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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• Convex and Nonconvex Optimization Problems

• Why is Convexity Important in Optimization

• Lagrange Multipliers and Duality

• Min Common/Max Crossing Duality



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)
subject to x ∈ C

Cost function f : �n �→ �, constraint set C, e.g.,

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩

{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
• Examples of problem classifications:

− Continuous vs discrete

− Linear vs nonlinear

− Deterministic vs stochastic

− Static vs dynamic

• Convex programming problems are those for
which f is convex and C is convex (they are con-
tinuous problems).

• However, convexity permeates all of optimiza-
tion, including discrete problems.



WHY IS CONVEXITY SO SPECIAL IN OPTIMIZATION?

• A convex function has no local minima that are
not global

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible
directions at any point

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in terms
of a finite set of extreme points and extreme direc-
tions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are
self-dual with respect to conjugacy



CONVEXITY AND DUALITY

• A multiplier vector for the problem

minimize f(x) subject to g1(x) ≤ 0, . . . , gr(x) ≤ 0

is a µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0 such that

inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈�n

L(x, µ∗)

where L is the Lagrangian function

L(x, µ) = f(x)+
r∑

j=1

µjgj(x), x ∈ �n, µ ∈ �r.

• Dual function (always concave)

q(µ) = inf
x∈�n

L(x, µ)

• Dual problem: Maximize q(µ) over µ ≥ 0



KEY DUALITY RELATIONS

• Optimal primal value

f∗ = inf
gj(x)≤0, j=1,...,r

f(x) = inf
x∈�n

sup
µ≥0

L(x, µ)

• Optimal dual value

q∗ = sup
µ≥0

q(µ) = sup
µ≥0

inf
x∈�n

L(x, µ)

• We always have q∗ ≤ f∗ (weak duality - impor-
tant in discrete optimization problems).

• Under favorable circumstances (convexity in the
primal problem, plus ...):

− We have q∗ = f∗

− Optimal solutions of the dual problem are
multipliers for the primal problem

• This opens a wealth of analytical and computa-
tional possibilities, and insightful interpretations.

• Note that the equality of “sup inf” and “inf sup”
is a key issue in minimax theory and game theory.



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in terms
of this one figure.

• The machinery of convex analysis is needed
to flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior [like
in (c) of the preceding slide]?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

C = {(x1,x2) | x1 > 0, x2 >0, x1x2 ≥ 1}

x1

x2

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



COURSE OUTLINE

1) Basic Concepts (4): Convex hulls. Closure,
relative interior, and continuity. Recession cones.
2) Convexity and Optimization (4): Direc-
tions of recession and existence of optimal solu-
tions. Hyperplanes. Min common/max crossing
duality. Saddle points and minimax theory.
3) Polyhedral Convexity (3): Polyhedral sets.
Extreme points. Polyhedral aspects of optimiza-
tion. Polyhedral aspects of duality.
4) Subgradients (3): Subgradients. Conical ap-
proximations. Optimality conditions.
5) Lagrange Multipliers (3): Fritz John theory.
Pseudonormality and constraint qualifications.
6) Lagrangian Duality (3): Constrained opti-
mization duality. Linear and quadratic program-
ming duality. Duality theorems.
7) Conjugate Duality (3): Fenchel duality the-
orem. Conic and semidefinite programming. Ex-
act penalty functions.
8) Dual Computational Methods (3): Classi-
cal subgradient and cutting plane methods. Appli-
cation in Lagrangian relaxation and combinatorial
optimization.



WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework and a term paper

• We aim:

− To develop insight and deep understanding
of a fundamental optimization topic

− To treat rigorously an important branch of
applied math, and to provide some appreci-
ation of the research in the field

• Mathematical level:

− Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

− Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

• Applications:

− They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models (see
http://www.stanford.edu/ boyd/cvxbook.html)

− You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance ideas,
not to express them precisely

• The omitted proofs and a much fuller discussion
can be found in the “Convex Analysis” textbook



LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions



SOME MATH CONVENTIONS

• All of our work is done in �n: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n

i=1 xiyi of vectors x
and y

• ‖x‖ =
√

x′x is the (Euclidean) norm of x. We
use this norm almost exclusively

• See Section 1.1 of the textbook for an overview
of the linear algebra and real analysis background
that we will use



CONVEX SETS

Convex Sets Nonconvex Sets

x

y

αx + (1 - α)y,  0 < α < 1
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• A subset C of �n is called convex if

αx + (1 − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity

− Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

• Cones: Sets C such that λx ∈ C for all λ > 0
and x ∈ C (not always convex or closed)



CONVEX FUNCTIONS

αf(x) + (1 - α)f(y)

x y

C

z

f(z)

• Let C be a convex subset of �n. A function
f : C �→ � is called convex if

f
(
αx+(1−α)y

)
≤ αf(x)+(1−α)f(y), ∀x, y ∈ C

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ a} and {x ∈ C | f(x) < a},
where a is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

• The epigraph of a function f : X �→ [−∞,∞] is
the subset of �n+1 given by

epi(f) =
{
(x, w) | x ∈ X, w ∈ �, f(x) ≤ w

}
• The effective domain of f is the set

dom(f) =
{
x ∈ X | f(x) < ∞

}
• We say that f is proper if f(x) < ∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An extended real-valued function f : X �→
[−∞,∞] is called lower semicontinuous at a vec-
tor x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.

• We say that f is closed if epi(f) is a closed set.



CLOSEDNESS AND SEMICONTINUITY

• Proposition: For a function f : �n �→ [−∞,∞],
the following are equivalent:

(i) {x | f(x) ≤ a} is closed for every scalar a.

(ii) f is lower semicontinuous at all x ∈ �n.

(iii) f is closed.
f(x)

x

Epigraph epi(f)

γ

{x | f(x) ≤ γ}
0

• Note that:

− If f is lower semicontinuous at all x ∈ dom(f),
it is not necessarily closed

− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X �→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



EXTENDED REAL-VALUED CONVEX FUNCTIONS
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• Let C be a convex subset of �n. An extended
real-valued function f : C �→ [−∞,∞] is called
convex if epi(f) is a convex subset of �n+1.

• If f is proper, this definition is equivalent to

f
(
αx+(1−α)y

)
≤ αf(x)+(1−α)f(y), ∀x, y ∈ C

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or−∞) at every
point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: Let fi : �n �→ (−∞,∞], i ∈ I, be
given functions (I is an arbitrary index set).
(a) The function g : �n �→ (−∞,∞] given by

g(x) = λ1f1(x) + · · · + λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).
(b) The function g : �n �→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m × n matrix is convex (or closed)
if f is convex (respectively, closed).
(c) The function g : �n �→ (−∞,∞] given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

• Closure, Relative Interior, Continuity



DIFFERENTIABLE CONVEX FUNCTIONS

f(z)
f(x) + (z - x)'∇f(x)

x z

• Let C ⊂ �n be a convex set and let f : �n �→ �
be differentiable over �n.

(a) The function f is convex over C if and only
if

f(z) ≥ f(x) + (z − x)′∇f(x), ∀ x, z ∈ C

(b) If the inequality is strict whenever x �= z,
then f is strictly convex over C, i.e., for all
α ∈ (0, 1) and x, y ∈ C, with x �= y

f
(
αx + (1 − α)y

)
< αf(x) + (1 − α)f(y)



TWICE DIFFERENTIABLE CONVEX FUNCTIONS

• Let C be a convex subset of �n and let f : �n �→
� be twice continuously differentiable over �n.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+(y−x)′∇f(x)+ 1
2
(y−x)′∇2f

(
x+α(y−x)

)
(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)′∇f(x), ∀ x, y ∈ C

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)′∇f(x) for all x, y ∈ C with x �= y, and we use
the preceding result.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ �n:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m

i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X (also
the set of all convex combinations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space). Note that aff(X) is itself an affine set.

• A nonnegative combination of elements of X is
a vector of the form

∑m
i=1 αixi, where xi ∈ X and

αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:

− It is a convex cone containing the origin.

− It need not be closed.

− If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM
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• Let X be a nonempty subset of �n.

(a) Every x �= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm

from X that are linearly independent.

(b) Every x /∈ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1, . . . , xm from X such that x2 −
x1, . . . , xm − x1 are linearly independent.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and let
m be the smallest integer such that x has the
form

∑m
i=1 αixi, where αi > 0 and xi ∈ X for

all i = 1, . . . , m. If the vectors xi were linearly
dependent, there would exist λ1, . . . , λm, with

m∑
i=1

λixi = 0

and at least one of the λi is positive. Consider
m∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi − γλi ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Apply part (a) to the subset of �n+1

Y =
{
(x, 1) | x ∈ X

}



AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X)
can be expressed as

{∑n+1
i=1 αk

i xk
i

}
, where for all

k and i, αk
i ≥ 0, xk

i ∈ X, and
∑n+1

i=1 αk
i = 1. Since

the sequence

{
(αk

1 , . . . , αk
n+1, x

k
1 , . . . , xk

n+1)
}

is bounded, it has a limit point

{
(α1, . . . , αn+1, x1, . . . , xn+1)

}
,

which must satisfy
∑n+1

i=1 αi = 1, and αi ≥ 0,
xi ∈ X for all i. Thus, the vector

∑n+1
i=1 αixi,

which belongs to conv(X), is a limit point of the

sequence
{∑n+1

i=1 αk
i xk

i

}
, showing that conv(X)

is compact. Q.E.D.



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the line
segment connecting x and x, except possibly x,
belong to ri(C).

S

Sα

x

ε

α εx

xα = αx + (1 - α)x

C



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) x ∈ ri(C) if and only if every line segment
in C having x as one endpoint can be pro-
longed beyond x without leaving C.

X

z1

0

C

z2

Proof: (a) Assume that 0 ∈ C. We choose m lin-
early independent vectors z1, . . . , zm ∈ C, where
m is the dimension of aff(C), and we let

X =

{
m∑

i=1

αizi

∣∣∣ m∑
i=1

αi < 1, αi > 0, i = 1, . . . , m

}

(b) => is clear by the def. of rel. interior. Reverse:
take any x ∈ ri(C); use Line Segment Principle.



OPTIMIZATION APPLICATION

• A concave function f : �n �→ � that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

aff(X)

x*
x

x

X

Proof: (By contradiction.) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1 − α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.



LECTURE 4

LECTURE OUTLINE

• Review of relative interior

• Algebra of relative interiors and closures

• Continuity of convex functions

• Recession cones
***********************************

• Recall: x is a relative interior point of C, if x is
an interior point of C relative to aff(C)

• Three important properties of ri(C) of a convex
set C:

− ri(C) is nonempty

− Line Segment Principle: If x ∈ ri(C) and
x ∈ cl(C), then all points on the line seg-
ment connecting x and x, except possibly x,
belong to ri(C)

− Prolongation Principle: If x ∈ ri(C) and x ∈
C, the line segment connecting x and x can
be prolonged beyond x without leaving C



A SUMMARY OF FACTS

• The closure of a convex set is equal to the clo-
sure of its relative interior.

