we ignore all the electrons that get
reflected by the barrier, there are only two physically reasonable
paths for the electron to take getting to our detector:

[T ]
Yy

For simplicity we will denote the paths from the upper and lower slits
to the arbitrary point, x, as |U;x) and |L;x), respectively. Now, it is

physically clear that these states form a complete basis; because of
the set-up of our experiment, there are no other reasonable paths
that allow the electron to reach the detector. Therefore, since any
state can be written as a linear combination of the basis states, the
state of our system when it reaches the detector can be written:



wi%) =6, [U; )+ LY

Now, we need an ansatz that lets us determine the coefficients. As
far as the basic rules of QM go, we have complete freedom in
defining these coefficients. The only guideline we have is, again, that
our answer should agree with the experiment. One hint that guides
us is that the particles display an interference pattern, which is
characteristic of wave propagation. We might therefore guess that
¢, and c_ are solutions of the wave equation:

9° 2

e c(d)=-kc(d)
where d measures the distance the wave has traveled from the slit.
This turns out to be a special case of the Schrédinger wave equation
that describes the wavefunction of a particle in real space. The
solutions to the wave equation are well known: they are plane waves

C(d) — eiikd

Here, the speed of propagation of the wave is determined by its
wavevector, k, and the sign of k determines the direction the wave is
moving. We will be interested in waves that travel toward the right,
which corresponds to positive k. This is the first example of why it is
necessary to allow complex coefficients in Hilbert space; if we forced
c,(d) and ¢ (d) to be real, we could never obtain a solution to the

wave equation that moved in a particular direction.

Now, notice that an electron that passes through the upper slit will
traverse a distance (d, ) that is different than the electron passing

through the lower slit (d, ). We therefore guess that the correct form
for the wavefunction as it arrives at x is:

@;x) =€V |U;x) +€""|L; x)
[Aside: | will use the “=” symbol quite often. Roughly translated, it
means “I threw away some terms that are not important”.]

With this wavefunction, we wish to predict the outcome of the
measurement. If we use P, to denote the operator associated with

detecting the particle at x, the probability of observing an electron at
X IS:



WixPwix) = (Uil ™ +{Lxje™ JP, (€ |Usx) + € Lix))

(TR eV {LixBJUix
+e< U xR Ly x) + (U x|P|U; x)

PPILiliae

Complex
Conjugates!

Now, once the electron arrives at the detector, there is no way for us
to tell whether it went through the upper slit or the lower slit. The two
states are indistinguishable. The result of this is that all

measurements of P, must give the same result,
(U;x|PJU;x) =(L;x[PJU; X) = {U; x|P|L;x) = (U; X|PJU; X) =a
If the measurements on, say, \U;x> gave a different answer than for

|L;x), we would be able to tell the difference between the two states

by this measurement — contradicting our assertion that they were
indistinguishable. Using this we can finally write the probability of
detecting the particle at x:

<w; X‘st‘l/J; X> ~ g+ Kd) g 4 @kdd) o gy

=1+cosk(d, —d,)).
Hence, we see that we do, in fact, get an interference pattern; if
d, —d, =2m we will get constructive interference, while if

d, —d, = m we will get destructive interference.

Measurement and Collapse:

Perhaps the most shocking aspect of the two slit experiment is the
fact that observing which slit the particle took (without deflecting the
particle in any way) destroys the interference pattern. Describing this
effect is quite challenging, but the key realization is that we cannot
consider a ‘system’ that consists of the electron by itself; we must
consider the detector as part of the quantum mechanical system, as
well. To this end, consider the following set up:




EXxpt. 4a

| — @ —

Thus, we have a two-slit experiment, but there is a detector that turns
“on” if the electron passes through the upper slit and is “off” otherwise
(I'like to think of it as a light bulb). Again, we will only consider
electrons that actually make it to the screen. Then, there are really
four possible states for the electron+detector system:

|U;off ),|U;on),|L; off ),| L, on)
If we assume our detector is 100% efficient, the first state will only be
important before the electron passes through the slit, and the last
state will never appear. Consider the initial state:

