I. PN Junction Diode

A. Physical Integrated Structure

C. Physical Reasoning

• In thermal equilibrium there is a balance between drift and diffusion current for **BOTH** holes and electrons

- Forward bias --> reduction in potential barrier --> reduction in electric field in depletion region --> reduction in drift current component in the depletion region for both holes and electrons
- Since diffusion current component in the depletion region is nearly unaffected by bias--->We have a net current.

$$
I = I_s \left(e^{V} D^{V} t h_{-1} \right)
$$

D. Qualitative Understanding

• Current is small enough to ignore resistive potential drops in bulk p & n regions kT _{lm} $\left(\begin{array}{c} N_a N_d \end{array}\right)$

•
$$
\phi_j = \phi_B - V_D
$$
 where $\phi_B = \phi_n - \phi_p$ $\qquad \phi_B = \frac{\kappa I}{q} ln(\frac{a}{n_i^2})$

- Positive *V_D* reduces potential barrier height minority carriers injected across junction
- Minority carrier diffusion is the bottleneck

• FOCUS ON MINORITY CARRIERS

E. Derivation Steps

- Step 1: Find the minority carrier concentrations at the edges of depletion region as a function of forward bias V_D
- Step 2: Find the minority carrier concentration at the ohmic contacts. All excess carriers **recombine** at ohmic contacts. The carrier concentrations return to their equilibrium value.
- Step 3: Find the spatial distribution of the minority carrier concentrations, $n_p(x)$, (electrons in the p region), and $p_n(x)$, (holes in the n region.)
- Step 4: Find the minority carrier diffusion currents at the edges of the depletion region.

II. Carrier Concentrations - Connection across the Junction

A. Thermal Equilibrium

.

• For the junction in thermal equilibrium,

$$
\Phi_B = \frac{kT}{q} ln(\frac{N_a N_d}{n_i^2})
$$

• Define $p_{no} \equiv n_i^2 / N_d$ and $n_{po} \equiv n_i^2 / N_a$

• Rexpress this basic result in two ways --

$$
\phi_B = V_{th} ln(\frac{N_d}{n_{po}}) \quad \text{and} \quad \phi_B = V_{th} ln(\frac{N_a}{p_{no}}).
$$

• Solving for the equilibrium minority carrier concentrations in terms of the built-in potential,

$$
p_{no} = N_a e^{-\phi_B / (V_{th})}
$$
 and $n_{po} = N_d e^{-\phi_B / (V_{th})}$

• This result is very important, since it relates the minority carrier concentration on one side of the junction to the majority carrier concentration on the *other side* of the junction ... !

B. Applied bias

.

- The new potential barrier $\phi_i = \phi_B V_D$ is substituted for the thermal equilibrium barrier to find the new minority carrier concentrations at the depletion region edges.
- Assume that detailed balance between drift and diffusion is not significantly perturbed. This says that electrons are in equilibrium with each other across the junction. SAME for holes.

$$
n_p(-x_p) = N_d e^{-\phi_j/V_{th}} = N_d e^{-(\phi_B - V_D)/V_{th}}
$$

$$
p_n(x_n) = N_a e^{-\phi_j/V_{th}} = N_a e^{-(\phi_B - V_D)/V_{th}}
$$

• These results can be re-expressed in a simpler form

$$
n_p(-x_p) = N_d e^{-\phi_B/V_{th}} e^{V_D/V_{th}} = n_{po} e^{V_D/V_{th}}
$$

$$
p_n(x_n) = N_a e^{-\phi_B/V_{th}} e^{V_D/V_{th}} = p_{no} e^{V_D/V_{th}}
$$

• These two equations are known as the **Law of the Junction**. Note that the minority carrier concentration is an exponential function of the applied bias on the junction.

C. Minority Carrier Concentrations under Forward Bias

- Apply the Law of the Junction to find the minority carrier concentrations at the edges of the depletion region
- Minority carriers **injected** across depletion region
- Law of the Junction is valid if **minority carrier concentration is less than equilibrium majority concentration**. This condition is called **LOW LEVEL INJECTION (LLI).**

• LLI - $p_n < n_{no}$ and $n_p < p_{po}$

• The minority carrier concentration is maintained at thermal equilibrium at the ohmic contacts. All excess carriers **recombine** at the ohmic contact.

Example

• Numerical values: $N_a = 10^{18}$ cm⁻³, $N_d = 10^{17}$ cm⁻³, $V_D = 720$ mV

•
$$
n_p(-x_p) = n_1^2/N_a \exp(V_D/V_{th}) = 10^{14} \text{ cm}^{-3}
$$

• $p_n(x_n) = n_1^2/N_d \exp(V_D/V_{th}) = 10^{15} \text{ cm}^{-3}.$

D. Minority Carrier Concentration under Reverse Bias

- Apply the Law of the Junction to find the minority carrier concentrations at the edges of the depletion region
- Minority carriers **extracted** near the depletion region edge

$$
n_p(-x_p) = n_{po}e^{V_D/V_{th}} \approx 0 \text{ for } V_D < 0
$$
\n
$$
p_n(x_n) = p_{no}e^{V_D/V_{th}} \approx 0 \text{ for } V_D < 0
$$