• The relative interior of a convex set is equal to
the relative interior of its closure.

• Relative interior and closure commute with Carte-
sian product and inverse image under a linear
transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither closure nor relative interior commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

• Let C be a nonempty convex set. Then ri(C)
and cl(C) are “not too different for each other.”

• Proposition:

(a) We have cl(C) = cl
(
ri(C)

)
.

(b) We have ri(C) = ri
(
cl(C)

)
.

(c) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(
ri(C)

)
⊂

cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have αx+(1−
α)x ∈ ri(C) for all α ∈ (0, 1]. Thus, x is the limit of
a sequence that lies in ri(C), so x ∈ cl

(
ri(C)

)
.

x

x
C



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of �n and
let A be an m × n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A·C (relative to the affine hull).

(b) We have A · cl(C) ⊂ cl(A · C), since if a se-
quence {xk} ⊂ C converges to some x ∈ cl(C)
then the sequence {Axk}, which belongs to A ·C,
converges to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists a sequence {xk} ⊂ C such that Axk → z.
Since C is bounded, {xk} has a subsequence that
converges to some x ∈ cl(C), and we must have
Ax = z. It follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) �= int(A · C), A · cl(C) �= cl(A · C)



INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) If ri(C1) ∩ ri(C2) �= Ø, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) �→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}



CONTINUITY OF CONVEX FUNCTIONS

• If f : �n �→ � is convex, then it is continuous.

e1

xk

xk+1

0

yke3 e2

e4 zk

Proof: We will show that f is continuous at 0. By
convexity, f is bounded within the unit cube by the
maximum value of f over the corners of the cube.

Consider sequence xk → 0 and the sequences
yk = xk/‖xk‖∞, zk = −xk/‖xk‖∞. Then

f(xk) ≤
(
1 − ‖xk‖∞

)
f(0) + ‖xk‖∞f(yk)

f(0) ≤ ‖xk‖∞
‖xk‖∞ + 1

f(zk) +
1

‖xk‖∞ + 1
f(xk)

Since ‖xk‖∞ → 0, f(xk) → f(0). Q.E.D.

• Extension to continuity over ri(dom(f)).



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector y is
a direction of recession if starting at any x in C
and going indefinitely along y, we never cross the
relative boundary of C to points outside C:

x + αy ∈ C, ∀ x ∈ C, ∀ α ≥ 0

0

x + αy

x

Convex Set C

Recession Cone RC

y

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector y belongs to RC if and only if there
exists a vector x ∈ C such that x + αy ∈ C
for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ∩ D �= Ø, we have

RC∩D = RC ∩ RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi = ∩i∈IRCi



PROOF OF PART (B)

x

z1 = x + y

z2

z3

x
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C

• Let y �= 0 be such that there exists a vector
x ∈ C with x + αy ∈ C for all α ≥ 0. We fix x ∈ C
and α > 0, and we show that x + αy ∈ C. By
scaling y, it is enough to show that x + y ∈ C.

Let zk = x + ky for k = 1, 2, . . ., and yk =
(zk − x)‖y‖/‖zk − x‖. We have

yk

‖y‖
=

‖zk − x‖
‖zk − x‖

y

‖y‖
+

x − x

‖zk − x‖
,

‖zk − x‖
‖zk − x‖

→ 1,
x − x

‖zk − x‖
→ 0,

so yk → y and x + yk → x + y. Use the convexity
and closedness of C to conclude that x + y ∈ C.



LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors y such that y ∈ RC

and −y ∈ RC :

LC = RC ∩ (−RC)

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of �n. Then,

C = LC + (C ∩ L⊥
C).

Also, if LC = RC , the component C ∩ L⊥
C is com-

pact (this will be shown later).

C

0

S

S

C∩S

x

y

z



LECTURE 5

LECTURE OUTLINE

• Directions of recession of convex functions

• Existence of optimal solutions - Weierstrass’
theorem

• Intersection of nested sequences of closed sets

• Asymptotic directions

−−−−−−−−−−−−−−−−−−−−−−−−
• For a closed convex set C, recall that y is a
direction of recession if x + αy ∈ C, for all x ∈ C
and α ≥ 0.

0

x + αy

x

Convex Set C

Recession Cone RC

y

• Recession cone theorem: If this property is
true for one x ∈ C, it is true for all x ∈ C; also C
is compact iff RC = {0}.



DIRECTIONS OF RECESSION OF A FUNCTION

• Some basic geometric observations:

− The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets
{
x |

f(x) ≤ γ
}

are unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : �n �→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{
x | f(x) ≤ γ

}
, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone, given by

RVγ =
{
y | (y, 0) ∈ Repi(f)

}
(b) If one nonempty level set Vγ is compact, then

all nonempty level sets are compact.

Proof: For all γ for which Vγ is nonempty,

{
(x, γ) | x ∈ Vγ

}
= epi(f) ∩

{
(x, γ) | x ∈ �n

}
The recession cone of the set on the left is

{
(y, 0) |

y ∈ RVγ

}
. The recession cone of the set on the

right is the intersection of Repi(f) and the reces-
sion cone of

{
(x, γ) | x ∈ �n

}
. Thus we have

{
(y, 0) | y ∈ RVγ

}
=

{
(y, 0) | (y, 0) ∈ Repi(f)

}
,

from which the result follows.



RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : �n �→
(−∞,∞], the (common) recession cone of the
nonempty level sets Vγ =

{
x | f(x) ≤ γ

}
, γ ∈ �,

is the recession cone of f , and is denoted by Rf .

0

Level Sets of Convex
Function f

Recession Cone Rf

• Terminology:

− y ∈ Rf : a direction of recession of f .

− Lf = Rf ∩ (−Rf ): the lineality space of f .

− y ∈ Lf : a direction of constancy of f .

− Function rf : �n �→ (−∞,∞] whose epi-
graph is Repi(f): the recession function of f .

• Note: rf (y) is the “asymptotic slope” of f in the
direction y. In fact, rf (y) = limα→∞ ∇f(x+αy)′y
if f is differentiable. Also, y ∈ Rf iff rf (y) ≤ 0.



DESCENT BEHAVIOR OF A CONVEX FUNCTION

f(x + αy)

α

f(x)

(a)

f(x + αy)

α

f(x)

(b)

f(x + αy)

α

f(x)

(c)

f(x + αy)

α

f(x)

(d)

f(x + αy)

α

f(x)

(e)

f(x + αy)

α

f(x)

(f)

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ∈ dom(f).



EXISTENCE OF SOLUTIONS - BOUNDED CASE

Proposition: The set of minima of a closed proper
convex function f : �n �→ (−∞,∞] is nonempty
and compact if and only if f has no nonzero direc-
tion of recession.

Proof: Let X∗ be the set of minima, let f∗ =
infx∈�n f(x), and let {γk} be a scalar sequence
such that γk ↓ f∗. Note that

X∗ = ∩∞
k=0

(
X ∩

{
x | f(x) ≤ γk

})
If f has no nonzero direction of recession,

the sets X ∩
{
x | f(x) ≤ γk

}
are nonempty, com-

pact, and nested, so X∗ is nonempty and com-
pact.

Conversely, we have

X∗ =
{
x | f(x) ≤ f∗

}
,

so if X∗ is nonempty and compact, all the level
sets of f are compact and f has no nonzero di-
rection of recession. Q.E.D.



SPECIALIZATION/GENERALIZATION OF THE IDEA

• Important special case: Minimize a real-
valued function f : �n �→ � over a nonempty
set X. Apply the preceding proposition to the ex-
tended real-valued function

f̃(x) =
{

f(x) if x ∈ X,
∞ otherwise.

• The set intersection/compactness argument gen-
eralizes to nonconvex.
Weierstrass’ Theorem: The set of minima of f
over X is nonempty and compact if X is closed,
f is lower semicontinuous over X, and one of the
following conditions holds:

(1) X is bounded.

(2) Some set
{
x ∈ X | f(x) ≤ γ

}
is nonempty

and bounded.

(3) f̃ is coercive, i.e., for every sequence {xk} ⊂
X s. t. ‖xk‖ → ∞, we have limk→∞ f(xk) =
∞.

Proof: In all cases the level sets of f̃ are com-
pact. Q.E.D.



THE ROLE OF CLOSED SET INTERSECTIONS

• A fundamental question: Given a sequence
of nonempty closed sets {Sk} in �n with Sk+1 ⊂
Sk for all k, when is ∩∞

k=0Sk nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : �n �→ (−∞,∞] attain a
minimum over a set X? This is true iff the in-
tersection of the nonempty level sets

{
x ∈ X |

f(x) ≤ γk

}
is nonempty.

2. If C is closed and A is a matrix, is A C closed?
Special case:

− If C1 and C2 are closed, is C1 + C2 closed?

3. If F (x, z) is closed, is f(x) = infz F (x, z) closed?
(Critical question in duality theory.) Can be ad-
dressed by using the relation

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P

(
epi(F )

))

where P (·) is projection on the space of (x, w).



ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed
sets {Sk}, we say that a vector d �= 0 is an asymp-
totic direction of {Sk} if there exists {xk} s. t.

xk ∈ Sk, xk �= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖

• A sequence {xk} associated with an asymp-
totic direction d as above is called an asymptotic
sequence corresponding to d.

x0

x1

x2

x3

x4

x5

x6

S0

S2

S1

0

d

S3

Asymptotic Direction

Asymptotic Sequence



CONNECTION WITH RECESSION CONES

• We say that d is an asymptotic direction of a
nonempty closed set S if it is an asymptotic direc-
tion of the sequence {Sk}, where Sk = S for all
k.

• Notation: The set of asymptotic directions of
S is denoted AS .

• Important facts:
− The set of asymptotic directions of a closed

set sequence {Sk} is

∩∞
k=0ASk

− For a closed convex set S

AS = RS \ {0}

− The set of asymptotic directions of a closed
convex set sequence {Sk} is

∩∞
k=0RSk \ {0}



LECTURE 6

LECTURE OUTLINE

• Asymptotic directions that are retractive

• Nonemptiness of closed set intersections

• Frank-Wolfe Theorem

• Horizon directions

• Existence of optimal solutions

• Preservation of closure under linear transfor-
mation and partial minimization

−−−−−−−−−−−−−−−−−−
Asymptotic directions of a closed set sequence

x0

x1

x2

x3

x4

x5

x6

S0

S2

S1

0

d

S3

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE ASYMPTOTIC DIRECTIONS

• Consider a nested closed set sequence {Sk}.