¢, |U;off ) +c |L;off )

This describes an arbitrary superposition of electronic paths that will
(eventually) pass through the upper and lower slits, and where the
detector has yet to register a count. The result of the measurement
is:

¢, |U;off ) +c |L;off ) O BFE* . ¢, |U;0n) +c | L;off )
That is, the state of the electron is not disturbed, but the detector
turns on if the particle went through the upper slit. This is the result of
the measurement process. Our task is now to try to deduce what this
state means.

The first point is that after it has passed through the detector, we
cannot think about the ‘state’ of the electron by itself. To illustrate
this, assume we could ignore the detector and describe the electron
by its own wavefunction:

[P=c|U)+c|L)
[Note: ¢, andc,_ are arbitrary.] Now, consider the three operators:

A~

X=U)L+LU]  Y=i(U)L-Lu)  Z=u)ul-|LL
the actions of these operators on |¢) are:



=|U)e, (10 +|Lye, (WIS) +|U e (LS + L, (W) = 6, [L) + )
1 0

U icy (L -[ L, () +|U i (L= Ly (4L = -icy 1) +icc )

i 0 1 1 0
Zlg) =(U)u |- |LHL e |u) +e L))

U)e, (U0 =L, (L) +|U e (Ui [ Lje (L) = 6, |u) ~c. L)
1 0

0 1
Thus, the average values of these observables are:

(@X|@=(Ue, +(Lic Na|L) +eu))=cc +clc, =2Recg,
(@Y|p = (<U (ot +<L\cz)(—icU\L>+icL\U>)= ic,c_—ic ¢, =2Imcg,
(@29 =) +(Lc N |u) -c|L)=cie, ~ce =l -l
These equations summarize the possible results we can get from

measuring X,Y andZ on any purely electronic state. For now, it does

not matter what these observations correspond to; simply that they
can be made, and would have the boxed values.

Now, we need to define how these operators act on the true state of
the electron+detector system, |¢) =c,|U;on) +c_|L;off ). To do so,
notice that X,Y andZ only affect the electron and not the detector;
we therefore define the actions of X,Y andZ to give the same result
as above when acting on \¢> ignoring entirely the state of the

detector. Thus,
X(6,]u)+e | 1)) = ¢, |L)+e ) = X(c,|Us0n) + e[ Lioff )= L 0m) + ¢ Usoff )

Y(c,|U) +c |L))=-ig,|L) +ic [U) = Y(c,|U;on) +c | L;off )) = ~ig,| L;on) +ic, |U; off )

2(e|U)+ i |L)= ¢ |U) -l L) = Z(e,|Usom) +¢ | Lioff ) = U on) — | L;off)

Further, note that now the states |U;on) and |U;off ) are orthogonal:
(U;on|U;off ) =(L;on|L;off ) =0

This is because | can clearly distinguish between the two states by

checking if the light in the detector is on or off. With these definitions,

we can now compute the average values of X,Y andZ for the true

state of the system+detector:



(W|X|y)= (<U ;on|c, +(L;off \cz)(cu\ L;on) +c, |U;;off >)= 0
WI¥]w)=((Usonlc, +(L;off |c; Jicy| Lyon) —ic,|U;off ))=0

W2l) = (Uson, +(Lsoft 6} )g, U30n) - |Lsoft)) =[g, =,
It is immediately clear that these average values cannot be
reproduced by any choice of |¢) =c,|U)+c/|L), even if we adjust the
coefficients to (i.e. g, - g,',c, - ¢_'). We therefore conclude that it

is impossible to consider the state of the electron apart from the state
of the detector after the measurement is made. The state of the
electron and the state of the detector are said to be entangled.

