I. Common Base / Common Gate Amplifiers - Current Buffer

A. Introduction

- A current buffer takes the input current which may have a relatively small Norton resistance and replicates it at the output port, which has a high output resistance
- Input signal is applied to the emitter, output is taken from the collector
- Current gain is about unity
- Input resistance is low
- Output resistance is high.

\[I_{\text{BIAS}} = I_{\text{SUP}}/\alpha \approx I_{\text{SUP}} \]

B. Biasing
II. Small Signal Two Port Parameters

A. Common Base Current Gain A_i

- Small-signal circuit; apply test current and measure the short circuit output current

- Analysis -- see Chapter 8, pp. 507-509.

- Result:

$$A_i = \frac{-\beta_o}{1 + \beta_o} \approx -1$$

- Intuition: $i_{out} = i_c = (-i_e - i_b) = -i_t - i_b$ and i_b is small
B. Common Base Input Resistance R_i

- Apply test current, with load resistor R_L present at the output

\[\begin{align*}
&\text{See pages 509-510 and note that the transconductance generator dominates which yields}\\
&\quad R_i = \frac{1}{g_m}
\end{align*} \]

- A typical transconductance is around 4 mS, with $I_C = 100 \mu A$
- Typical input resistance is 250 \(\Omega\) -- very small, as desired for a current amplifier
- R_i can be designed arbitrarily small, at the price of current (power dissipation)
C. Common-Base Output Resistance R_o

- Apply test current with source resistance of input current source in place
- Note r_{oc} as is in parallel with rest of circuit

![Circuit Diagram](image)

- Analysis is on pp. 510-511 of Chapter 8, with the final result boiling down to:

$$R_{out} \approx r_{oc} \parallel r_o \left[1 + g_m \left(r_\pi \parallel R_s \right) \right]$$

- If the R_S is much greater than r_π, then the output resistance is approximately:

$$R_{out} = r_{oc} \parallel [\beta o r_o]$$

- R_{out} is limited to the small-signal resistance of the current source
D. Common-Base Two-Port Model

- The output resistance depends on the source resistance -- which means that the CB current buffer is not unilateral
- The two-port formal model is **not** strictly valid
- Error in using the model is **small**
- Conceptual simplification for design is **huge**

\[\frac{1}{g_m} \quad \frac{r_{o} \parallel r_o}{1 + g_m(r \parallel R_S)} \]

- Input resistance << CE Amplifier
- Output resistance >> CE Amplifier
III. Common-Gate Amplifier

A. Circuit Configuration

- It is sometimes possible to tie the backgate to the source which shorts the backgate transconductance generator in small signal model.

- It is obvious that the current gain for this amplifier must be unity, since the gate current for a MOSFET is zero.

- The circuit analysis leading to the two port model is very similar to the CB amplifier -- see pp. 513 - 518 of the text.
B. Common-Gate Two-Port Model

- The resulting two port model is shown below:

 \[R_{i} = \frac{1}{g_{m}} \quad \text{or} \quad R_{i} = \frac{1}{g_{m} + g_{mb}} \]

- The input resistance is the same as for the CB for the case where source and backgate are shorted.

- When this isn’t the case, the backgate generator is added in (which helps!):

 \[R_{o} = r_{oc} || \left(r_{o} + g_{m} r_{o} R_{S} \right) \]

- \(R_{i} \) can be designed to be arbitrarily small, at the price of area, by increasing \((W/L)\) or current

- The output resistance is similar to the CB result with \(r_{\pi} \rightarrow \infty \)
IV. Common Collector/Drain Amplifier - Voltage Buffer

A. Introduction

- A voltage buffer takes the input voltage which may have a relatively large Thevenin resistance and replicates the voltage at the output port, which has a low output resistance
- Input signal is applied to the base/gate, output is taken from the emitter/source
- Voltage gain is about unity
- Input resistance is high
- Output resistance is low

B. Biasing

- Set V_{OUT} to “halfway” between power rails-->$V_{BIAS} - V_{BE} = V_{OUT}$

$$V_{BE} = \frac{kT}{q} \ln \frac{I_{SUP}}{I_S}$$

- Output voltage maximum $V_{CC}/2 - V_{CE(sat)} \approx V_{CC}/2 - 0.2 \, V$
- Output voltage minimum set by voltage requirement across I_{SUP}
V. Small-Signal Two Port Parameters

A. Common Collector small-signal model and procedure for finding A_v

- Circuit analysis: current through $r_{oc} || r_o$ is $v_t / r_{\pi} + g_m v_{\pi} -->$

\[
\frac{v_t - v_{out}}{r_{\pi}} + g_m (v_t - v_{out}) = \frac{v_{out}}{r_{oc} || r_o}
\]

- Multiplying by r_{π} and recognizing that $g_m r_{\pi} = \beta_o$,

\[
v_t - v_{out} + \beta_o (v_t - v_{out}) = (1 + \beta_o) (v_t - v_{out}) = \frac{v_{out}}{r_{oc} || r_o} r_{\pi}
\]