• An asymptotic direction d is called retractive if
for every asymptotic sequence {xk} there exists
an index k such that

xk − d ∈ Sk, ∀ k ≥ k.

• {Sk} is called retractive if all its asymptotic di-
rections are retractive.

• These definitions specialize to closed convex
sets S by taking Sk ≡ S.

x0

x1

x2

S0

S2

S1

0

d

(a)

S0

S1

S2

x0

x1

x20

d

(b)



SET INTERSECTION THEOREM

• If {Sk} is retractive, then ∩∞
k=0 Sk is nonempty.

• Key proof ideas:

(a) The intersection ∩∞
k=0 Sk is empty iff there is

an unbounded sequence {xk} consisting of
minimum norm vectors from the Sk.

(b) An asymptotic sequence {xk} consisting of
minimum norm vectors from the Sk cannot
be retractive, because such a sequence even-
tually gets closer to 0 when shifted opposite
to the asymptotic direction.

x0

x1

x2
x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RECOGNIZING RETRACTIVE SETS

• Unions, intersections, and Cartesian produsts
of retractive sets are retractive.

• The complement of an open convex set is re-
tractive.

C: Open, convexS: Closed

x0

xk+1xk

x1d

d

d

d

• Closed halfspaces are retractive.

• Polyhedral sets are retractive.

• Sets of the form
{
x | fj(x) ≥ 0, j = 1, . . . , r

}
,

where fj : �n �→ � is convex, are retractive.

• Vector sum of a compact set and a retractive
set is retractive.

• Nonpolyhedral cones are not retractive, level
sets of quadratic functions are not retractive.



LINEAR AND QUADRATIC PROGRAMMING

• Frank-Wolfe Theorem: Let

f(x) = x′Qx+c′x, X = {x | a′
jx+bj ≤ 0, j = 1, . . . , r},

where Q is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

• Proof (outline): Choose {γk} s.t. γk ↓ f∗,
where f∗ is the optimal value, and let

Sk = {x ∈ X | x′Qx + c′x ≤ γk}

The set of optimal solutions is ∩∞
k=0 Sk, so it will

suffice to show that for each asymptotic direc-
tion of {Sk}, each corresponding asymptotic se-
quence is retractive.

Choose an asymptotic direction d and a cor-
responding asymptotic sequence. Note that X
is retractive, so for k sufficiently large, we have
xk − d ∈ X.



PROOF OUTLINE – CONTINUED

• We use the relation x′
kQxk + c′xk ≤ γk to show

that

d′Qd ≤ 0, a′
jd ≤ 0, j = 1, . . . , r

• Then show, using the finiteness of f∗ [which
implies f(x + αd) ≥ f∗ for all x ∈ X], that

(c + 2Qx)′d ≥ 0, ∀ x ∈ X

• Thus,

f(xk−d) = (xk − d)′Q(xk − d) + c′(xk − d)
= xk

′Qxk + c′xk − (c + 2Qxk)′d + d′Qd

≤ xk
′Qxk + c′xk

≤ γk,

so xk − d ∈ Sk. Q.E.D.



INTERSECTION THEOREM FOR CONVEX SETS

Let {Ck} be a nested sequence of nonempty
closed convex sets. Denote

R = ∩∞
k=0RCk , L = ∩∞

k=0LCk .

(a) If R = L, then {Ck} is retractive, and∩∞
k=0 Ck

is nonempty. Furthermore, we have

∩∞
k=0Ck = L + C̃,

where C̃ is some nonempty and compact
set.

(b) Let X be a retractive closed set. Assume
that all the sets Sk = X ∩ Ck are nonempty,
and that

AX ∩ R ⊂ L.

Then, {Sk} is retractive, and∩∞
k=0 Sk is nonempty.



CRITICAL ASYMPTOTES

• Retractiveness works well for sets with a polyhe-
dral structure, but not for sets specified by convex
quadratic inequalities.

• Key question: Given nested sequences {S1
k}

and {S2
k} each with nonempty intersection by it-

self, and with

S1
k ∩ S2

k �= Ø, k = 0, 1, . . . ,

what causes the intersection sequence {S1
k ∩S2

k}
to have an empty intersection?

• The trouble lies with the existence of some “crit-
ical asymptotes.”

S2

Sk1

d: “Critical Asymptote”



HORIZON DIRECTIONS

• Consider {Sk}with∩∞
k=0 Sk �= Ø. An asymptotic

direction d of {Sk} is:

(a) A local horizon direction if, for every x ∈
∩∞

k=0 Sk, there exists a scalar α ≥ 0 such
that x + αd ∈ ∩∞

k=0 Sk for all α ≥ α.

(b) A global horizon direction if for every x ∈ �n

there exists a scalar α ≥ 0 such that x+αd ∈
∩∞

k=0 Sk for all α ≥ α.

• Example: (2-D Convex Quadratic Set Se-
quences)

Sk = {(x1,x2) | x1 - x2 ≤ 1/k}
2

x1

x2

0
Sk

Sk+1

Sk = {(x1,x2) | x1 ≤ 1/k}
2

x1

x2

0

Sk

Sk+1

Directions (0,γ), γ ≠ 0,
are local horizon directions

that are retractive

Directions (0,γ), γ > 0,
are global horizon directions



GENERAL CONVEX QUADRATIC SETS

• Let Sk =
{
x | x′Qx + a′x + b ≤ γk

}
, where

γk ↓ 0. Then, if all the sets Sk are nonempty,
∩∞

k=0Sk �= Ø.

• Asymptotic directions: d �= 0 such that Qd = 0
and a′d ≤ 0. There are two possibilities:

(a) Qd = 0 and a′d < 0, in which case d is a
global horizon direction.

(b) Qd = 0 and a′d = 0, in which case d is
a direction of constancy of f , and it follows
that d is a retractive local horizon direction.

• Drawing some 2-dimensional pictures and us-
ing the structure of asymptotic directions demon-
strated above, we conjecture that there are no
“critical asymptotes” for set sequences of the form
{S1

k ∩ S2
k} when S1

k and S2
k are convex quadratic

sets.

• This motivates a general definition of noncritical
asymptotic direction.



CRITICAL DIRECTIONS

• Given a nested closed set sequence {Sk} with
nonempty intersection, we say that an asymptotic
direction d of {Sk} is noncritical if d is either a
global horizon direction of {Sk}, or a retractive
local horizon direction of {Sk}.

• Proposition: Let Sk = S1
k∩S2

k∩· · ·∩Sr
k, where

{Sj
k} are nested sequence such that

Sk �= Ø, ∀ k, ∩∞
k=0 Sj

k �= Ø, ∀ j.

Assume that all the asymptotic directions of all
{Sj

k} are noncritical. Then ∩∞
k=0 Sk �= Ø.

• Special case: (Convex Quadratic Inequal-
ities) Let

Sk =
{
x | x′Qjx + a′

jx + bj ≤ γj
k, j = 1, . . . , r

}
where {γj

k} are scalar sequences with γj
k ↓ 0. As-

sume that Sk �= Ø is nonempty for all k. Then,
∩∞

k=0 Sk �= Ø.



APPLICATION TO QUADRATIC MINIMIZATION

• Let
f(x) = x′Qx + c′x,

X = {x | x′Rjx + a′
jx + bj ≤ 0, j = 1, . . . , r},

where Q and Rj are positive semidefinite matri-
ces. If the minimal value of f over X is finite, there
exists a minimum of f of over X.

Proof: Let f∗ be the minimal value, and let γk ↓
f∗. The set of optimal solutions is

X∗ = ∩∞
k=0

(
X ∩ {x | x′Qx + c′x ≤ γk}

)
.

All the set sequences involved in the intersection
are convex quadratic and hence have no critical
directions. By the preceding proposition, X∗ is
nonenpty. Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATIONS

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) A C is closed if RC ∩ N(A) ⊂ LC .

(b) A(X ∩ C) is closed if X is a polyhedral set
and

RX ∩ RC ∩ N(A) ⊂ LC ,

(c) AC is closed if C = {x | fj(x) ≤ 0, j =
1, . . . , r}with fj : convex quadratic functions.

Proof: (Outline) Let {yk} ⊂ A C with yk → y.
We prove ∩∞

k=0Sk �= Ø, where Sk = C ∩ Nk, and

Nk = {x | Ax ∈ Wk}, Wk =
{
z | ‖z−y‖ ≤ ‖yk−y‖

}

C

AC

y

x

ykyk+1

Wk

Sk

Nk



LECTURE 7

LECTURE OUTLINE

• Existence of optimal solutions

• Preservation of closure under partial minimiza-
tion

• Hyperplane separation

• Nonvertical hyperplanes

• Min common and max crossing problems
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• We have talked so far about set intersection the-
orems that use two types of asymptotic directions:

− Retractive directions (mostly for polyhedral-
type sets)

− Horizon directions (for special types of sets
- e.g., quadratic)

• We now apply these theorems to issues of
existence of optimal solutions, and preservation
of closedness under linear transformation, vector
sum, and partial minimization.



PROJECTION THEOREM

• Let C be a nonempty closed convex set in �n.

(a) For every x ∈ �n, there exists a unique vec-
tor PC(x) that minimizes ‖z − x‖ over all
z ∈ C (called the projection of x on C).

(b) For every x ∈ �n, a vector z ∈ C is equal to
PC(x) if and only if

(y − z)′(x − z) ≤ 0, ∀ y ∈ C

In the case where C is an affine set, the
above condition is equivalent to

x − z ∈ S⊥,

where S is the subspace that is parallel to
C.

(c) The function f : �n �→ C defined by f(x) =
PC(x) is continuous and nonexpansive, i.e.,

∥∥PC(x)−PC(y)
∥∥ ≤ ‖x−y‖, ∀ x, y ∈ �n



EXISTENCE OF OPTIMAL SOLUTIONS

• Let X and f : �n �→ (−∞,∞] be closed convex
and such that X∩dom(f) �= Ø. The set of minima
of f over X is nonempty under any one of the
following three conditions:

(1) RX ∩ Rf = LX ∩ Lf .

(2) RX ∩ Rf ⊂ Lf , and X is polyhedral.

(3) f∗ > −∞, and f and X are specified by
convex quadratic functions:

f(x) = x′Qx + c′x,

X =
{
x | x′Qjx+a′

jx+bj ≤ 0, j = 1, . . . , r
}
.

Proof: Follows by writing

Set of Minima = ∩ (Nonempty Level Sets)

and by applying the corresponding set intersec-
tion theorems. Q.E.D.



EXISTENCE OF OPTIMAL SOLUTIONS: EXAMPLE

(a)
(b)

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

0 x1

x2

Level Sets of 
Convex Function f

Constancy Space Lf

X

• Here f(x1, x2) = ex1 .