But if we cannot describe the electron by a quantum state, how are
we to describe it? Observe that while the three average values are
not possible if the electron has a single state, they are completely
consistent with a statistical mixture of states. That is, assume that the

electron “collapses” to either [U) (with probability \CU\Z)or L) (with

probability \CL\Z). Then, when the system is in |u), we find the
average values

and whenitisin |L) we find

(LIXJL) = (LUl +[L)u L) =0
(Lvj) =i(Lf{u) L\ LufL)=0
(LIZIL) =(L(u)u |- |LLL) =-
If we add the two results with the appropr te probabllltles we get

o[ (VXU +[e [(LIX|L)=0
[ UV +e [ (LY[L) =

2 = 2 - 2 2
[V ZU) +le[(LiZ]L) =le[ ~led]
Hence, the result of making many measurements on the entangled
state of the electron+detector is entirely equivalent to making
repeated measurements on an electron that randomly “collapses” to
either |U) or [L). In practice, it is simply easier to assume the system



collapses than to worry about the entangled state, and this is what is
done. Note that there is no way to tell the difference between the
entangled state and the collapsed state simply by looking at the
electron; the experimental predictions made by both models are
identical. Hence, we can choose to describe the situation using
whichever picture we deem more “physical”.

Now, for the two slit experiment, we are interested in the average
number of electrons that strike the detector at a given point (¢|P|y).

This calculation would be more involved than the ones above, since
we have to worry about the wavelike propagation between the slit and
the screen, etc. However, the basic principle would be the same: the
average value for the entangled state would be identical to an
experiment where electron passes either through one slit or the other,
in which case there is no interference. Hence, the most perplexing
aspect of this experiment is explained.

C.Matrix Mechanics

We now turn to the a pragmatic aspect of QM: given a particular
problem, how can we translate the Dirac notation into a form that
might be interpretable by a computer? As hinted at previously, we do
this by mapping Dirac notation onto a complex vector space. The
operations in Hilbert space then reduce to linear algebra that can
easily be done on a computer. This formalism is completely
equivalent to the Dirac notation we’ve already covered; in different
contexts, one will prove more useful than the other.

1. States can be represented by vectors

First, we will begin with an arbitrary complete orthonormal basis of
states {\m} Then, we know that we can write any other state as:

\w>=clm>+czm>+c3m>+---=zcm

How are these coefficient determined? Here, we follow a common
trick and take the inner product with the j"" state:

(@) =(a)cl) =2 (alla) =2ea

Since the Kronecker delta is only non-zero when i=j, the sum
collapses to one term:

(Blw)=c



The simple conclusion of these equations is that knowing the
coefficients is equivalent to knowing the wavefunction. If we know
\¢>, we can determine the coefficients through the second relation.

Vice versa, If we know the coefficients, we can reconstruct \¢> by
performing the sum ) c|g). Thus, if we fix this arbitrary basis, we

can throw away all the basis state and just keep track of the
coefficients of the ket state:

Vg
In harmony with the intuitive arguments made in Section A, here we
associate the ket states with column vectors. Notice the small
subscript “¢”, which reminds us that this vector of coefficients

represents |¢) in the {\m} basis. If we were really careful, we would

keep this subscript at all times; however, in practice we will typically
know what basis we are working in, and the subscript will be dropped.

How to we represent the corresponding bra state(ga\ as a vector?
Well, we know that
;
_ t_ _ *
wl=W) =(Zela)) =Xl
Now, as noted in Section A, we expect to associate bra states with
row vectors, and the above relation shows us that the elements of
this row vector should be the complex conjugates of the column
vector:

<¢‘ - (C]*. C; C; )(/J
Noting that bra states and ket states were defined to be Hermitian
conjugates of one another, we see that Hermitian conjugation in state
space corresponds to taking the complex conjugate transpose of the
coefficient vector.

Now, the vector notation is totally equivalent to Dirac notation; thus,
anything we compute in one representation should be exactly the
same if computed in the other. As one illustration of this point, it is



useful to check that this association of states with vectors preserves
the inner product:

W)= (ZW\@)(JZCM) = ;C.*CMW =269 =24
9
€ ¢ ¢ .07 =X

)y
So, the two ways of writing the inner product give identical results,
and overlaps between the vectors have the same quantitative (and
gualitative) meaning as their bra-ket counterparts.