- Solving for the open-circuit voltage gain:

\[
A_v = \frac{1}{r_{\pi}} \approx 1
\]

\[
1 + \frac{1}{r_{oc} || r_o (\beta_o + 1)}
\]
B. Common-Collector Input Resistance R_i

- Procedure: apply pure test source, leave load resistor R_L

![Diagram of common-collector input resistance](image)

- Note that current through $r_{oc} \parallel r_o \parallel R_L$ is $i_t + \beta_o i_t \rightarrow$

$$R_{in} = r_{\pi} + (\beta_o + 1) \left(r_{oc} \parallel r_o \parallel R_L \right)$$

C. Common Collector Output Resistance

- Apply pure test current source at the output, leaving source resistance attached

![Diagram of common-collector output resistance](image)

$$R_{out} \approx \frac{1}{g_m} + \frac{R_S}{\beta_o}$$
D. Common Collector Two-Port Model

- Good voltage buffer
- Non unilateral network

\[v_{in} \left(r + \beta_o (r_o \parallel r_{oc} \parallel R_s) \right) + v_{out} \left(\frac{1}{g_m + R_s/\beta_o} \right) \]

E. Common Drain Amplifier

- Analysis: much the same as for CC amplifier
- If \(V_{SB} \) isn’t zero, then the voltage gain is degraded from about 1 to 0.8-0.9
F. Common Drain Amplifier Two-Port Model

- If $V_{SB} = 0$, then the voltage gain is $A_v \approx 1$ and $R_o \approx 1 / g_m$
- The CD amplifier is a reasonable voltage buffer
- Improve output resistance by increasing g_m
- Input loading is a non-issue, since the gate is open-circuited for MOSFETs.
VI. Summary

A. Single-Stage Building Blocks

Table 1: Simplified Two-Port Parameters

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>Controlled Source</th>
<th>Input Resistance R_i</th>
<th>Output Resistance R_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Emitter</td>
<td>$G_m = g_m$</td>
<td>r_π</td>
<td>$r_o \parallel r_{oc}$</td>
</tr>
<tr>
<td>Common Source</td>
<td>$G_m = g_m$</td>
<td>infinity</td>
<td>$r_o \parallel r_{oc}$</td>
</tr>
<tr>
<td>Common Base</td>
<td>$A_i = -1$</td>
<td>$1 / g_m$</td>
<td>$r_{oc} \parallel r_o [1 + g_m (r_\pi \parallel R_S)]$</td>
</tr>
<tr>
<td>Common Gate</td>
<td>$A_i = -1$</td>
<td>$1 / g_m$ if $v_{sb} = 0$, -otherwise-$1 / (g_m + g_{mb})$</td>
<td>$r_{oc} \parallel (r_o + g_m r_o R_S)$, if $v_{sb} = 0$ -otherwise-$r_{oc} \parallel [r_o + (g_m + g_{mb}) r_o R_S]$</td>
</tr>
<tr>
<td>Common Collector</td>
<td>$A_v = 1$</td>
<td>$r_\pi + \beta_o (r_o \parallel r_{oc}) \parallel R_L$</td>
<td>$(1 / g_m) + R_S / \beta_o$</td>
</tr>
<tr>
<td>Common Drain</td>
<td>$A_v = 1$ if $v_{sb} = 0$, -otherwise-$g_m / (g_m + g_{mb})$</td>
<td>infinity</td>
<td>$1 / g_m$ if $v_{sb} = 0$, -otherwise-$1 / (g_m + g_{mb})$</td>
</tr>
</tbody>
</table>
B. Ultra Simplified Two-Port Parameters

- $g_{mb} = 0$, common base used as a current buffer $\Rightarrow R_S \gg r_\pi$

Table 2: Ultra Simplified Two-Port Parameters

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>Controlled Source</th>
<th>Input Resistance R_i</th>
<th>Output Resistance R_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Emitter</td>
<td>$G_m = g_m$</td>
<td>r_π</td>
<td>$r_o \parallel r_{oc}$</td>
</tr>
<tr>
<td>Common Source</td>
<td>$G_m = g_m$</td>
<td>infinity</td>
<td>$r_o \parallel r_{oc}$</td>
</tr>
<tr>
<td>Common Base</td>
<td>$A_i = -1$</td>
<td>$1 / g_m$</td>
<td>$r_{oc} \parallel (\beta_o r_o)$</td>
</tr>
<tr>
<td>Common Gate</td>
<td>$A_i = -1$</td>
<td>$1 / g_m$</td>
<td>$r_{oc} \parallel (g_m R_S r_o)$</td>
</tr>
<tr>
<td>Common Collector</td>
<td>$A_v = 1$</td>
<td>$r_\pi + \beta_o (r_o \parallel r_{oc}) R_L$</td>
<td>$(1 / g_m) + R_S / \beta_o$</td>
</tr>
<tr>
<td>Common Drain</td>
<td>$A_v = 1$</td>
<td>infinity</td>
<td>$1 / g_m$</td>
</tr>
</tbody>
</table>

- This table is adequate for first-cut hand design