• In (a), X is polyhedral, and the minimum is
attained.

• In (b),

X =
{
(x1, x2) | x2

1 ≤ x2

}
We have RX ∩ Rf ⊂ Lf , but the minimum is not
attained (X is not polyhedral).



PARTIAL MINIMIZATION THEOREM

• Let F : �n+m �→ (−∞,∞] be a closed proper
convex function, and consider f(x) = infz∈�m F (x, z).

• Each of the major set intersection theorems
yields a closedness result. The simplest case is
the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ∈ �n, γ ∈ � such that
the set {

z | F (x, z) ≤ γ
}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each x ∈ dom(f), the set of
minima of F (x, ·) is nonempty and compact.

Proof: (Outline) By the hypothesis, there is no
nonzero y such that (0, y, 0) ∈ Repi(F ). Also, all
the nonempty level sets

{z | F (x, z) ≤ γ}, x ∈ �n, γ ∈ �,

have the same recession cone, which by hypoth-
esis, is equal to {0}.



HYPERPLANES

Positive Halfspace
{x | a'x ≥ b}

a

Negative Halfspace
{x | a'x ≤ b}

x

Hyperplane
{x | a'x = b} = {x | a'x = a'x}  

_

_

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in �n and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a′x1 ≤ b ≤ a′x2, ∀x1 ∈ C1, ∀x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a C2

C1

(a)

a

C

(b)

x

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

x3
x2

x1

x0

a2

a1

a0

C

x2 x1

x0

x

x3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈ cl(C)

a′
kx ≥ a′

kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Le a be a limit
point of {ak}, and take limit as k → ∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of �n. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a �= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a �= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(b)(a)

C2 = {(ξ1,ξ2) | ξ1 > 0, ξ2 >0, ξ1ξ2 ≥ 1}

C1 = {(ξ1,ξ2) | ξ1 ≤ 0}

a

C1

C2
x2

x1

x

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⊂ �n is the
intersection of the closed halfspaces that contain
C.

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

a

C2

C1Separating
hyperplane

(b)(a)

a

C2

C1

Separating
hyperplane

• Proper Separation Theorem: Let C1 and C2

be two nonempty convex subsets of�n. There ex-
ists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ∩ ri(C2) = Ø



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of �n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n +
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider “non-
vertical” hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu

• We first need to study “nonvertical” hyperplanes.



NONVERTICAL HYPERPLANES

• A hyperplane in �n+1 with normal (µ, β) is non-
vertical if β �= 0.

• It intersects the (n+1)st axis at ξ = (µ/β)′u+w,
where (u, w) is any vector on the hyperplane.

(µ,β)

w

uNonvertical
Hyperplane

(µ,0)

Vertical
Hyperplane

(u,w)
__

(µ/β)' u  + w
__

0

• A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausi-
ble that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of �n+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a
nonvertical hyperplane, i.e., there exist µ ∈
�n, β ∈ � with β �= 0, and γ ∈ � such that
µ′u + βw ≥ γ for all (u, w) ∈ C.

(b) If (u, w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u, w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ε-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).
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• Min Common / Max Crossing problems

• Weak duality

• Strong duality

• Existence of optimal solutions

• Minimax problems

0

Min Common Point w*

Max Crossing Point q*

M

w

0

M

Max Crossing Point q*

Min Common Point w*w

uu



WEAK DUALITY

• Optimal value of the min common problem:

w∗ = inf
(0,w)∈M

w

• Math formulation of the max crossing problem:
Focus on hyperplanes with normals (µ, 1) whose
crossing point ξ satisfies

ξ ≤ w + µ′u, ∀ (u, w) ∈ M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ′u}, µ ∈ �n, or

maximize q(µ)
�
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ �n.

• For all (u, w) ∈ M and µ ∈ �n,

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ �n, we obtain q∗ ≤ w∗.

• Note that q is concave and upper-semicontinuous.



STRONG DUALITY

• Question: Under what conditions do we have
q∗ = w∗ and the supremum in the max crossing
problem is attained?

0

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)

M

_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u



DUALITY THEOREMS

• Assume that w∗ < ∞ and that the set

M =
{

(u, w) | there exists w with w ≤ w and (u, w) ∈ M
}

is convex.

• Min Common/Max Crossing Theorem I : We
have q∗ = w∗ if and only if for every sequence{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk.

• Min Common/Max Crossing Theorem II : As-
sume in addition that −∞ < w∗ and that the set

D =
{
u | there exists w ∈ � with (u, w) ∈ M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists a vector µ ∈ �n such that
q(µ) = q∗. If D contains the origin in its interior, the
set of all µ ∈ �n such that q(µ) = q∗ is compact.

• Min Common/Max Crossing Theorem III : In-
volves polyhedral assumptions, and will be devel-
oped later.



PROOF OF THEOREM I

• Assume that for every sequence
{
(uk, wk)

}
⊂

M with uk → 0, there holds w∗ ≤ lim infk→∞ wk.
If w∗ = −∞, then q∗ = −∞, by weak duality, so
assume that −∞ < w∗. Steps of the proof:

(1) M does not contain any vertical lines.

(2) (0, w∗ − ε) /∈ cl(M) for any ε > 0.

(3) There exists a nonvertical hyperplane strictly
separating (0, w∗ − ε) and M . This hyper-
plane crosses the (n + 1)st axis at a vector
(0, ξ) with w∗− ε ≤ ξ ≤ w∗, so w∗− ε ≤ q∗ ≤
w∗. Since ε can be arbitrarily small, it follows
that q∗ = w∗.

Conversely, assume that q∗ = w∗. Let
{
(uk, wk)

}
⊂

M be such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ′u} ≤ wk+µ′uk, ∀ k, ∀µ ∈ �n

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ �n, implying that

w∗ = q∗ = sup
µ∈�n

q(µ) ≤ lim inf
k→∞

wk



PROOF OF THEOREM II

• Note that (0, w∗) is not a relative interior point
of M . Therefore, by the Proper Separation Theo-
rem, there exists a hyperplane that passes through
(0, w∗), contains M in one of its closed halfspaces,
but does not fully contain M , i.e., there exists
(µ, β) such that

βw∗ ≤ µ′u + βw, ∀ (u, w) ∈ M,

βw∗ < sup
(u,w)∈M

{µ′u + βw}

Since for any (u, w) ∈ M , the set M contains the
halfline

{
(u, w) | w ≤ w

}
, it follows that β ≥ 0. If

β = 0, then 0 ≤ µ′u for all u ∈ D. Since 0 ∈ ri(D)
by assumption, we must have µ′u = 0 for all u ∈ D
a contradiction. Therefore, β > 0, and we can
assume that β = 1. It follows that

w∗ ≤ inf
(u,w)∈M

{µ′u + w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



MINIMAX PROBLEMS

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Some important contexts:

− Worst-case design. Special case: Minimize
over x ∈ X

max
{
f1(x), . . . , fm(x)

}
− Duality theory and zero sum game theory

(see the next two slides)

• We will study minimax problems using the min
common/max crossing framework



CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r

introduce the Lagrangian function

L(x, µ) = f(x) +
r∑

j=1

µjgj(x)

• Primal problem (equivalent to the original)

min
x∈X

sup
µ≥0

L(x, µ) =

{
f(x) if g(x) ≤ 0,

∞ otherwise,

• Dual problem

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

sup
µ≥0

inf
x∈�n

L(x, µ) = inf
x∈�n

sup
µ≥0

L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . , m}.

• If moves i and j are selected, the 1st player
gives aij to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible moves.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x′Az =
∑
i,j

aijxizj

where A is the n × m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So

− 1st player minimizes maxz x′Az

− 2nd player maximizes minx x′Az



MINIMAX INEQUALITY

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

[for every z ∈ Z, write

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

and take the sup over z ∈ Z of the left-hand side].

• This is called the minimax inequality . When
it holds as an equation, it is called the minimax
equality .

• The minimax equality need not hold in general.

• When the minimax equality holds, it often leads
to interesting interpretations and algorithms.

• The minimax inequality is often the basis for
interesting bounding procedures.
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• Min-Max Problems

• Saddle Points

• Min Common/Max Crossing for Min-Max

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Given φ : X × Z �→ �, where X ⊂ �n, Z ⊂ �m

consider
minimize sup

z∈Z
φ(x, z)

subject to x ∈ X

and
maximize inf

x∈X
φ(x, z)

subject to z ∈ Z.

• Minimax inequality (holds always)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)



SADDLE POINTS

Definition: (x∗, z∗) is called a saddle point of φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀x ∈ X, ∀ z ∈ Z

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z) (*)

Proof: If (x∗, z∗) is a saddle point, then

inf
x∈X

sup
z∈Z

φ(x, z) ≤ sup
z∈Z

φ(x∗, z) = φ(x∗, z∗)

= inf
x∈X

φ(x, z∗) ≤ sup
z∈Z

inf
x∈X

φ(x, z)

By the minimax inequality, the above holds as an
equality holds throughout, so the minimax equality
and Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

φ(x, z∗) ≤ φ(x∗, z∗)

≤ sup
z∈Z

φ(x∗, z) = inf
x∈X

sup
z∈Z

φ(x, z)

Using the minimax equ., (x∗, z∗) is a saddle point.



VISUALIZATION

x

z

Curve of maxima

Curve of minima

φ(x,z)

Saddle point
(x*,z*)

^φ(x(z),z)

φ(x,z(x))^

The curve of maxima φ(x, ẑ(x)) lies above the
curve of minima φ(x̂(z), z), where

ẑ(x) = arg max
z

φ(x, z), x̂(z) = arg min
x

φ(x, z)

Saddle points correspond to points where these
two curves meet.



MIN COMMON/MAX CROSSING FRAMEWORK

• Introduce perturbation function p : �m �→ [−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z) − u′z

}
, u ∈ �m

• Apply the min common/max crossing framework
with the set M equal to the epigraph of p.

• Application of a more general idea: To evalu-
ate a quantity of interest w∗, introduce a suitable
perturbation u and function p, with p(0) = w∗.

• Note that w∗ = inf supφ. We will show that:

− Convexity in x implies that M is a convex set.

− Concavity in z implies that q∗ = sup inf φ.

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(a)

0

M = epi(p)

u

supzinfx φ(x,z)

= max crossing value q*

w

infx supzφ(x,z)

= min common value w*

(b)

0

q(µ)
q(µ)

(µ,1)

(µ,1)



IMPLICATIONS OF CONVEXITY IN X

Lemma 1: Assume that X is convex and that
for each z ∈ Z, the function φ(·, z) : X �→ � is
convex. Then p is a convex function.

Proof: Let

F (x, u) =
{

supz∈Z

{
φ(x, z) − u′z

}
if x ∈ X,

∞ if x /∈ X.