2. Operators Become Matrices

In order to complete our transition to linear algebra we need to
determine how operators act on the coefficient vectors described in
the previous section. Before we do this, we need to consider the

operator:
0= )|
Acting this operator on an arbitrarly state:
6} =Slaaw)
However, we showed above that (¢ ) = c;, the coefficients of the
state |¢/). Thus,

Av)=2la)aly)=2lac =)

Thus, O acting on any state gives the same state back. The operator
that accomplishes this is the identity operator, 1, and so we write:

1—Z\¢e><¢e\

and say that this is a resolution of the identity.

With this in hand, we manipulate the expression for the bra-ket
sandwich of and arbitrary operator A:
W Aly)

/N



1=Ylafal  1=X|a)a]
:;wmmwm@w>
= YelalAa),

We can re-write this last line as a standard (row)x(matrix)x(column)
multiplication if we define the matrix A, whose elements are

A =<¢gW¢JJ>. This association is so common, in fact, that even in

Dirac notation, these objects are typically referred to as “matrix
elements”. So, to summarize, we can write:

(alAa) (alAa) (alAa) ..
i_ll®lAa) (alAa) . _
(@lAa)

>

@
This matrix has all the same action on row and column vectors that

the operator A has on bras and kets:

Ay) - AlE (WA o c'[A
It is also easy to show that the product of two operators is correctly
represented by the product of their matrix representations. Further,

similar to the case of vectors, the adjoint of A is the complex
conjugate transpose of A. Using the above associations, we can
write every operation in Hilbert space in terms of matrix-vector
multiplications, which are easily handled by a computer.

3. Some Interesting Matrix Properties

We are now going to prove a number of interesting things about
particular classes of matrices which will prove useful later. These
same identities can be proven for the raw operators, but the results
are somewhat more familiar when one has the matrix formulation in
hand.

The first two results concern Hermitian operators. Given a Hermitian

operator, H , it turns out that 1) the eigenvalues of H are always real,
and 2) the eigenstates can be made to form a complete orthonormal
basis. Both these facts are extremely important. First, recall that we
know experimental results (which correspond to eigenvalues) are



always real numbers; thus, it is not surprising that every observable
we deal with in this course will be associated with a Hermitian
operator. Also, recall that in defining matrix mechanics, we appealed
to the existence of an orthonormal basis, but gave no hints about how
such a basis was to be constructed. We now see that every
Hermitian operator associated with an observation naturally defines
its own orthonormal basis!

As with nearly all theorems in chemistry, the most important part of
this is the result and not how it is obtained. However, we will outline
the proof of this theorem, mostly to get a little more practice with ins
and outs of Dirac notation.

1) Consider the eigenvalue equation and its Hermitian conjugate:
H|y,)=h,|y,) O TR - (@, H =@, |h,

Now we apply one of our tricks and take the inner product of the left

equation with (¢, | and the inner product of the right equation with

W,
= (W, |H|¢,) =hw,|v,) (W, Hw,)=n({w,|w,)

We see that the left hand sides (l.h.s.) of both equations are the
same, so we subtract them to obtain:

= 0=(h, - kw,|w,).
In order to have the right hand side (r.h.s) be zero, either:
o=(h,-h,) or 0=(w,|w,)
Since we defined our states so that their norms were not zero, we
conclude that
0=(n, 1)
Which implies that h, isreal®

2) Here, we need to prove that the eigenstates are a) normalized, b)
orthogonal and c) form a complete basis. We will take these points in
turn.

a) The eigenstates can be trivially normalized, since if \¢a> IS
an eigenstate of H, then so is dy,):

H(dw,))=Hdw,) =cA|w,) = ch,|y,) =h,(dy,))



