
II. The Machinery of Quantum Mechanics 
Based on the results of the experiments described in the previous 
section, we recognize that real experiments do not behave quite as 
we expect.  This section presents a mathematical framework that 
reproduces all of the above experimental observations.  I am not 
going to go into detail about how this framework was developed.  
Historically, the mathematical development of QM was somewhat 
awkward; it was only years after the initial work that a truly rigorous 
(but also truly esoteric) foundation was put forth by Von Neumann.  In 
this section, we will instead take the mathematical rules of QM as a 
hypothesis and proceed to show that this hypothesis is consistent 
with all the experimental results we have encountered.   
 
Now, there is no physics or chemistry in what we are about to 
discuss; the physics always arises from the experiments.  However, 
just as Shakespeare had to learn proper spelling and grammar before 
he could write Hamlet, so we must understand the mathematics of 
QM before we can really start using it to make interesting predictions.  
This is both the beauty and the burden of physical chemistry; the 
beauty because once you understand these tools you can answer 
any experimental question without having to ask a more experienced 
colleague; the burden because the questions are very hard to 
answer. 

A. Measurements Happen in Hilbert Space 
All the math of QM takes place in an abstract space that we call 
Hilbert Space.  The important point to realize is that Hilbert Space 
has no connection with the ordinary three dimensional space that we 
live in.  For example, a Hilbert Space can (and usually does) have an 
infinite number of dimensions.  These dimensions do not 
correspond in any way to the length, width and height we are used to.  
However, QM gives us a set of rules that connect operations in 
Hilbert Space to measurements in real space.  Given a particular 
experiment, one constructs the appropriate Hilbert Space, and then 
uses the rules of QM within that space to make predictions.  In what 
follows, we will introduce what is called ‘Dirac notation’ for Hilbert 
Space.  We will use this notation throughout the semester. 



1. Operators Correspond to Observables 

As a short hand, we will call anything that can be measured in an 
experiment an observable. The first rule of QM is: all observables are 
associated with operators in Hilbert Space. Generically, operators 
are things that do something to the system, and we will place a hat 
(e.g. x̂ ) over operators to differentiate them from simple variables.  
We have already encountered some operators; in the light 
polarization experiment, we represented the different filters by xP̂ , yP̂ , 

etc. xP̂  and yP̂  are the operators that represent measurements of the 

polarization in the x  and y  directions.   
 
Now, for most intents and purposes, operators behave like variables: 
you can add them, subtract them, multiply them, etc. and many of the 
familiar rules of algebra hold, for example ( ZYX ˆ,ˆ,ˆ are arbitrary 
operators): 

Addition Commutes: XYYX ˆˆˆˆ +=+     
Addition is Associative: ( ) ( )ZYXZYX ˆˆˆˆˆˆ ++=++    

   Multiplication is Associative: ( ) ( )ZYXZYX ˆˆˆˆˆˆ =  
However, the multiplication of operators does not commute: 

Multiplication does not commute: XYYX ˆˆˆˆ ≠  
We already knew that this was true; in the case of the polarization 
operators we showed that xP̂  and 'x̂P  do not commute: 

yxxy PPPP ˆˆˆˆ
'' ≠  

Thus, the association of observables with operators allows us to 
describe the first two quantum effects we discovered in the 
experiments: non-commuting observations and uncertainty.  
Recall that the uncertainty comes solely from the fact that the order of 
measurements matters; hence we can’t know the result of both 
measurements simultaneously. 
 
Now, deciding that operators have all the above features (e.g. 
associative multiplication, commutative addition) may seem rather 
arbitrary at first.  For example, why does operator multiplication need 
to be associative?  The deep result that motivates this is a theorem 
that asserts that if a set of operators satisfies the above relations 
(together with a few other benign conditions) guarantees that 



operators in Hilbert space can always be represented by 
matrices.  Hence a better way to remember how to multiply and add 
operators is to remember that they work just like matrices; any 
relation that is true for two arbitrary matrices is also true for two 
arbitrary operators.  

2. The System is Described by a State 

Experiments are always performed on a physical system.  In Hilbert 
Space, the system is represented by a state.  In order to differentiate 
a wavefunction from operators and variables, we will enclose it in 
brackets, , and call it a ‘ket’ state.  In between the brackets, we will 
write a label to tell us necessary information about the ket state.  For 
example, an x -polarized photon would be in a state y , while an 
electron that passed through the upper slit in the two-slit experiment 
might be in the state U .  The ket state corresponds to a particular 
means of representing the wavefunction of the system, and we will 
use the two terms interchangeably.  The important point is that the 
state contains all the information that can be known about the 
system.  Thus, if one knows the state of the system, one can predict 
the outcome of any experiment on the system (within the bounds of 
the uncertainty principle).  
 
Now, there are two simple operations one can execute on a state.  
First, one can multiply it by a constant: 

cc ψψ =  
In general, this constant can be complex. It does not matter which 
side the constant appears on.  The second thing one can do is to add 
two states together to make a new state: 

21 ψψψ +=  

What is the meaning of this new state?  We interpret ψ  as a 

superposition of the two states 1ψ  and 2ψ .  We encountered this 
in the case of the two slit experiment outlined in the previous section; 
when there were no detectors to tell us which slit the particle went 
through, the system existed in the superposition of two states that 
went through the upper and lower slits: 

LU +=ψ . 



3. Measurements Always Give Eigenvalues 

Now, as we mentioned above, operators are associated with things 
that can be observed by performing an experiment on the system.  It 
is therefore not surprising that operators act on states, which we will 
write as: 

ψÔ  
An operator acting on a ket state just gives another ket state. Further, 
observable operators are always linear, which means: 

( ) 2121
ˆˆˆ ψψψψ OOO +=+  

This is another one of the traits that allows operators to be 
represented in terms of a matrix algebra (they call it linear algebra for 
a reason). 
 