Since φ(·, z) is convex, and taking pointwise supre-
mum preserves convexity, F is convex. Since

p(u) = inf
x∈�n

F (x, u),

and partial minimization preserves convexity, the
convexity of p follows from the convexity of F .
Q.E.D.



THE MAX CROSSING PROBLEM

• The max crossing problem is to maximize q(µ)
over µ ∈ �n, where

q(µ) = inf
(u,w)∈epi(p)

{w + µ′u} = inf
{(u,w)|p(u)≤w}

{w + µ′u}

= inf
u∈�m

{
p(u) + µ′u

}
Using p(u) = infx∈X supz∈Z

{
φ(x, z) − u′z

}
, we

obtain

q(µ) = inf
u∈�m

inf
x∈X

sup
z∈Z

{
φ(x, z) + u′(µ − z)

}

• By setting z = µ in the right-hand side,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

Hence, using also weak duality (q∗ ≤ w∗),

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
µ∈�m

q(µ) = q∗

≤ w∗ = p(0) = inf
x∈X

sup
z∈Z

φ(x, z)



IMPLICATIONS OF CONCAVITY IN Z

Lemma 2: Assume that for each x ∈ X, the
function rx : �m �→ (−∞,∞] defined by

rx(z) =
{
−φ(x, z) if z ∈ Z,
∞ otherwise,

is closed and convex. Then

q(µ) =
{

infx∈X φ(x, µ) if µ ∈ Z,
−∞ if µ /∈ Z.

Proof: (Outline) From the preceding slide,

inf
x∈X

φ(x, µ) ≤ q(µ), ∀ µ ∈ Z

We show that q(µ) ≤ infx∈X φ(x, µ) for all µ ∈
Z and q(µ) = −∞ for all µ /∈ Z, by considering
separately the two cases where µ ∈ Z and µ /∈ Z.

First assume that µ ∈ Z. Fix x ∈ X, and for
ε > 0, consider the point

(
µ, rx(µ)−ε

)
, which does

not belong to epi(rx). Since epi(rx) does not con-
tain any vertical lines, there exists a nonvertical
strictly separating hyperplane ...



MINIMAX THEOREM I

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) < ∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z �→
� is closed and convex.

Then, the minimax equality holds if and only if the
function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
q∗ = w∗ in the min common/max crossing frame-
work. Furthermore, w∗ < ∞ by assumption, and
the set M [equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w∗ = q∗ iff for every sequence{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower
semicontinuity assumption on p:

p(0) ≤ lim inf
k→∞

p(uk), for all {uk} with uk → 0



MINIMAX THEOREM II

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z �→
� is closed and convex.

(5) 0 lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in supz∈Z infx∈X φ(x, z) is attained by some
z ∈ Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(f).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.



EXAMPLE I

• Let X =
{
(x1, x2) | x ≥ 0

}
and Z = {z ∈ � |

z ≥ 0}, and let
φ(x, z) = e−

√
x1x2 + zx1,

which satisfy the convexity and closedness as-
sumptions. For all z ≥ 0,

inf
x≥0

{
e−

√
x1x2 + zx1

}
= 0,

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0,

sup
z≥0

{
e−

√
x1x2 + zx1

}
=

{
1 if x1 = 0,
∞ if x1 > 0,

so infx≥0 supz≥0 φ(x, z) = 1.

epi(p)

u

p(u)

1

0

p(u) = inf
x≥0

sup
z≥0

{
e−

√
x1x2 + z(x1 − u)

}

=

{
∞ if u < 0,

1 if u = 0,

0 if u > 0,



EXAMPLE II

• Let X = �, Z = {z ∈ � | z ≥ 0}, and let

φ(x, z) = x + zx2,

which satisfy the convexity and closedness as-
sumptions. For all z ≥ 0,

inf
x∈�

{x + zx2} =
{
−1/(4z) if z > 0,
−∞ if z = 0,

so supz≥0 infx∈� φ(x, z) = 0. Also, for all x ∈ �,

sup
z≥0

{x + zx2} =
{

0 if x = 0,
∞ otherwise,

so infx∈� supz≥0 φ(x, z) = 0. However, the sup is
not attained.

u

p(u)

0

epi(p)

p(u) = inf
x∈�

sup
z≥0

{x + zx2 − uz}

=

{
−√

u if u ≥ 0,

∞ if u < 0.



SADDLE POINT ANALYSIS

• The preceding analysis has underscored the
importance of the perturbation function

p(u) = inf
x∈�n

F (x, u),

where

F (x, u) =
{

supz∈Z

{
φ(x, z) − u′z

}
if x ∈ X,

∞ if x /∈ X.

It suggests a two-step process to establish the
minimax equality and the existence of a saddle
point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the infimum of supz∈Z φ(x, z) over
x ∈ X, and the supremum of infx∈X φ(x, z)
over z ∈ Z are attained, thereby showing
that the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

• Step (1) requires two types of assumptions:

(a) Convexity/concavity/semicontinuity conditions:

− X and Z are convex and compact.

− φ(·, z): convex for each z ∈ Z, and φ(x, ·)
is concave and upper semicontinuous over
Z for each x ∈ X, so that the min com-
mon/max crossing framework is applicable.

− φ(·, z) is lower semicontinuous over X, so
that F is convex and closed (it is the point-
wise supremum over z ∈ Z of closed convex
functions).

(b) Conditions for preservation of closedness by
the partial minimization in

p(u) = inf
x∈�n

F (x, u)

• Step (2) requires that either Weierstrass’ Theo-
rem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



SADDLE POINT THEOREM

Assume the convexity/concavity/semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z
and a scalar γ such that the level set

{
x ∈

X | φ(x, z) ≤ γ
}

is nonempty and compact.

(3) X is compact and there exists a vector x ∈ X
and a scalar γ such that the level set

{
z ∈

Z | φ(x, z) ≥ γ
}

is nonempty and compact.

(4) There exist vectors x ∈ X and z ∈ Z, and a
scalar γ such that the level sets

{
x ∈ X | φ(x, z) ≤ γ

}
,

{
z ∈ Z | φ(x, z) ≥ γ

}
,

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of φ is nonempty and compact.
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• Extreme points

• Polar cones and polar cone theorem

• Polyhedral and finitely generated cones

• Farkas Lemma, Minkowski-Weyl Theorem

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• The main convexity concepts so far have been:

− Closure, convex hull, affine hull, rel. interior

− Directions of recession and set intersection
theorems

− Preservation of closure under linear trans-
formation and partial minimization

− Existence of optimal solutions

− Hyperplanes, min common/max crossing du-
ality, and application in minimax

• We now introduce new concepts with important
theoretical and algorithmic implications: extreme
points, polyhedral convexity, and related issues.



EXTREME POINTS

• A vector x is an extreme point of a convex set
C if x ∈ C and x does not lie strictly within a line
segment contained in C.

Extreme
Points

Extreme
Points

Extreme
Points

(a) (b) (c)

Proposition: Let C be closed and convex. If H
is a hyperplane that contains C in one of its closed
halfspaces, then every extreme point of C ∩ H is
also an extreme point of C.

z
x

y

C

H

Extreme
points of C∩H

Proof: If x ∈ C ∩ H is a nonextreme

point of C, it lies strictly within a line

segment [y, z] ⊂ C. If y belongs in the

open upper halfspace of H, then z must

belong to the open lower halfspace of

H - contradiction since H supports C.

Hence y, z ∈ C ∩ H, implying that x is

a nonextreme point of C ∩ H.



PROPERTIES OF EXTREME POINTS I

Krein-Milman Theorem: A convex and com-
pact set is equal to the convex hull of its extreme
points.

Proof: By convexity, the given set contains the
convex hull of its extreme points.

Next show the reverse, i.e, every x in a com-
pact and convex set C can be represented as a
convex combination of extreme points of C.

Use induction on the dimension of the space.
The result is true in �. Assume it is true for all
convex and compact sets in �n−1. Let C ⊂ �n

and x ∈ C.

x x2xx1

C

H1

H2

If x is another point in C, the points

x1 and x2 shown can be represented as

convex combinations of extreme points

of the lower dimensional convex and com-

pact sets C∩H1 and C∩H2, which are

also extreme points of C, by the pre-

ceding theorem.



PROPERTIES OF EXTREME POINTS II

Proposition: A closed and convex set has at
least one extreme point if and only if it does not
contain a line.

Proof: If C contains a line, then this line trans-
lated to pass through an extreme point is fully con-
tained in C (use the Recession Cone Theorem) -
impossible.

Conversely, we use induction on the dimen-
sion of the space to show that if C does not contain
a line, it must have an extreme point. True in �,
so assume it is true in �n−1, where n ≥ 2. We will
show it is true in �n.

Since C does not contain a line, there must
exist points x ∈ C and y /∈ C. Consider the rela-
tive boundary point x.

xxy

C

H

The set C∩H lies in an (n−1)-dimensional

space and does not contain a line, so it

contains an extreme point. By the pre-

ceding proposition, this extreme point

must also be an extreme point of C.



CHARACTERIZATION OF EXTREME POINTS

Proposition: Consider a polyhedral set

P =
{
x | a′

jx ≤ bj , j = 1, . . . , r
}
,

where aj and bj are given vectors and scalars.

(a) A vector v ∈ P is an extreme point of P if
and only if the set

Av =
{
aj | a′

jv = bj , j ∈ {1, . . . , r}
}

contains n linearly independent vectors.

(b) P has an extreme point if and only if the set
{aj | j = 1, . . . , r} contains n linearly inde-
pendent vectors.

(a) (b)

a1

a2
a3

a1

a2

v v

PP

a3

a5 a5

a4a4



PROOF OUTLINE

If the set Av contains fewer than n linearly inde-
pendent vectors, then the system of equations

a′
jw = 0, ∀ aj ∈ Av

has a nonzero solution w. For small γ > 0, we
have v + γw ∈ P and v − γw ∈ P , thus showing
that v is not extreme. Thus, if v is extreme, Av

must contain n linearly independent vectors.
Conversely, assume that Av contains a sub-

set Āv of n linearly independent vectors. Suppose
that for some y ∈ P , z ∈ P , and α ∈ (0, 1), we
have v = αy + (1 − α)z. Then, for all aj ∈ Āv,

bj = a′
jv = αa′

jy+(1−α)a′
jz ≤ αbj+(1−α)bj = bj

Thus, v, y, and z are all solutions of the system of
n linearly independent equations

a′
jw = bj , ∀ aj ∈ Āv

Hence, v = y = z, implying that v is an extreme
point of P .



POLAR CONES

• Given a set C, the cone given by

C∗ = {y | y′x ≤ 0, ∀ x ∈ C},

is called the polar cone of C.