So given an unnormalized eigenstate, we can always normalize
it without affecting the eigenvalue ©

b) Consider the ket eigenvalue equation for one value of a and
the bra equation for a'

Hlg.) =halea) WalH =,
where we have already made use of the fact that h,. =h_..
Now, take the inner product of the first equation with (¢,.| and
the second with |¢,). Then:

= <¢Ia" ‘H ‘wa> = ha<¢/a' ‘wa> <¢Ia' ‘H ‘wa> = ha'<¢/a' ‘wa>
Once again, the I.h.s. of the equations are equal and
subtracting gives:
= O = (ha - ha' )<l//a' ‘l//a>

Thus, either:

0= (ha - ha.) or 0=(y,|w,)
Now, recall that we are dealing with two different eigenstates
(i,e. aza'). If the eigenvalules are not degenerate (i.e.
h, #h,.), then the first equation cannot be satisfied and the

eigenvectors must be orthogonal. In the case of degeneracy,
however, we appear to be out of luck; the first equality is
satisfied and we can draw no conclusions about the
orthogonality of the eigenvectors. What is going on? Notice

that, if h, =h,. =h, then any linear combination of the two
degenerate eigenstates, aly,)+bly,.), is also an eigenstate
with the same eigenvalue:

H (al,) +Hy,) = aH @, ) + bHjg,.) = ahlw,) +bhig, ) = h(dy, ) +ble,))
So, when we have a degenerate eigenvalue, the definition of
the eigenstates that correspond to that eigenvalue are not
unique, and not all of these combinations are orthogonal to one
another. However, there is a theorem due to Gram and
Schmidt — which we will not prove — that asserts that at least
one of the possible choices forms an orthonormal set. The
difficult part in proving this is that there may be two, three,
four... different degenerate states. So, for non-degenerate
eigenvalues, the states must be orthogonal, while for a



degenerate eigenvalue, the states are not necessarily
orthogonal, we are free to choose them to be orthogonal ©

c) The final thing we need to prove is that the eigenstates form
a complete basis. Abstractly, this means that we can write any
other state as a linear combination of the eigenstates:

\M=;%%>

In matrix language, this is equivalent to asserting that the
number of eigenstates is the same as the number of columns in
the matrix H ; both of these are equal to the dimension of the
vector space. This turns out to be difficult to prove, and so we
simply defer to our math colleagues and assert that it can be
proven ©

Now, since each Hermitian operator defines its own orthonormal
basis, we often be interested in maklng a change of basis from the

eigenbasis of one Hermitian operator, A, to that of another, B.
Denote the eigenbasis of A by {\¢a>} and the eigenbasis of B by

{x.)}. Then according to the result above {¢,)} and { x,)} are both
orthonormal bases. Thus, we can write any state as

W)= 2a¢.) orl)=2.b./X)

Our task is to get {a,} from {b.} (or vice versa). This is accomplished
using our favorite trick; take the inner product of each equation with

Xs):

al) =22l Xaldo) or (o) = 2000 s o)
Equating the r.h.s. and making use of the orthonormality of the {\)(a>}
gives:

Za:aa<)(ﬂ‘¢a> = ;ba</\/ﬂ‘)(a> = Za:badaﬂ = bﬂ
- Za:aa<)(ﬁ‘¢a> = bﬂ

This leads to the definition of the Transformation matrix:



Xle) nlg.) (nlés)
SAUNNGAL N

TE<%W&

The columns of this matrix are the coefficients of the “new” basis
states ({\)(a>}) in terms of “old” ones ({\¢a>}) and it allows us to

transform from one basis to another using simple matrix algebra:

Now, what about the reverse transformation (i.e. b to a)? Well, our
designation of the “old” ({\ ¢a>}) and “new” ({\)(a>}) bases was

completely arbitrary; we can change the direction of the
transformation by simply switching the roles of {\)(a>} and {\¢a>} For

example, we can obtain the b to a transformation matrix by simply
swapping the letters ¢ and y in our definition of T