Now, one can associate a set of eigenvalues, αo , and eigenstates, 

αψ , with each operator, Ô , by finding all of the solutions of the 

eigenvalue equation: 

ααα ψψ oO =ˆ  
The next fundamental rule of QM is that when measuring the value of 
the observable O , the only possible outcomes are the eigenvalues 
of Ô .  If the spectrum of eigenvalues of Ô  is discrete, this 
immediately implies that the resulting experimental results will be 
quantized, as we know is quite often the case.  If the spectrum of 
eigenvalues of Ô  is continuous, then this rule gives us little 
information.   
 
Now, after O  has been observed and found to have a value αo  then 

the wavefunction of the system collapses into the eigenstate αψ .  In 
a rigorous justification of QM, this has to be taken as an independent 
rule. It is perhaps the most disturbing of the basic principles of QM: 
how can an observation (especially a very delicate one) have such a 
drastic effect on the system?  However, in most applications, the 
collapse of the wavefunction after a measurement follows naturally, 
based on some assumptions about what it is we mean by 
‘measurement’ and ‘observation’.  Hence, we will almost never need 
to refer to this postulate in practice.  However, at least at first, it is 
conceptually simpler to take this as a basic rule. 
 



4. Bra-Ket Gives Probability 

As mentioned above, operators can be associated with matrices.  It is 
therefore natural to associate an operator acting on a ket state with a 
matrix-vector product: 
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This qualitative association is actually rigorous as we will show 
shortly.  For the moment, however, we only want to use this 
illustration to motivate the definition of bra states.  Note that when 
performing (matrix)x(vector), the vector must be a column vector.  If 
one has a row vector, the operation is reversed: (vector)x(matrix).  
Just as we can place ket states in correspondence with column 
vectors, we propose that there are also states (‘bra’ states) that 
correspond to row vectors: 

( )⇔
�
�
�

�

�

�
�
�

�

�

⇔ ψψ  

and for which the operator should be placed on the right: 
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To be mathematically precise, bra and ket states are dual to one 
another.  By defining the bra states we are really postulating the 
existence of a dual space.  The illustration in terms of vectors is 
invaluable in understanding what this means, because column 
vectors and row vectors are also dual to one another.  Thus, 
essentially all the properties of row and column vectors can be 
transferred over to bra and ket states.  Most notably, one can define 
an overlap (or inner product) analogous to the dot product for 
ordinary vectors. 
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The overlap between a bra and a ket has all the same intuitive 
content as the dot product: it tells you how similar the two states are.  



If the overlap is zero, the two states are orthogonal. The overlap 
between bra and ket has the ubiquitous “bra-ket”, or bracket, 
structure.  I assume this is what passed for humor in the early days of 
QM.  
 
It is important to notice that the order of operations is crucial at this 
point.  Operators will always appear to the left of a ket state and to 
the right of a bra state.  The expressions 

OandO ˆˆ ψψ  
are not incorrect; they are simply useless in describing reality.  This 
might be clearer if we write the associated matrix expressions: 
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One can give meaning to these expressions (in terms of a tensor 
product) but the result is not useful. 
 
Another key aspect of row and column vectors is that they can be 
placed in one-to-one correspondence with one another. Each column 
vector is clearly associated with a unique row vector – its transpose.  
There is an analogous operation that takes each ket to a 
corresponding bra and vice versa – this operation is called Hermitian 
conjugation and is denoted by a superscript ‘†’ (a ‘dagger’).  Each 
ket is then associated with a unique bra via Hermitian conjugation: 

( ) ( ) ψψψψ ≡≡ ††  
We can also define the Hermitian conjugate (HC) of an operator in 
the logical way, by forcing the HC ψÔ  to be the HC of ψ  times the 

HC of Ô : 
( ) †† ˆˆ OO ψψ ≡  

This defines †Ô , the HC of Ô .   This is also called the adjoint of the 
operator Ô .  If an operator is equal to its adjoint, it is hermitian.  This 
is analogous to a symmetric matrix.  If we multiply the state by a 
constant, then we find that the adjoint becomes: 

( ) *
†

cc ψψ ≡  
where *c  is the complex conjugate of c . 
 



The inner product together with the HC relationship allows us to 
define the norm of a state: 

ψψψ =2  
It turns out that the norm of the state has no physical relevance; any 
value between 0 and � gives the same physical answer.  In practice it 
is often easiest to multiply the wavefunction by a normalization 
constant, 2/1−= ψψc , that makes the norm 1.  This does not affect 
our predictions but often makes the expressions simpler.  If two 
states are both orthogonal to one another and normalized, they are 
said to be orthonormal. 
  
Now, we have already established that it is not generally possible to 
predict the precise outcome of an experiment in QM.  We can, 
however, predict what the average outcome of an experiment would 
be if we performed it many, many times and summed the results.  
This is called an expectation value and according to the rules of QM, 
for a system in the sate ψ ,the expectation value of an observable, 

O , is given by: 

ψψ
ψψ O

O
ˆ

ˆ = . 

Note that this equation simplifies if ψ  is normalized, in which case 

ψψ OO ˆˆ = . 

This final rule is the key result that allows one to make predictions 
about the outcome of experiments in QM. 

5. Some Interesting Facts 

Before moving on to describe the experiments from the previous 
section in terms of our newly proposed rules, it is useful to define a 
few concepts.  The first is the idea of an outer product.  Just as we 
can write the inner product as (bra)x(ket), we can write the outer 
product as (ket)x(bra).  This is in strict analogy to the case of vectors 
where the outer product is a column vector times a row vector: 
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Notice that the outer product is an operator; if we act on a state with 
it, we get another state back: 



( ) ( )φψχφψχφψχ ≡== cc  
This is, again, in direct analogy with vector algebra, where the outer 
product of two vectors is a matrix.  One interesting operator is the 
outer product of a ket with its own bra, which is called the density 
operator: 

ψψψ =P̂  
If ψ  is normalized, this operator happens to be equal to its own 

square: 

ψψψ ψψψψψψ PPP ˆˆˆ ===  
 
 
This property is called idempotency.  Hence, we see that the density 
operator for any quantum state is idempotent.  Further, we see that 

ψP̂   acting on any state gives back the state ψ  times a constant: 
( ) ( )φψψφψψφψψ ≡== cc  

By this token, density operators are also called projection 
operators, because they project out the part of a given wavefunction 
that is proportional to ψ . 