0
C∗

C
a1

a2

(a)

C

a1

0
C∗

a2

(b)

• C∗ is a closed convex cone, since it is the inter-
section of closed halfspaces.

• Note that

C∗ =
(
cl(C)

)∗ =
(
conv(C)

)∗ =
(
cone(C)

)∗
• Important example: If C is a subspace, C∗ =
C⊥. In this case, we have (C∗)∗ = (C⊥)⊥ = C.



POLAR CONE THEOREM

• For any cone C, we have (C∗)∗ = cl
(
conv(C)

)
.

If C is closed and convex, we have (C∗)∗ = C.

x
C

y

z

0

C∗

ẑ
2 ẑ

z - ẑ

Proof: Consider the case where C is closed and
convex. For any x ∈ C, we have x′y ≤ 0 for all
y ∈ C∗, so that x ∈ (C∗)∗, and C ⊂ (C∗)∗.

To prove the reverse inclusion, take z ∈ (C∗)∗,
and let ẑ be the projection of z on C, so that
(z − ẑ)′(x − ẑ) ≤ 0, for all x ∈ C. Taking x = 0
and x = 2ẑ, we obtain (z − ẑ)′ẑ = 0, so that
(z−ẑ)′x ≤ 0 for all x ∈ C. Therefore, (z−ẑ) ∈ C∗,
and since z ∈ (C∗)∗, we have (z − ẑ)′z ≤ 0. Sub-
tracting (z− ẑ)′ẑ = 0 yields ‖z− ẑ‖2 ≤ 0. It follows
that z = ẑ and z ∈ C, implying that (C∗)∗ ⊂ C.



POLARS OF POLYHEDRAL CONES

• A cone C ⊂ �n is polyhedral , if

C = {x | a′
jx ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors in �n.

• A cone C ⊂ �n is finitely generated , if

C =

⎧⎨
⎩x

∣∣∣ x =
r∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r

⎫⎬
⎭

= cone
(
{a1, . . . , ar}

)
,

where a1, . . . , ar are some vectors in �n.

(a)

a1

0

a3
a2

a1

0

a3
a2

(b)



FARKAS-MINKOWSKI-WEYL THEOREMS

Let a1, . . . , ar be given vectors in �n, and let

C = cone
(
{a1, . . . , ar}

)
(a) (Farkas’ Lemma) We have

(
{y | a′

jy ≤ 0, j = 1, . . . , r}
)∗ = C

(There is also a version of this involving sets
described by linear equality as well as in-
equality constraints.)

(b) (Minkowski-Weyl Theorem) A cone is poly-
hedral if and only if it is finitely generated.

(c) (Minkowski-Weyl Representation) A set P is
polyhedral if and only if

P = conv
(
{v1, . . . , vm}

)
+ C,

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C.



PROOF OUTLINE

(a) First show that for C = cone({a1, . . . , ar}),

C∗ =
(
cone({a1, . . . , ar})

)∗
=

{
y | a′

jy ≤ 0, j = 1, . . . , r
}

.

If y′aj ≤ 0 for all j, then y′x ≤ 0 for all x ∈ C,
so

C∗ ⊃
{
y | a′

jy ≤ 0, j = 1, . . . , r
}

Conversely, if y ∈ C∗, i.e., if y′x ≤ 0 for all x ∈ C,
then, since aj ∈ C, we have y′aj ≤ 0, for all j.
Thus,

C∗ ⊂
{
y | a′

jy ≤ 0, j = 1, . . . , r
}

• cone({a1, . . . , ar}) is closed because closed-
ness of polyhedral sets is preserved by linear trans-
formations. (Shown in Section 1.5 using set inter-
section theorems.)

• Use the Polar Cone Theorem.

(b), (c) Proofs will be given in the next lecture.



LECTURE 11

LECTURE OUTLINE

• Proofs of Minkowski-Weyl Theorems

• Polyhedral aspects of optimization

• Linear programming

• Integer programming

−−−−−−−−−−−−−−−−−−−−−−−−−−
Recall some of the facts of polyhedral convexity:

• Polarity relation between polyhedral and finitely
generated cones

{x | a′
jx ≤ 0, j = 1, . . . , r} = cone

(
{a1, . . . , ar}

)∗
• Farkas’ Lemma

{x | a′
jx ≤ 0, j = 1, . . . , r}∗ = cone

(
{a1, . . . , ar}

)
• Minkowski-Weyl Theorem: a cone is polyhedral
iff it is finitely generated. A corollary (essentially):

Polyhedral set P = conv
(
{v1, . . . , vm}

)
+ RP



MINKOWSKI-WEYL PROOF OUTLINE

• Step 1: Show cone
(
{a1, . . . , ar}

)
is polyhedral.

• Step 2: Use Step 1 and Farkas to show that
{x | a′

jx ≤ 0, j = 1, . . . , r} is finitely generated.

• Proof of Step 1: Assume first that a1, . . . , ar

span �n. Given b /∈ cone
(
{a1, . . . , ar}

)
,

Pb = {y | b′y ≥ 1, a′
jy ≤ 0, j = 1, . . . , r}

is nonempty and has at least one extreme point y.

b

Pb

0

y

a1 a2

• Show that b′y = 1 and {aj | a′
jy = 0} contains

n−1 linearly independent vectors. The halfspace
{x | y′x ≤ 0}, contains cone

(
{a1, . . . , ar}

)
, and

does not contain b. Consider the intersection of all
such halfspaces as b ranges over cone

(
{a1, . . . , ar}

)
.



POLYHEDRAL REPRESENTATION PROOF OUTLINE

• We “lift the polyhedral set into a cone”. Let

P =
{
x | a′

jx ≤ bj , j = 1, . . . , r
}
,

P̂ =
{
(x, w) | 0 ≤ w, a′

jx ≤ bjw, j = 1, . . . , r
}

and note that P =
{
x | (x, 1) ∈ P̂

}
.

0

1

P

w

P̂

x

• By Minkowski-Weyl, P̂ is finitely generated, so

P̂ =

⎧⎨
⎩(x, w)

∣∣∣ x =
m∑

j=1

µjvj , w =
m∑

j=1

µjdj , µj ≥ 0

⎫⎬
⎭ .

We have dj ≥ 0 for all j, since w ≥ 0 for all (x, w) ∈
P̂ . Let J+ = {j | dj > 0}, J0 = {j | dj = 0}.



PROOF CONTINUED

• By replacing µj by µj/dj for all j ∈ J+,

P̂ =

⎧⎨
⎩(x, w)

∣∣∣ x =
∑

j∈J+∪J0

µjvj , w =
∑

j∈J+

µj , µj ≥ 0

⎫⎬
⎭

Since P =
{
x | (x, 1) ∈ P̂

}
, we obtain

P =

⎧⎨
⎩x

∣∣∣ x =
∑

j∈J+∪J0

µjvj ,
∑

j∈J+

µj = 1, µj ≥ 0

⎫⎬
⎭

Thus,

P = conv
(
{vj | j ∈ J+}

)
+

⎧⎨
⎩

∑
j∈J0

µjvj

∣∣∣ µj ≥ 0, j ∈ J0

⎫⎬
⎭

• To prove that the vector sum of conv
(
{v1, . . . , vm}

)
and a finitely generated cone is a polyhedral set,
we reverse the preceding argument. Q.E.D.



POLYHEDRAL FUNCTIONS

• A function f : �n �→ (−∞,∞] is polyhedral if its
epigraph is a polyhedral set in �n+1.

• Note that every polyhedral function is closed,
proper, and convex.

Theorem: Let f : �n �→ (−∞,∞] be a convex
function. Then f is polyhedral if and only if dom(f)
is a polyhedral set, and

f(x) = max
j=1,...,m

{a′
jx + bj}, ∀ x ∈ dom(f),

for some aj ∈ �n and bj ∈ �.

Proof: Assume that dom(f) is polyhedral and f
has the above representation. We will show that
f is polyhedral. The epigraph of f can be written
as

epi(f) =
{
(x, w) | x ∈ dom(f)

}
∩

{
(x, w) | a′

jx + bj ≤ w, j = 1, . . . , m
}
.

Since the two sets on the right are polyhedral,
epi(f) is also polyhedral. Hence f is polyhedral.



PROOF CONTINUED

• Conversely, if f is polyhedral, its epigraph is a
polyhedral and can be represented as the inter-
section of a finite collection of closed halfspaces
of the form

{
(x, w) | a′

jx+ bj ≤ cjw
}

, j = 1, . . . , r,
where aj ∈ �n, and bj , cj ∈ �.

• Since for any (x, w) ∈ epi(f), we have (x, w +
γ) ∈ epi(f) for all γ ≥ 0, it follows that cj ≥ 0, so by
normalizing if necessary, we may assume without
loss of generality that either cj = 0 or cj = 1.
Letting cj = 1 for j = 1, . . . , m, and cj = 0 for
j = m + 1, . . . , r, where m is some integer,

epi(f) =
{
(x, w) | a′

jx + bj ≤ w, j = 1, . . . , m,

a′
jx + bj ≤ 0, j = m + 1, . . . , r

}
.

Thus

dom(f) =
{
x | a′

jx + bj ≤ 0, j = m + 1, . . . , r
}
,

f(x) = max
j=1,...,m

{a′
jx + bj}, ∀ x ∈ dom(f)

Q.E.D.



EXTREME POINTS AND CONCAVE MINIMIZATION

• Let C be a closed and convex set that has at
least one extreme point. A concave function f :
C �→ � that attains a minimum over C attains the
minimum at some extreme point of C.

x*

C

(a)

C∩H1∩H2

C

x*

(c)

C

x*

C∩H1

(b)

Proof (abbreviated): If a minimum x∗ belongs
to ri(C) [see (a)], f must be constant over C, so
it attains a minimum at an extreme point of C. If
x∗ /∈ ri(C), there is a hyperplane H1 that supports
C and contains x∗.

If x∗ ∈ ri(C ∩ H1) [see (b)], then f must
be constant over C ∩ H1, so it attains a mini-
mum at an extreme point C ∩ H1. This optimal
extreme point is also an extreme point of C. If
x∗ /∈ ri(C∩H1), there is a hyperplane H2 support-
ing C ∩ H1 through x∗. Continue until an optimal
extreme point is obtained (which must also be an
extreme point of C).



FUNDAMENTAL THEOREM OF LP

• Let P be a polyhedral set that has at least
one extreme point. Then, if a linear function is
bounded below over P , it attains a minimum at
some extreme point of P .

Proof: Since the cost function is bounded below
over P , it attains a minimum. The result now fol-
lows from the preceding theorem. Q.E.D.

• Two possible cases in LP: In (a) there is an
extreme point; in (b) there is none.

