I. Common Base / Common Gate Amplifiers - Current Buffer

A. Introduction

- A current buffer takes the input current which may have a relatively small Norton resistance and replicates it at the output port, which has a high output resistance
- Input signal is applied to the emitter, output is taken from the collector
- Current gain is about unity
- Input resistance is low
- Output resistance is high.

B. Biasing

• $I_{BIAS} = I_{SUP} / \alpha \approx I_{SUP}$

II. Small Signal Two Port Parameters

A. Common Base Current Gain A_i

• Small-signal circuit; apply test current and measure the short circuit output current

- Analysis -- see Chapter 8, pp. 507-509.
- Result:

$$A_i = \frac{-\beta_o}{1+\beta_o} \cong -1$$

• Intuition: $i_{out} = i_c = (-i_e - i_b) = -i_t - i_b$ and i_b is small

B. Common Base Input Resistance *R_i*

• Apply test current, with load resistor R_L present at the output

• See pages 509-510 and note that the transconductance generator dominates which yields

$$R_i = \frac{1}{g_m}$$

- A typical transconductance is around 4 mS, with $I_C = 100 \,\mu\text{A}$
- Typical input resistance is 250 Ω -- very small, as desired for a current amplifier
- R_i can be designed arbitrarily small, at the price of current (power dissipation)

C. Common-Base Output Resistance R_o

- Apply test current with source resistance of input current source in place
- Note r_{oc} as is in parallel with rest of circuit

• Analysis is on pp. 510-511 of Chapter 8, with the final result boiling down to:

$$R_{out} \approx r_{oc} \|r_o [1 + g_m (r_{\pi} \| R_s)]$$

• If the R_S is much greater than r_{π} , then the output resistance is approximately:

$$R_{out} = r_{oc} || [\beta_o r_o]$$

• R_{out} is limited to the small-signal resistance of the current source

D. Common-Base Two-Port Model

- The output resistance depends on the source resistance -- which means that the CB current buffer is not unilateral
- The two-port formal model is **not** strictly valid
- Error in using the model is **small**
- Conceptual simplification for design is huge

- Input resistance << CE Amplifier
- Output resistance >> CE Amplifier

III. Common-Gate Amplifier

A. Circuit Configuration

- It is sometimes possible to tie the backgate to the source which shorts the backgate transconductance generator in small signal model
- It is obvious that the current gain for this amplifier must be unity, since the gate current for a MOSFET is zero
- The circuit analysis leading to the two port model is very similar to the CB amplifier -- see pp. 513 518 of the text.

B. Common-Gate Two-Port Model

• The resulting two port model is shown below:

- The input resistance is the same as for the CB for the case where source and backgate are shorted.
- When this isn't the case, the backgate generator is added in (which helps!):

$$R_i = \frac{1}{g_m}$$
 or $R_i = \frac{1}{g_m + g_{mb}}$

- *R_i* can be designed to be arbitrarily small, at the price of area, by increasing (*W/L*) or current
- The output resistance is similar to the CB result with $r_{\pi} \rightarrow infinity$

$$R_o = r_{oc} \left| \left| \left[r_o + g_m r_o R_S \right] \right| \right|$$

IV. Common Collector/Drain Amplifier - Voltage Buffer

A. Introduction

- A voltage buffer takes the input voltage which may have a relatively large Thevenin resistance and replicates the voltage at the output port, which has a low output reisistance
- Input signal is applied to the base/gate, output is taken from the emitter/source
- Voltage gain is about unity
- Input resistance is high
- Output resistance is low V_{s} V_{s} V_{BIAS} V_{bIAS} V_{bIA

B. Biasing

- Set V_{OUT} to "halfway" between power rails--> V_{BIAS} - $V_{BE} = V_{OUT}$ $V_{BE} = \frac{kT}{q} ln \frac{I_{SUP}}{I_S}$
- Output voltage maximum $V_{CC}/2 V_{CE(sat)} \approx V_{CC}/2 0.2 \text{ V}$
- Output voltage minumum set by voltage requirement across I_{SUP}

V. Small-Signal Two Port Parameters

A. Common Colletor small-signal model and procedure for finding A_v

• Circuit analysis: current through $r_{oc} \parallel r_o$ is $v_{\pi} / r_{\pi} + g_m v_{\pi} \longrightarrow \frac{v_t - v_{out}}{r_{\pi}} + g_m (v_t - v_{out}) = \frac{v_{out}}{r_{oc} \mid r_o}$