 
One very important fact about Hilbert space is that there is always a 
complete orthonormal basis, { }iφ , of ket states.  As the name 

implies, these states are orthonormal: the overlap between different 
states is zero and each state is normalized.  We can write this in 
shorthand as 

ijji δφφ =  

Where we have defined the Kroenecker delta- a symbol that is one if 
i=j and zero otherwise.   The fact that these kets form a complete 
basis means that one can write any state, ψ ,in Hilbert space as a 

linear combination of the iφ : 

i
i

icccc φφφφψ �=+++= ...332211  

 
Finally, it is also useful to define the commutator of two operators: 

[ ] ABBABA ˆˆˆˆˆ,ˆ −≡  
If two operators commute, then the order in which they appear does 
not matter and the commutator vanishes.  Meanwhile, if the operators 

1 



do not commute, then the commutator measures “how much” the 
order matters. 
 

B. Description of Model Experiments 
Both to familiarize ourselves with Dirac notation and to prove that the 
rules of QM actually do describe the weird effects seen in 
experiments, we proceed to re-formulate the three experiments 
discussed in the introductory lectures in terms of operations in Hilbert 
Space. 

1. Polarization of Light 
We have already seen that the polarization filters in this experiment 
can be represented by operators: xP̂ , yP̂ , etc.  But how do they act on 
the states?  And what are the states, anyway?  These two questions 
arise any time one treats a new class of systems, and the solution to 
this dilemma is properly considered an additional rule of QM.  Indeed, 
many of the early difficulties in the field came not in the definition of 
the basic principles but in the practical association of real 
observables with appropriate operators.  In the end, once again, the 
correctness of our association of operators with observables must be 
verified by testing the agreement with experimental observations. 
 
Defining the state space is fairly straightforward.  The set of all 
possible polarizations for the photon is just the set of all unit vectors 
perpendicular to the direction the photon is traveling (recall that light 
is a transverse wave).  Hence, we will denote the photon’s state by 
u
� , where u

�  is the unit vector pointing in the direction of the photon’s 

polarization.  Then, it makes sense to define the overlap between two 
polarization states to be the same as the dot product of their 
polarization vectors: 

vuvu
���� ⋅≡  

This agrees with our idea that if the polarizations point in orthogonal 
directions, there is no overlap between the states.  Notice that, in 
general: 

vbuavbua
���� +≠+  

The state on the right corresponds to a photon with polarization in the 
direction vbua

�� + ; the state on the left corresponds to a photon in a 



superposition of the two states u
�  and v

� .  As an example of the 

inequality of these two states, consider the superposition: 
yx i ��

22
1 +  

clearly this cannot be equivalent to yx i ��

22
1 + , since a complex 

polarization direction has no meaning.  Indeed, the above state 
cannot be assigned a definite polarization direction; as it turns out, 

yx i ��

22
1 +  corresponds to circularly polarized light, and our basis 

states correspond to the various possible linear photon polarizations. 
 
What about the reverse statement?  Well, if u

�  and v
�  are 

independent vectors, they form a complete basis.  As a result, we can 
always write: 

vcucvbua
����

21 +=+  
for some constants, 1c  and 2c .  Our task is to determine these 
constants.  First, note that for the state on the left to be admissible, a 
and b must be real.  Given this, we determine the to constants by 
taking the inner product of the above equation with u

�  and v
� : 

vuccvucuucvbuau
���������

2121 +=+=+  

2121 cuvcvvcuvcvbuav +=+=+ ���������

 
Simplifying the left hand side: 

vuccvuba
����

21 +=⋅+�  

21 cuvcbuva +=+⋅�
����

 
This is a set of two equations for two unknowns, and by inspection we 
see that ac =1  and bc =2 .  Thus, for real  a and b: 

vbuavbua
���� +=+ . 

The important point is that every state can be written as a 
superposition, but not every superposition has a definite polarization. 
 
Now, given that we know what the states are, we come to the difficult 
part of determining what the operators xP̂  and yP̂  are.  We are given a 
hint by the fact that, experimentally, we know that given any initial 
state, we always end up with an x

� -polarized photon after we act with 

xP̂  and a y
� -polarized photon after we act with yP̂ .  Thus the filters 

must be represented by projection operators and it is easily guessed 
that the correct forms are: 



yyPxxP yx

����

== ˆˆ , etc. 
Again, these operators are to be associated with the observable “how 
much of the light passes through the filter”. 
 
To verify our guess, we proceed to ‘predict’ the results of the 
polarization experiments we already discussed.   
 
Experiment 0: In this case, we begin with initially unpolarized light 
and pass it through an x

� -filter.  This immediately poses a difficulty 
because we haven’t defined what “initially unpolarized light” means, 
and for good reason.  By saying the light is ‘unpolarized’, we 
essentially mean we don’t know what the state of the system is’.  How 
then do we make a prediction?  First, we must recognize that the 
beam of light consists of many, many photons, each of which must 
have a definite polarization – we just don’t know what each 
polarization is.  However, since we are only asked to predict the 
average outcome, this does not pose a problem; we merely assume 
an arbitrary polarization direction for the photon and then average 
over this direction.  So, our arbitrary polarization direction will be: 

yxu
��� θθ sincos +=  

Then, using the rules of QM, we predict that the probability that a 
photon in this state will make it through the x

� -filter is: 
θθθθθ 2cossincossincosˆ =++== yxxxyxuxxuuPu x

������������  
The effect of measuring the polarization of many, many photons in  
different states is to average over the value of θ .  So the fraction of 
the light that passes through the filter will be: 

.cosˆ
2
1

0

21 == 		 θθ
π

π duPu x

��

 

And hence, our rules predict (correctly) that half the initially 
unpolarized light will pass through the –filter, assuming that 
unpolarized light is made up of many randomly polarized photons. 
 