(a) (b)

P

Level sets of f

P



LINEAR PROGRAMMING DUALITY

• Primal problem (optimal value = f∗):

minimize c′x

subject to a′
jx ≥ bj , j = 1, . . . , r,

,

where c and a1, . . . , ar are vectors in �n.

• Dual problem (optimal value = q∗):

maximize b′µ

subject to
r∑

j=1

ajµj = c, µj ≥ 0, j = 1, . . . , r.

• Duality Theorem:

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and
both problems have optimal solutions.

(b) If f∗ = −∞, then q∗ = −∞.

(c) If q∗ = ∞, then f∗ = ∞.

Proof: Use weak duality (q∗ ≤ f∗) and Farkas’
Lemma (see next slide).



LINEAR PROGRAMMING DUALITY PROOF

Cone D
(Translated to x*)

Feasible
Set

x*
a1

a2

c = µ1a1 + µ2a2* *

Assume f∗: finite, and let x∗ be a primal optimal
solution (it exists by the Frank-Wolfe Theorem).
Let J be the set of indices j with a′

jx
∗ = bj . Then,

c′y ≥ 0 for all y in the cone D = {y | a′
jy ≥ 0, ∀ j ∈

J}. By Farkas’,

c =
r∑

j=1

µ∗
jaj , µ∗

j ≥ 0, ∀ j ∈ J, µ∗
j = 0, ∀ j /∈ J.

Take inner product with x∗:

c′x∗ =
r∑

j=1

µ∗
jaj

′x∗ =
r∑

j=1

µ∗
jbj = b′µ∗.

This, together with q∗ ≤ f∗, implies that q∗ = f∗

and that µ∗ is optimal.



EXTREME POINTS AND INTEGER PROGRAMMING

• Consider a polyhedral set

P = {x | Ax = b, c ≤ x ≤ d},

where A is m×n, b ∈ �m, and c, d ∈ �n. Assume
that all components of A and b, c, and d are integer.

• Question: Under what conditions do the ex-
treme points of P have integer components?

Definition: A square matrix with integer compo-
nents is unimodular if its determinant is 0, 1, or
-1. A rectangular matrix with integer components
is totally unimodular if each of its square subma-
trices is unimodular.

Theorem: If A is totally unimodular, all the ex-
treme points of P have integer components.

• Most important special case: Linear network
optimization problems (with “single commodity”
and no “side constraints”), where A is the, so-
called, arc incidence matrix of a given directed
graph.



LECTURE 12

LECTURE OUTLINE

• Polyhedral aspects of duality

• Hyperplane proper polyhedral separation

• Min Common/Max Crossing Theorem under
polyhedral assumptions

• Nonlinear Farkas Lemma

• Application to convex programming



HYPERPLANE PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

C

P

Separating
hyperplane

a

P

Separating
hyperplane

a
C

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



MIN C/MAX C TH. - POLYHEDRAL VERSION

• Consider the min common and max crossing
problems, and assume that:

(1) The set M is defined in terms of a convex
function f : �m �→ (−∞,∞], an r×m matrix
A, and a vector b ∈ �r:

M =
{
(u, w) | for some (x, w) ∈ epi(f), Ax − b ≤ u

}
(2) There is an x ∈ ri(dom(f)) s. t. Ax − b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• We have M ≈ epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).

f(x) < w

Ax-b ≤ 0

Ax-b ≤ u

w

x

x

w

u

p(u)

0

M = epi(p)



PROOF

• Consider the disjoint convex sets

v

x

x

C1

w*
C2

(ξ,β)

C1 =
{

(x, v) | f(x) < v
}

C2 =
{

(x, w∗) | Ax − b ≤ 0
}

• Since C2 is polyhedral, there exists a separating
hyperplane not containing C1, i.e., a (ξ, β) �= (0, 0)

βw∗+ξ′z ≤ βv+ξ′x, ∀ (x, v) ∈ C1, ∀ z with Az−b ≤ 0,

inf
(x,v)∈C1

{
βv + ξ′x

}
< sup

(x,v)∈C1

{
βv + ξ′x

}
Because of the relative interior point, β �= 0, so
we may assume that β = 1. Hence

sup
Az−b≤0

{
w∗ + ξ′z

}
≤ inf

(x,w)∈epi(f)

{
w + ξ′x

}

The LP on the left has an optimal solution z∗.



PROOF (CONTINUED)

• Let a′
j be the rows of A, and J = {j | a′

jz
∗ = bj}.

We have

ξ′y ≤ 0, ∀ y with a′
jy ≤ 0, ∀ j ∈ J,

so by Farkas’ Lemma, there exist µj ≥ 0, i ∈ J ,
such that ξ =

∑
j∈J µjaj . Defining µj = 0 for

j /∈ J , we have

ξ = A′µ and µ′(Az∗ − b) = 0, so ξ′z∗ = µ′b

• Hence from w∗+ξ′z∗ ≤ inf(x,w)∈epi(f)

{
w+ξ′x

}
,

w∗ ≤ inf
(x,w)∈epi(f)

{
w + µ′(Ax − b)

}
≤ inf

(x,w)∈epi(f),
Ax−b≤u

{w + µ′(Ax − b)}

≤ inf
(x,w)∈epi(f), u∈�n

Ax−b≤u

{w + µ′u}

= inf
(u,w)∈M

{w + µ′u} = q(µ) ≤ q∗.

Since generically q∗ ≤ w∗, it follows that q(µ) =
q∗ = w∗. Q.E.D.



NONLINEAR FARKAS’ LEMMA

• Let C ⊂ �n be convex, and f : C �→ � and
gj : C �→ �, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ F =
{
x ∈ C | g(x) ≤ 0

}
,

and one of the following two conditions holds:

(1) 0 is in the relative interior of the set
D =

{
u | g(x) ≤ u for some x ∈ C

}
.

(2) The functions gj , j = 1, . . . , r, are affine, and
F contains a relative interior point of C.

Then, there exist scalars µ∗
j ≥ 0, j = 1, . . . , r, s. t.

f(x) +
r∑

j=1

µ∗
jgj(x) ≥ 0, ∀ x ∈ C

• Reduces to Farkas’ Lemma if C = �n, and f
and gj are linear.



VISUALIZATION OF NONLINEAR FARKAS’ LEMMA

0

{(g(x),f(x) | x ∈ C}

(a)

(µ,1)

{(g(x),f(x) | x ∈ C}

0

{(g(x),f(x) | x ∈ C}

0

(c)(b)

(µ,1)

• Assuming that for all x ∈ C with g(x) ≤ 0, we
have f(x) ≥ 0, etc.

• The lemma asserts the existence of a nonver-
tical hyperplane in �r+1, with normal (µ, 1), that
passes through the origin and contains the set

{(
g(x), f(x)

)
| x ∈ C

}
in its positive halfspace.

• Figures (a) and (b) show examples where such
a hyperplane exists, and figure (c) shows an ex-
ample where it does not.



PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply Min Common/Max Crossing to

M =
{
(u, w) | there is x ∈ C s. t. g(x) ≤ u, f(x) ≤ w

}
• Under condition (1), Min Common/Max Cross-
ing Theorem II applies: 0 ∈ ri(D), where

D =
{
u | there exists w ∈ � with (u, w) ∈ M

}
• Under condition (2), Min Common/Max Cross-
ing Theorem III applies: g(x) ≤ 0 can be written
as Ax − b ≤ 0.

• Hence for some µ∗, we have w∗ = supµ q(µ) =
q(µ∗), where q(µ) = inf(u,w)∈M{w + µ′u}. Using
the definition of M ,

q(µ) =
{

infx∈C

{
f(x) +

∑r
j=1 µjgj(x)

}
if µ ≥ 0,

−∞ otherwise,

so µ∗ ≥ 0 and infx∈C

{
f(x) +

∑r
j=1 µ∗

jgj(x)
}

=
w∗ ≥ 0.



EXAMPLE

g(x)

f(x)
f(x)

g(x)

g(x) ≤ 0

• Here C = �, f(x) = x. In the example on the
left, g is given by g(x) = e−x − 1, while in the
example on the right, g is given by g(x) = x2.

• In both examples, f(x) ≥ 0 for all x such that
g(x) ≤ 0.

• On the left, condition (1) of the Nonlinear Farkas
Lemma is satisfied, and for µ∗ = 1, we have

f(x) + µ∗g(x) = x + e−x − 1 ≥ 0, ∀ x ∈ �

• On the right, condition (1) is violated, and for ev-
ery µ∗ ≥ 0, the function f(x) + µ∗g(x) = x + µ∗x2

takes negative values for x negative and suffi-
ciently close to 0.



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to x ∈ F =
{
x ∈ C | gj(x) ≤ 0, j = 1, . . . , r

}
where C ⊂ �n is convex, and f : C �→ � and
gj : C �→ � are convex. Assume that f∗ is finite.

• Replace f(x) by f(x)−f∗ and apply the nonlin-
ear Farkas Lemma. Then, under the assumptions
of the lemma, there exist µ∗

j ≥ 0, such that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ C

Since F ⊂ C and µ∗
jgj(x) ≤ 0 for all x ∈ F ,

f∗ ≤ inf
x∈F

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭ ≤ inf

x∈F
f(x) = f∗

Thus equality holds throughout, and we have

f∗ = inf
x∈C

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭



CONVEX PROGRAMMING DUALITY - OUTLINE

• Define the dual function

q(µ) = inf
x∈C

⎧⎨
⎩f(x) +

r∑
j=1

µjgj(x)

⎫⎬
⎭

and the dual problem maxµ≥0 q(µ).

• Note that for all µ ≥ 0 and x ∈ C with g(x) ≤ 0

q(µ) ≤ f(x) +
r∑

j=1

µjgj(x) ≤ f(x)

Therefore, we have the weak duality relation

q∗ = sup
µ≥0

q(µ) ≤ inf
x∈C, g(x)≤0

f(x) = f∗

• If we can use Farkas’ Lemma, there exists µ∗ ≥
0 that solves the dual problem and q∗ = f∗.

• This is so if (1) there exists x ∈ C with gj(x) < 0
for all j, or (2) the constraint functions gj are affine
and there is a feasible point in ri(C).



LECTURE 13

LECTURE OUTLINE

• Convex conjugate functions

• Conjugacy theorem

• Examples

• Support functions
***********************************************

• Given f and its epigraph consider the function

Nonvertical hyperplanes supporting epi(f)
�→ Crossing points of vertical axis

0 x

f(x)

(- λ,1)

Slope =  λ

inf  {f(x) - x'λ} = - g(λ)
x ∈ Rn



CONJUGATE FUNCTIONS

• For any f : �n �→ [−∞,∞], its conjugate convex
function is defined by

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n.