• Multiplying by r_{π} and recognizing that $g_m r_{\pi} = \beta_0$,

 $v_t - v_{out} + \beta_o (v_t - v_{out}) = (1 + \beta_o) (v_t - v_{out}) = \frac{v_{out}}{r_{oc} ||r_o} r_{\pi}$

• Solving for the open-circuit voltage gain:

$$A_{v} = \frac{1}{1 + \frac{r_{\pi}}{r_{oc} ||r_{o}(\beta_{o} + 1)}} \approx 1$$

B. Common-Collector Input Resistance R_i

• Procedure: apply pure test source, leave load resistor R_L

• Note that current through $r_{oc} \parallel r_o \parallel R_L$ is $i_t + \beta_0 i_t \rightarrow 0$

$$R_{in} = r_{\pi} + (\beta_o + 1) \left(r_{oc} ||r_o||R_L \right)$$

C. Common Collector Output Resistance

• Apply pure test current source at the output, leaving source resistance attached

D. Common Collector Two-Port Model

- Good voltage buffer
- Non unilateral network

E. Common Drain Amplifier

- Analysis: much the same as for CC amplifier
- If V_{SB} isn't zero, then the voltage gain is degraded from about 1 to 0.8-0.9

F. Common Drain Amplifier Two-Port Model

- If $V_{SB} = 0$, then the voltage gain is $A_v \approx 1$ and $R_o \approx 1 / g_m$
- The CD amplifier is a reasonable voltage buffer
- Improve output resistance by increasing g_m
- Input loading is a non-issue, since the gate is open-circuited for MOSFETs.

VI. Summary

A. Single-Stage Building Blocks

Amplifier Type	Controlled Source	Input Resistance R_i	Output Resistance R _o
Common Emitter	$G_m = g_m$	r_{π}	$r_o \parallel r_{oc}$
Common Source	$G_m = g_m$	infinity	$r_o \parallel r_{oc}$
Common Base	<i>A_i</i> = -1	1 / g _m	$r_{oc} r_o[1+g_m(r_{\pi} R_S)]$
Common Gate	<i>A_i</i> = -1	$1 / g_m \text{ if } v_{sb} = 0,$ -otherwise- $1 / (g_m + g_{mb})$	$r_{oc} \parallel (r_o + g_m r_o R_S), \text{ if}$ $v_{sb} = 0$ $-otherwise$ $r_{oc} \parallel [r_o + (g_m + g_{mb})r_o R_S]$
Common Collector	$A_v = 1$	$r_{\pi} + \beta_{0} \left(r_{o} \parallel r_{oc} \parallel R_{L} \right)$	$(1 / g_m) + R_S / \beta_0$
Common Drain	$A_{v} = 1 \text{ if } v_{sb} = 0,$ -otherwise- $g_{m} / (g_{m} + g_{mb})$	infinity	$1 / g_m \text{ if } v_{sb} = 0,$ -otherwise- $1 / (g_m + g_{mb})$

Table 1: Simplified Two-Port Parameters

B. Ultra Simplified Two-Port Parameters

• $g_{mb} = 0$, common base used as a current buffer $-> R_S >> r_{\pi}$

Amplifier Type	Controlled Source	Input Resistance R_i	Output Resistance R_o
Common Emitter	$G_m = g_m$	r _π	$r_o \parallel r_{oc}$
Common Source	$G_m = g_m$	infinity	$r_o \parallel r_{oc}$
Common Base	<i>A_i</i> = -1	1 / g _m	$r_{oc} \parallel (\beta_0 r_o)$
Common Gate	<i>A_i</i> = -1	1 / g _m	$r_{\rm oc} \parallel (g_m R_S r_o)$
Common Collector	$A_v = 1$	$r_{\pi} + \beta_{0} (r_{o} \parallel r_{oc} \parallel R_{L})$	$(1 / g_m) + R_S / \beta_0$
Common Drain	$A_v = 1$	infinity	1 / g _m

 Table 2:
 Ultra Simplified Two-Port Parameters

• This table is adequate for first-cut hand design