Experiment 1: In this case, we are making two successive 
measurements: an x

� -filter followed by a y
� -filter.  We have already 

determined that half of the unpolarized light passes through the first 
filter. After the first measurement, the state of the system is given by: 

xyxxxuxxuPu x

���������� θθθ cossincosˆ' =+===  



Note that, because of our definition of the xP̂  operators, the 
polarization automatically collapses to x

�  after the measurement has 

been made (recall that the norm of the state is unimportant).  Hence, 
our task is now to figure out how much of the x

� -polarized light that 
comes out of the first filter passes through the second filter.  
According to the rules: 

0ˆ == xyyxxPx y

������  
Thus, none of the light makes it through the second filter. 
 
Experiment 2: In this case, we again make two measurements: x

�  first 
and then ( )yxx

��� +=
2

1' . As before, half the light passes through the first 

filter, ending up with x
� -polarization. For the second filter: 
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Thus, half the x
� -polarized light passes through the second filter, and 

on quarter of the total intensity is transmitted. 
 

Experiment 3: Here, we perform three measurements: first x
� , then 

( )yxx
��� +=

2
1' , then y

� .  The results of the first two measurements were 

already computed in Expts. 0 and 2.  Hence, we only need to predict 
the effect of the final polarization filter.  The light coming out of the 'x

� -
filter is 'x

� -polarized since: 
( )( ) 'cos'''ˆˆ'

2
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' xxuxxxxuPPu xx
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∝=== θ  

Hence, the outcome of the third measurement is: 

( ) ( )
2

1

2

1

2

1
'''ˆ'

2
1

2
1 =�

�

�
�
�

�
�
�

�
�
�

�=++== yxyyyxxyyxxPx y

������������  

So, we loose half the intensity of the light by passing it through the 
third filter.  Thus, 1/8 of the total initial intensity makes it through. 

 
So, to recap, once we correctly identified the possible states of the 
system ( x

� , y
� ,etc.) and made an ansatz for the operators 

( yyPxxP yx

����

== ˆ,ˆ ,etc) we were able to correctly predict the results 
of all the polarization experiments using the rules of QM.  Score one 
for Dirac notation. 

 



2. Single Molecule Fluorescence 

There really isn’t anything for QM to predict here.  The main thrust of 
this experiment was to prove that observations are probabilistic; 
however, QM only predicts probabilities and so there can be no 
contradiction here. 
 

3. Nanoscale Electrical Conduction 

These experiments illustrated several important physical principles: 
interference, superposition and the influence of measurement. The 
new facet here is that we must deal with the evolution of the electrons 
between the measurements.  In the polarization experiments, the light 
propagates essentially undisturbed between the filters.  In the 
conduction case, the electrons take different paths and the difference 
between the paths matters. We will not be able to make quantitative 
predictions, since there is too much we do not know about the 
structure of the semiconductor, width of the slits, etc.  However, we 
will focus on isolating the qualitative effects. 
 
Interference Between Two Slits:    
Just as before, we need to define the possible states of the system.  
For the states, it is most convenient here to work in terms of the paths 
that the system can take.  Then, if we ignore all the electrons that get 
reflected by the barrier, there are only two physically reasonable 
paths for the electron to take getting to our detector: 

For simplicity we will denote the paths from the upper and lower slits 
to the arbitrary point, x , as xU ;  and xL; , respectively. Now, it is 
physically clear that these states form a complete basis; because of 
the set-up of our experiment, there are no other reasonable paths 
that allow the electron to reach the detector.  Therefore, since any 
state can be written as a linear combination of the basis states, the 
state of our system when it reaches the detector can be written: 

x 

dL 

dU 



xLcxUcx LU ;;; +=ψ  
Now, we need an ansatz that lets us determine the coefficients. As 
far as the basic rules of QM go, we have complete freedom in 
defining these coefficients.  The only guideline we have is, again, that 
our answer should agree with the experiment.  One hint that guides 
us is that the particles display an interference pattern, which is 
characteristic of wave propagation.  We might therefore guess that 

Uc  and Lc  are solutions of the wave equation: 

( ) ( )dckdc
d

2
2

2

−=
∂
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where d measures the distance the wave has traveled from the slit. 
This turns out to be a special case of the Schrödinger wave equation 
that describes the wavefunction of a particle in real space.  The 
solutions to the wave equation are well known: they are plane waves 

( ) ikdedc ±=  
Here, the speed of propagation of the wave is determined by its 
wavevector, k , and the sign of k  determines the direction the wave is 
moving.  We will be interested in waves that travel toward the right, 
which corresponds to positive k .  This is the first example of why it is 
necessary to allow complex coefficients in Hilbert space; if we forced 

( )dcU  and ( )dcL  to be real, we could never obtain a solution to the 
wave equation that moved in a particular direction. 
 
Now, notice that an electron that passes through the upper slit will 
traverse a distance ( Ud ) that is different than the electron passing 
through the lower slit ( Ld ).  We therefore guess that the correct form 
for the wavefunction as it arrives at x  is: 

xLexUex LU ikdikd ;;; +≈ψ  
[Aside: I will use the “�” symbol quite often.  Roughly translated, it 
means “I threw away some terms that are not important”.]  
 
With this wavefunction, we wish to predict the outcome of the 
measurement. If we use xP̂  to denote the operator associated with 
detecting the particle at x , the probability of observing an electron at 
x  is: 
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Now, once the electron arrives at the detector, there is no way for us 
to tell whether it went through the upper slit or the lower slit.  The two 
states are indistinguishable.  The result of this is that all 
measurements of xP̂  must give the same result,  

α==== xUPxUxLPxUxUPxLxUPxU xxxx ;ˆ;;ˆ;;ˆ;;ˆ;  

If the measurements on, say, xU ;  gave a different answer than for 

xL; , we would be able to tell the difference between the two states 
by this measurement – contradicting our assertion that they were 
indistinguishable.  Using this we can finally write the probability of 
detecting the particle at x : 
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Hence, we see that we do, in fact, get an interference pattern; if 
ndd LU π2≈−  we will get constructive interference, while if 

ndd LU π≈−  we will get destructive interference. 
 