#lx) (Blx.) (BXxs)
(Bl x) (#.0X2)

> A

This matrix satisfies:

a=3b.
However, looking at our definition of S, we see that it is just the
Hermitian conjugate of T! This leads to an important result:

a=Sb=T'b=T'(Ta)=T'Ta

Reading from right to left, this shows that T'T acting on any vector a
gives back the same vector. Thus, we conclude that:

TT=1
Matrices that satisfy this special property are called unitary matrices.
Any property we are interested in will be invariant to unitary
transformations. From a physical perspective, this is because unitary
transforms correspond to a change of basis and we know that the
basis we choose to represent things is arbitrary and should not
matter. From a mathematical point of view, this results from the fact
that unitary matrices will always occur in Hermitian conjugate pairs in
our results (because of the bra-ket structure of the inner product) and

T'T is the identity.



The transformation matrix also allows us to change the basis for an
operator. Denote the matrix representation of H in the eigenbasis of
A by:

CIARACTIARCATIEN

(.[H]#,) (2:|H|¢2)

(¢|H|¢1)

HA

Then we have that a matrix element of H can be represented in the
A basis by:

(W|R|g) =a'H a
and in the B basis by:

(W|R|¢") =b™H b
Now, using the fact that a'=T'b' (and the Hermitian conjugate
relation a" =b'T),

= (W|H|g)=aH,a@=b"TH,T'b

Comparing this last equation with the definition of H leads to the

conclusion that under a change of basis from Ato B, an arbitrary
matrix transforms as:

Hy =TH,T'

One important special case of this relation is when H =A. Then, we
know the matrix elements:

<¢1W¢1> <¢1W¢2> <¢1W¢3> ..] (&4 0 0 O

whe) wAe) .| 0w 0 |,
<¢31W¢1> 0 0 &
0 .

That is, the matrix that represents Ais dlagonal in the eigenbasis of
A. This allows us to very easily represent Ain any other eigenbasis:
A, =TA T’

Where we recall that A , is just a diagonal matrix. In practice, we will

very often want to work with a matrix in its eigenbasis and only use
the transformation rules to move to other bases when necessary.



As an example, consider a function of a matrix. This is defined by
the power series expansion of the function:

f(A)=1+f'(0)A +%|(O)AA +%@AAA +...

One important example of this is the exponential of a matrix, which
we will use quite frequently:
=1+A+ & + AAA
2! 3
If we transform from whatever arbitrary basis we are in into the
eigenbasis, we can write A in diagonal form (A =TA ,T") and the

function becomes:

f(A)=1+f'(0)TA, T + f;(O) JTA, +%@TAAV{AAT}(AATT+

= f(A)=1+f'(0)TA, T + f;I(O)TAAAATuf”:;(O)TAAAAAATu

and noting that 1=TT" and that the coefficients (which are numbers)
commute with the transformation matrix:

= f(A)=TT +Tf'(QA, T +T f 2(0)A ATH+T r 3(0)A AA T+

= f(A):T(1+ f'(0)A, + ‘UZI(O)AAAA +]“;'(O)AAAAAA +...jTT

= f(A)=Tf(A )T
Thus, functions of matrices transform just like matrices when we
change basis. Why is this important? In its eigenbasis, we know that

A is represented by a diagonal matrix, and it is trivial to apply a
function to a diagonal matrix; the result is a diagonal matrix, with the
diagonal elements given by f(x) evaluated at each of the

eigenvalues:

e 0 0 0) (f(e) O 0 0

((A)=f 0Oe 00 _| 0 flg) 0 O
0 0 g O 0 o f(eg) O
0 0 0 .. 0 0 0

Thus, we can apply a function to a matrix in three steps: 1) Change
basis to the eigenbasis of A (A =TA,T") 2) Apply f(x) to the



diagonal elements of A, to obtain f(A,) 3) Transform back to the
original basis ( f(A)=Tf(A,)T")