Measurement and Collapse:    
Perhaps the most shocking aspect of the two slit experiment is the 
fact that observing which slit the particle took (without deflecting the 
particle in any way) destroys the interference pattern.  Describing this 
effect is quite challenging, but the key realization is that we cannot 
consider a ‘system’ that consists of the electron by itself; we must 
consider the detector as part of the quantum mechanical system, as 
well.  To this end, consider the following set up: 

Complex 
Conjugates! 



Thus, we have a two-slit experiment, but there is a detector that turns 
“on” if the electron passes through the upper slit and is “off” otherwise 
(I like to think of it as a light bulb).  Again, we will only consider 
electrons that actually make it to the screen.  Then, there are really 
four possible states for the electron+detector system: 

onLoffLonUoffU ,,;,;,;  
If we assume our detector is 100% efficient, the first state will only be 
important before the electron passes through the slit, and the last 
state will never appear.  Consider the initial state:  

offLcoffUc LU ;; +  
This describes an arbitrary superposition of electronic paths that will 
(eventually) pass through the upper and lower slits, and where the 
detector has yet to register a count.  The result of the measurement 
is: 

offLconUcoffLcoffUc LU
measure

LU ;;;; + →+  
That is, the state of the electron is not disturbed, but the detector 
turns on if the particle went through the upper slit.  This is the result of 
the measurement process.  Our task is now to try to deduce what this 
state means. 
 
The first point is that after it has passed through the detector, we 
cannot think about the ‘state’ of the electron by itself.  To illustrate 
this, assume we could ignore the detector and describe the electron 
by its own wavefunction: 

LcUc LU +=φ  
[Note: Uc and Lc are arbitrary.]  Now, consider the three operators: 

( ) LLUUZULLUiYULLUX −≡−≡+≡ ˆˆˆ  

the actions of these operators on φ  are: 

Expt. 4a 

e



( )( )
UcLcLUcLLLcUUUcLULcU

LcUcULLUX

LULLUU

LU

+=+++=

++=φˆ
 

 
( )( )

UicLicLUicLLLicUUUicLULicU

LcUcULLUiY

LULLUU

LU

+−=−+−=

+−=φˆ
 

 
( )( )

LcUcLLcLLUcUULcLUUcU

LcUcLLUUZ

LULLUU

LU

−=−+−=

+−=φˆ
 

 
Thus, the average values of these observables are: 

( )( )
( )( )
( )( ) 22****

*****

*****

ˆ

Im2ˆ

Re2ˆ

LULLUULULU

ULULLULULU

ULULLULULU

ccccccLcUccLcUZ

ccciccicUicLiccLcUY

ccccccUcLccLcUX

−=−=−+=

=−=+−+=

=+=++=

φφ

φφ

φφ

 

These equations summarize the possible results we can get from 
measuring YX ˆ,ˆ and Ẑ  on any purely electronic state.  For now, it does 
not matter what these observations correspond to; simply that they 
can be made, and would have the boxed values. 
 
Now, we need to define how these operators act on the true state of 
the electron+detector system, offLconUc LU ;; +≡ψ . To do so, 

notice that  YX ˆ,ˆ and Ẑ  only affect the electron and not the detector; 

we therefore define the actions of  YX ˆ,ˆ and Ẑ  to give the same result 
as above when acting on ψ , ignoring entirely the state of the 
detector. Thus, 

( ) ( ) offUconLcoffLconUcXUcLcLcUcX LULULULU ;;;;ˆˆ +=+�+=+  

( ) ( ) offUiconLicoffLconUcYUicLicLcUcY LULULULU ;;;;ˆˆ +−=+�+−=+
( ) ( ) offLconUcoffLconUcZLcUcLcUcZ LULULULU ;;;;ˆˆ −=+�−=+  

Further, note that now the states onU ;  and offU ;  are orthogonal: 

0;;;; == offLonLoffUonU  
This is because I can clearly distinguish between the two states by 
checking if the light in the detector is on or off.  With these definitions, 
we can now compute the average values of YX ˆ,ˆ and Ẑ  for the true 
state of the system+detector: 

0 0 1 1 

0 0 1 1 

0 0 1 1 



( )( )
( )( )
( )( ) 22**

**

**

;;;;ˆ

0;;;;ˆ

0;;;;ˆ

LULULU

LULU

LULU

ccoffLconUccoffLconUZ

offUiconLiccoffLconUY

offUconLccoffLconUX

−=−+=

=−+=

=++=

ψψ

ψψ

ψψ

 

It is immediately clear that these average values cannot be 
reproduced by any choice of LcUc LU +=φ , even if we adjust the 
coefficients to (i.e. ',' LLUU cccc →→ ) .  We therefore conclude that it 
is impossible to consider the state of the electron apart from the state 
of the detector after the measurement is made.  The state of the 
electron and the state of the detector are said to be entangled.   
 
But if we cannot describe the electron by a quantum state, how are 
we to describe it?  Observe that while the three average values are 
not possible if the electron has a single state, they are completely 
consistent with a statistical mixture of states. That is, assume that the 

electron “collapses” to either U  (with probability 
2

Uc )or L (with 

probability 
2

Lc ).  Then, when the system is in U , we find the 
average values 

( )
( )

( ) 1ˆ

0ˆ

0ˆ

=−=

=−=

=+=

ULLUUUUZU

UULLUUiUYU

UULLUUUXU

 

and when it is in L  we find 

( )
( )

( ) 1ˆ

0ˆ

0ˆ

−=−=

=−=

=+=

LLLUULLZL

LULLULiLYL

LULLULLXL

 

If we add the two results with the appropriate probabilities, we get 

2222

22

22

ˆˆ

0ˆˆ

0ˆˆ

LULU

LU

LU

ccLZLcUZUc

LYLcUYUc

LXLcUXUc

−=+

=+

=+

 

Hence, the result of making many measurements on the entangled 
state of the electron+detector is entirely equivalent to making 
repeated measurements on an electron that randomly “collapses” to 
either U  or L .  In practice, it is simply easier to assume the system 



collapses than to worry about the entangled state, and this is what is 
done.  Note that there is no way to tell the difference between the 
entangled state and the collapsed state simply by looking at the 
electron; the experimental predictions made by both models are 
identical.  Hence, we can choose to describe the situation using 
whichever picture we deem more “physical”. 
 
Now, for the two slit experiment, we are interested in the average 
number of electrons that strike the detector at a given point ψψ xP̂ .  
This calculation would be more involved than the ones above, since 
we have to worry about the wavelike propagation between the slit and 
the screen, etc. However, the basic principle would be the same: the 
average value for the entangled state would be identical to an 
experiment where electron passes either through one slit or the other, 
in which case there is no interference.  Hence, the most perplexing 
aspect of this experiment is explained. 

C. Matrix Mechanics 
We now turn to the a pragmatic aspect of QM: given a particular 
problem, how can we translate the Dirac notation into a form that 
might be interpretable by a computer?  As hinted at previously, we do 
this by mapping Dirac notation onto a complex vector space.  The 
operations in Hilbert space then reduce to linear algebra that can 
easily be done on a computer.  This formalism is completely 
equivalent to the Dirac notation we’ve already covered; in different 
contexts, one will prove more useful than the other. 

1. States can be represented by vectors 

First, we will begin with an arbitrary complete orthonormal basis of 
states { }iφ .  Then, we know that we can write any other state as: 

�=+++=
i

iicccc φφφφψ ...332211  

How are these coefficient determined?  Here, we follow a common 
trick and take the inner product with the jth  state: 

( ) ( ) ( ) ��� ===
i

iji
i

iji
i

iijj ccc δφφφφψφ  

Since the Kronecker delta is only non-zero when i=j, the sum 
collapses to one term: 

jj c=ψφ  



The simple conclusion of these equations is that knowing the 
coefficients is equivalent to knowing the wavefunction. If we know 
ψ , we can determine the coefficients through the second relation.  

Vice versa, If we know the coefficients, we can reconstruct ψ  by 

performing the sum �
i

iic φ .  Thus, if we fix this arbitrary basis, we 

can throw away all the basis state and just keep track of the 
coefficients of the ket state: 

φ

ψ

��
�
�
�

�

�

��
�
�
�

�

�

→

...
3

2

1

c

c

c

 

 In harmony with the intuitive arguments made in Section A, here we 
associate the ket states with column vectors.  Notice the small 
subscript “φ ”, which reminds us that this vector of coefficients 
represents ψ  in the { }iφ  basis.  If we were really careful, we would 
keep this subscript at all times; however, in practice we will typically 
know what basis we are working in, and the subscript will be dropped. 
 
How to we represent the corresponding bra state ψ  as a vector?  
Well, we know that 

( ) �� =�
�

�
�
�

�==
i

ii
i

ii cc *

†
† φφψψ . 

Now, as noted in Section A, we expect to associate bra states with 
row vectors, and the above relation shows us that the elements of 
this row vector should be the complex conjugates of the column 
vector: 

( )φψ ...*
3

*
2

*
1 ccc→  

Noting that bra states and ket states were defined to be Hermitian 
conjugates of one another, we see that Hermitian conjugation in state 
space corresponds to taking the complex conjugate transpose of the 
coefficient vector. 
 
Now, the vector notation is totally equivalent to Dirac notation; thus, 
anything we compute in one representation should be exactly the 
same if computed in the other. As one illustration of this point, it is 



useful to check that this association of states with vectors preserves 
the inner product: 

����� ===��
�

�
��
�

�
�
�

�
�
�

�=
i

ii
ij

ijji
ij

jiji
j

jj
i

ii cccccccc '*'*'*'*' δφφφφψψ  

( ) �=

��
�
�
�

�

�

��
�
�
�

�

�

⋅
i

ii cc
c

c

c

ccc '*

3

2

1

*
3

*
2

*
1

...

...

φ

φ  

So, the two ways of writing the inner product give identical results, 
and overlaps between the vectors have the same quantitative (and 
qualitative) meaning as their bra-ket counterparts. 

2. Operators Become Matrices 

In order to complete our transition to linear algebra we need to 
determine how operators act on the coefficient vectors described in 
the previous section.  Before we do this, we need to consider the 
operator: 

�=
i

iiO φφˆ  

Acting this operator on an arbitrary state: 

�=
i

iiO ψφφψˆ  

However, we showed above that jj c=ψφ , the coefficients of the 

state ψ .  Thus, 

�� ===
i

ii
i

ii cO ψφψφφψˆ  

Thus, Ô  acting on any state gives the same state back.  The operator 
that accomplishes this is the identity operator, 1̂, and so we write: 

�=
i

ii φφ1̂  

and say that this is a resolution of the identity. 
 
With this in hand, we manipulate the expression for the bra-ket 
sandwich of and arbitrary operator Â : 

'ˆ ψψ A  

 



�=
i

ii φφ1̂       �=
j

jj φφ1̂  

��
ij

jjii A 'ˆ ψφφφφψ  

��
ij

jjii cAc '* ˆ φφ  

We can re-write this last line as a standard (row)x(matrix)x(column) 
multiplication if we define the matrix  A , whose elements are 

jiij AA φφ ˆ= .  This association is so common, in fact, that even in 

Dirac notation, these objects are typically referred to as “matrix 
elements”.  So, to summarize, we can write: 

A≡

�
�
�
�
�

�

�

�
�
�
�
�

�

�

→

φ

φφ
φφφφ

φφφφφφ

...

...ˆ
...ˆˆ

...ˆˆˆ

ˆ
13

2212

312111

A

AA

AAA

A  

This matrix has all the same action on row and column vectors that 
the operator Â  has on bras and kets: 

cA ⋅↔ψÂ      Ac ⋅↔ †Âψ  
It is also easy to show that the product of two operators is correctly 
represented by the product of their matrix representations.  Further,  
similar to the case of vectors, the adjoint of Â  is the complex 
conjugate transpose of A .  Using the above associations, we can 
write every operation in Hilbert space in terms of matrix-vector 
multiplications, which are easily handled by a computer.  

3. Some Interesting Matrix Properties 

We are now going to prove a number of interesting things about 
particular classes of matrices which will prove useful later.  These 
same identities can be proven for the raw operators, but the results 
are somewhat more familiar when one has the matrix formulation in 
hand. 
 
The first two results concern Hermitian operators.  Given a Hermitian 
operator, Ĥ , it turns out that 1) the eigenvalues of Ĥ  are always real, 
and 2) the eigenstates can be made to form a complete orthonormal 
basis.  Both these facts are extremely important.  First, recall that we 
know experimental results (which correspond to eigenvalues) are 



always real numbers; thus, it is not surprising that every observable 
we deal with in this course will be associated with a Hermitian 
operator.  Also, recall that in defining matrix mechanics, we appealed 
to the existence of an orthonormal basis, but gave no hints about how 
such a basis was to be constructed.  We now see that every 
Hermitian operator associated with an observation naturally defines 
its own orthonormal basis!   
 
As with nearly all theorems in chemistry, the most important part of 
this is the result and not how it is obtained.  However, we will outline 
the proof of this theorem, mostly to get a little more practice with ins 
and outs of Dirac notation. 
______________________________________________________ 
1) Consider the eigenvalue equation and its Hermitian conjugate: 

*ˆˆ
αααααα ψψψψ hHhH ConjugateHermitian = →=             

Now we apply one of our tricks and take the inner product of the left 
equation with αψ  and the inner product of the right equation with 

αψ : 

αααααααααα ψψψψψψψψ *ˆˆ hHhH ==�  
We see that the left hand sides (l.h.s.) of both equations are the 
same, so we subtract them to obtain: 

( ) αααα ψψ*0 hh −=� . 
In order to have the right hand side (r.h.s) be zero, either: 

( )*0 αα hh −=    or   αα ψψ=0  
Since we defined our states so that their norms were not zero, we 
conclude that  

( )*0 αα hh −=  
Which implies that αh  is real  
 
2) Here, we need to prove that the eigenstates are a) normalized, b) 
orthogonal and c) form a complete basis.  We will take these points in 
turn.   

a) The eigenstates can be trivially normalized, since if αψ  is 

an eigenstate of Ĥ , then so is αψc : 

( ) ( )ααααααα ψψψψψ chchHccHcH ==== ˆˆˆ  



So given an unnormalized eigenstate, we can always normalize 
it without affecting the eigenvalue  

 
b) Consider the ket eigenvalue equation for one value of α  and 
the bra equation for 'α  

'''
ˆˆ

αααααα ψψψψ hHhH ==  

where we have already made use of the fact that *
'' αα hh = .  

Now, take the inner product of the first equation with 'αψ  and 

the second with αψ .  Then: 

αααααααααα ψψψψψψψψ '''''
ˆˆ hHhH ==�  

Once again, the l.h.s. of the equations are equal and 
subtracting gives: 

( ) αααα ψψ ''0 hh −=�  
Thus, either: 

( )'0 αα hh −=    or   αα ψψ '0 =  
Now, recall that we are dealing with two different eigenstates 
(i.e. 'αα ≠ ).  If the eigenvalules are not degenerate (i.e. 

'αα hh ≠ ), then the first equation cannot be satisfied and the 
eigenvectors must be orthogonal.  In the case of degeneracy, 
however, we appear to be out of luck; the first equality is 
satisfied and we can draw no conclusions about the 
orthogonality of the eigenvectors.  What is going on?  Notice 
that, if hhh ≡= 'αα , then any linear combination of the two 

degenerate eigenstates, 'αα ψψ ba + ,  is also an eigenstate 
with the same eigenvalue: 

( ) ( )''''
ˆˆˆ

αααααααα ψψψψψψψψ bahbhahHbHabaH +=+=+=+  
So, when we have a degenerate eigenvalue, the definition of 
the eigenstates that correspond to that eigenvalue are not 
unique, and not all of these combinations are orthogonal to one 
another.  However, there is a theorem due to Gram and 
Schmidt – which we will not prove – that asserts that at least 
one of the possible choices forms an orthonormal set.  The 
difficult part in proving this is that there may be two, three, 
four… different degenerate states.  So, for non-degenerate 
eigenvalues, the states must be orthogonal, while for a 



degenerate eigenvalue, the states are not necessarily 
orthogonal, we are free to choose them to be orthogonal  

 
c) The final thing we need to prove is that the eigenstates form 
a complete basis.  Abstractly, this means that we can write any 
other state as a linear combination of the eigenstates: 

�=
α

αα ψχ c  

In matrix language, this is equivalent to asserting that the 
number of eigenstates is the same as the number of columns in 
the matrix H ; both of these are equal to the dimension of the 
vector space.  This turns out to be difficult to prove, and so we 
simply defer to our math colleagues and assert that it can be 
proven  

_______________________________________________________ 
   
Now, since each Hermitian operator defines its own orthonormal 
basis, we often be interested in making a change of basis from the 
eigenbasis of one Hermitian operator, Â , to that of another, B̂ .  
Denote the eigenbasis of Â  by { }αϕ  and the eigenbasis of B̂  by 

{ }αχ .  Then according to the result above { }αϕ  and { }αχ  are both  
orthonormal bases.  Thus, we can write any state as 

�=
α

αα ϕψ a    or �=
α

αα χψ b  

Our task is to get { }αa  from { }αb  (or vice versa).  This is accomplished 
using our favorite trick; take the inner product of each equation with 

βχ : 

�=
α

αβαβ ϕχψχ a    or �=
α

αβαβ χχψχ b  

Equating the r.h.s. and making use of the orthonormality of the { }αχ  
gives: 

��� ===
α

βαβα
α

αβα
α

αβα δχχϕχ bbba  

β
α

αβα ϕχ ba =��  

This leads to the definition of the Transformation matrix: 
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�

�

��
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�
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�

≡

......

......

......
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13

2212

312111

ϕχ
ϕχϕχ

ϕχϕχϕχ

T  

The columns of this matrix are the coefficients of the “new” basis 
states ({ }αχ ) in terms of “old” ones ({ }αϕ ) and it allows us to 
transform from one basis to another using simple matrix algebra: 

Tab =  
 
Now, what about the reverse transformation (i.e. b  to a )?  Well, our 
designation of the “old” ({ }αϕ ) and “new” ({ }αχ ) bases was 
completely arbitrary; we can change the direction of the 
transformation by simply switching the roles of { }αχ  and { }αϕ .  For 
example, we can obtain the b  to a  transformation matrix by simply 
swapping the letters ϕ  and χ  in our definition of T  

��
�
�
�

�

�

��
�
�
�

�

�

≡

......

......

......

...

13

2212

312111

χϕ
χϕχϕ

χϕχϕχϕ

S  

This matrix satisfies: 
Sba = . 

However, looking at our definition of S , we see that it is just the 
Hermitian conjugate of T !  This leads to an important result: 

( ) TaTTaTbTSba ††† ====  
Reading from right to left, this shows that TT†  acting on any vector a  
gives back the same vector.  Thus, we conclude that: 

1TT =†  
Matrices that satisfy this special property are called unitary matrices.  
Any property we are interested in will be invariant to unitary 
transformations.  From a physical perspective, this is because unitary 
transforms correspond to a change of basis and we know that the 
basis we choose to represent things is arbitrary and should not 
matter.  From a mathematical point of view, this results from the fact 
that unitary matrices will always occur in Hermitian conjugate pairs in 
our results (because of the bra-ket structure of the inner product) and 

TT†  is the identity. 



 
The transformation matrix also allows us to change the basis for an 
operator.  Denote the matrix representation of Ĥ  in the eigenbasis of 
Â  by: 

A
H

HH

HHH

H≡

�
�
�
�
�

�

�

�
�
�
�
�

�

�

...

...ˆ
...ˆˆ

...ˆˆˆ

13

2212

312111

ϕϕ
ϕϕϕϕ

ϕϕϕϕϕϕ

 

Then we have that a matrix element of Ĥ  can be represented in the 
Â  basis by: 

''ˆ † aHa AH =ψψ  

and in the B̂  basis by: 
''ˆ † bHb BH =ψψ  

Now, using the fact that '' †bTa =  (and the Hermitian conjugate 
relation Tba †† = ), 

'''ˆ ††† bTTHbaHa AAH ==� ψψ  
Comparing this last equation with the definition of BH  leads to the 

conclusion that under a change of basis from Â  to B̂ , an arbitrary 
matrix transforms as: 

†TTHH AB =  

One important special case of this relation is when AH ˆˆ = .  Then, we 
know the matrix elements: 

Aa

a

a

A

AA

AAA

A=
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That is, the matrix that represents Â  is diagonal in the eigenbasis of 
Â .  This allows us to very easily represent Â  in any other eigenbasis: 

†TTAA AB =  
Where we recall that AA  is just a diagonal matrix.  In practice, we will 
very often want to work with a matrix in its eigenbasis and only use 
the transformation rules to move to other bases when necessary. 
 



As an example, consider a function of a matrix.  This is defined by 
the power series expansion of the function: 

( ) ( ) ( ) ( )
...

!3
0'''

!2
0''

0' ++++≡ AAAAAA1A
ff

ff  

One important example of this is the exponential of a matrix, which 
we will use quite frequently: 

...
!3!2

++++≡ AAAAA
A1Ae  

If we transform from whatever arbitrary basis we are in into the 
eigenbasis, we can write A  in diagonal form ( †TTAA A= ) and the 
function becomes: 

( ) ( ) ( ) ( )
...

!3
0'''

!2
0''

0' †††††† ++++= TTATTATTATTATTATTA1A AAAAAA

ff
ff

 
 

( ) ( ) ( ) ( )
...

!3

0'''

!2

0''
0' ††† ++++=� TAATATATATTA1A AAAAAA

ff
ff  

and noting that †TT1 =  and that the coefficients (which are numbers) 
commute with the transformation matrix: 

( ) ( ) ( ) ( )
...

!3

0'''

!2

0''
0' †††† ++++=� TAAATTAATTATTTA AAAAAA

ff
ff  

( ) ( ) ( ) ( ) †...
!3

0'''

!2

0''
0' TAAAAAA1TA �

�

�
�
�

� ++++=� AAAAAA

ff
ff  

( ) ( ) †TATA Aff =�  
Thus, functions of matrices transform just like matrices when we 
change basis. Why is this important?  In its eigenbasis, we know that  
Â  is represented by a diagonal matrix, and it is trivial to apply a 
function to a diagonal matrix; the result is a diagonal matrix, with the 
diagonal elements given by ( )xf  evaluated at each of the 
eigenvalues: 

( )

( )
( )

( )
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�

�

�

��
�
�
�

�

�
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�
�
�
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��
�
�
�
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...000
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...000
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000

000

3

2

1

3

2

1

ef

ef

ef

e

e

e

ff AA  

Thus, we can apply a function to a matrix in three steps: 1) Change 
basis to the eigenbasis of Â  ( †TTAA A= ) 2) Apply ( )xf  to the 

1 1 1 



diagonal elements of AA  to obtain ( )Af A  3) Transform back to the 
original basis ( ( ) ( ) †TATA Aff = ) 