0 x

Slope = α

β/α 0 λα

β

g(λ) = { β  if  λ = α
∞  if  λ ≠ αf(x) = αx - β

0 x 0 λ

g(λ) = {0    if  |λ| ≤ 1
∞   if  |λ| > 1

f(x) = |x| 

0 x 0 λ

g(λ) = (1/2c)λ2f(x) = (c/2)x2

X = (- ∞, ∞)

X = (- ∞, ∞)

X = (- ∞, ∞)

1-1



CONJUGATE OF CONJUGATE

• From the definition

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n,

note that g is convex and closed .

• Reason: epi(g) is the intersection of the epigraphs
of the convex and closed functions

gx(λ) = x′λ − f(x)

as x ranges over �n.

• Consider the conjugate of the conjugate:

f̃(x) = sup
λ∈�n

{
λ′x − g(λ)

}
, x ∈ �n.

• f̃ is convex and closed.

• Important fact/Conjugacy theorem: If f
is closed convex proper, then f̃ = f .



VISUALIZATION

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
, λ ∈ �n

0x

f(x)

(- λ,1)

inf {f(x) - x'λ} = - g(λ)
x

 x'λ - g(λ)

f(x) = sup { x'λ - g(λ)}
~

λ

(a)

0

f(x)

f(x) = sup { x'λ - g(λ)}
~

λ

Conjugate of
conjugate of f

(b)



EXTENSION

• Let f : �n �→ [−∞,∞] be any function.

• Define f̂ : �n �→ [−∞,∞], the convex closure
of f , as the function that has as epigraph the clo-
sure of the convex hull if epi(f) [also the smallest
closed and convex set containing epi(f)].

• The conjugate of the conjugate of f is f̂ , as-
suming f̂(x) > −∞ for all x.

• A counterexample: Consider

f(x) =
{

lnx if x > 0,
∞ if x ≤ 0.

We have

g(λ) = ∞, ∀ λ ∈ �n,

f̃(x) = −∞, ∀ x ∈ �n.

But the convex closure of f is

f̂(x) =
{−∞ if x ≥ 0,
∞ if x < 0.



CONJUGATE FUNCTION THEOREM

• Let f : �n �→ (−∞,∞] be a function, let f̂ be
its convex closure, let g be its convex conjugate,
and consider the conjugate of g,

f̃(x) = sup
λ∈�n

{
λ′x − g(λ)

}
, x ∈ �n

(a) We have

f(x) ≥ f̃(x), ∀ x ∈ �n

(b) If f is convex, then properness of any one of
f , g, and f̃ implies properness of the other
two.

(c) If f is closed proper and convex, then

f(x) = f̃(x), ∀ x ∈ �n

(d) If f̂(x) > −∞ for all x ∈ �n, then

f̂(x) = f̃(x), ∀ x ∈ �n



A FEW EXAMPLES

• Logarithmic/Exponential Conjugacy

• lp norm and lq norm conjugacy, where

1
p

+
1
q

= 1

• Conjugate of a strictly convex quadratic

f(x) =
1
2
x′Qx + a′x + b,

g(λ) =
1
2
(λ − a)′Q−1(λ − a) − b.

• Conjugate of function obtained by invertible lin-
ear transformation and translation

f(x) = p
(
A(x − c)

)
+ a′x + b,

g(λ) = q
(
(A′)−1(λ − a)

)
+ c′λ + d,

where q is the conjugate of p and d = −(c′a + b).



SUPPORT FUNCTIONS

• Consider a nonempty set X and its indicator
function

δX(x) =
{ 0 if x ∈ X,
∞ if x /∈ X.

• The conjugate of δX ,

σX(λ) = sup
x∈X

λ′x

is called the support function of X.

• Support functions provide alternative descrip-
tions of closed convex sets.

• A lot of interesting results about sets, relative
interiors, generated cones, etc, can be expressed
in terms of support functions.

• Example: The support function of a cone is
equal to the indicator function of its polar. Conju-
gacy theorem yields the polar cone theorem.



SUPPORT FUNCTIONS AND POLYHEDRAL SETS I

• Consider the Minkowski-Weyl representation of
a polyhedral set

X = conv
(
{v1, . . . , vm}

)
+ cone

(
{y1, . . . , yr}

)
• The support function is

σX(λ) = sup
x∈X

λ′x

= sup
α1,...,αm,β1,...,βr≥0∑m

i=1
αi=1

⎧⎨
⎩

m∑
i=1

αiv′iλ +
r∑

j=1

βjy′
jλ

⎫⎬
⎭

=
{

maxi=1,...,m v′iλ if y′
jλ ≤ 0, j = 1, . . . , r,

∞ otherwise.

Thus the support function of a polyhedral set is a
polyhedral function.



SUPPORT FUNCTIONS AND POLYHEDRAL SETS II

• Consider f , g, and epi(f). We have

g(λ) = sup
x∈�n

{
x′λ − f(x)

}
= sup

(x,w)∈epi(f)

{x′λ − w}

= σepi(f)(λ,−1)

• If f is polyhedral, epi(f) is a polyhedral set, so
σepi(f) is a polyhedral function, so g is a polyhedral
function.

• Conclusion: Conjugates of polyhedral functions
are polyhedral.



LECTURE 14

LECTURE OUTLINE

• Properties of convex conjugates and support
functions
***********************************************

• Conjugate of f : g(λ) = supx∈�n

{
x′λ − f(x)

}

0 x

f(x)

(- λ,1)

Slope =  λ

inf  {f(x) - x'λ} = - g(λ)
x ∈ Rn

• Support function of set C = Conjugate of its
indicator function

• Conjugacy Theorem: The conjugate of the
conjugate of a proper convex function f is the clo-
sure of f



SUPPORT FUNCTIONS

• σC(λ) = supx∈C λ′x

0 x

Slope =  α

0 λα β

0 x λ

0 x 0 λ

Slope =  β

α

α

Slope =  α

Slope =  α

Indicator Functions Support Functions

• The epigraph of σC is a closed cone



POSITIVELY HOMOGENEOUS FUNCTIONS

• A function f : �n �→ [−∞,∞] is positively ho-
mogeneous if its epigraph is a cone, i.e.,

f(γx) = γ f(x), ∀ γ > 0, ∀ x ∈ �n

λ

σ(λ)

0

(-x,1)

• A support function is closed, proper, convex,
and positively homogeneous.

• Converse Result: The closure of a proper, con-
vex, and positively homogeneous function σ is the
support function of the closed convex set

X =
{
x | λ′x ≤ (cl σ)(λ), ∀ λ ∈ �n

}



CONES ASSOCIATED WITH SETS AND FUNCTIONS

• Cones associated with a convex set C:

− Polar cone, recession cone, generated cone,
epigraph of support function

• Cones associated with a convex function f
are the cones associated with its epigraph, which
among others, give rise to:

− The recession function of f and the closed
function generated by f (function whose epi-
graph is the closure of the cone generated
by epi(f)

x0

Slope = 1/2

Slope = 1

f(x)

(gen f)(x)

rf(x)

0 1/2 1

g(λ)

λ-1/4-2

Slope = -1/4

Slope = -2

• The cones of a function f are epigraphs of sup-
port functions of sets associated with f



FORMULAS FOR DOMAIN, LEVEL SETS, ETC I

• Support Function of Domain: Let f : �n �→
(−∞,∞] be a proper convex function, and let g be
its conjugate.

(a) The support function of dom(f) is the reces-
sion function of g.

(b) If f is closed, the support function of dom(g)
is the recession function of f .

• Polar and Recession Cones, and Support
Function: Let C be a nonempty convex set in
�n.

(a) The polar cone of C is the 0-level set of σC :

C∗ =
{
λ | σC(λ) ≤ 0

}
.

(b) If C is closed, the recession cone of C is
equal to the polar cone of the domain of σC :

RC =
(
dom(σC)

)∗
.



FORMULAS FOR DOMAIN, LEVEL SETS, ETC II

• Support Function of 0-Level Set: Let f :
�n �→ (−∞,∞] be a closed proper convex func-
tion and let g be its conjugate.

(a) If the level set
{
λ | g(λ) ≤ 0

}
is nonempty, its

support function is the closed function gen-
erated by f .

(b) If the level set
{
x | f(x) ≤ 0

}
is nonempty, its

support function is the closed function gen-
erated by g.

x0

Slope = 1/2

Slope = 1

f(x)

(gen f)(x)

rf(x)

0 1/2 1

g(λ)

λ-1/4-2

Slope = -1/4

Slope = -2

• This can be used to characterize any nonempty
level set of a closed convex function: add a con-
stant to the function and convert the level set to a
0-level set.



CALCULUS OF CONJUGATE FUNCTIONS

• It is useful to have formulas for the conjugate of
the sum or linear composition of convex functions.

• Example: Consider F (x) = f(Ax), where f is
closed proper convex, and A is a matrix.

• If g is the conjugate of f , we have

f(Ax) = sup
µ

{
x′A′µ − g(µ)

}
= sup

λ
sup

A′µ=λ

{
x′Aµ − g(µ)

}
= sup

λ

{
x′λ − inf

A′µ=λ
g(µ)

}

so F is the conjugate of G given by

G(λ) = inf
A′µ=λ

g(µ)

called the image function of g under A′. Hence
the conjugate of F is the closure of G.

• Issues of preservation of closedness under par-
tial minimization.



CLOSEDNESS OF IMAGE FUNCTION

• We view the image function

G(λ) = inf
A′µ=λ

g(µ)

as the result of partial minimization with respect
to µ of a function of (µ, λ)

• We use the results on preservation of closed-
ness under partial minimization

− The image function is closed and the infi-
mum is attained for all λ ∈ dom(G) if g is
closed and every direction of recession of
g that belongs to N(A′) is a direction along
which g is constant.

• This condition can be translated to an alternative
and more useful condition involving the relative
interior of the domain of the conjugate of g. In
particular, we will show that the condition is true if
and only if

R(A) ∩ ri
(
dom(g)

)
�= Ø



LECTURE 15

LECTURE OUTLINE

• Calculus of convex conjugate functions

• Subgradients
***********************************************

• Conjugate of f : g(λ) = supx∈�n

{
x′λ − f(x)

}
• Support function of set C = Conjugate of its
indicator function

0 x

f(x)

(- λ,1)

Slope =  λ

inf  {f(x) - x'λ} = - g(λ)
x ∈ Rn

• We want to develop formulas that allow us to
calculate convex conjugate functions



IMAGE AND INFIMAL CONVOLUTION I

• Let f, fi : �n �→ (−∞,∞] be proper convex
functions, and A be a matrix. Consider the follow-
ing conjugate pair (modulo a closure operation)

− Linear composition: f(Ax)
− Image: infAy=x f(y)

• Another conjugate pair – the special case where

x = (x1, . . . , xm) ∈ �mn, f(x) = f1(x1)+· · ·+fm(xm),

A(x1, . . . , xm) = x1 + · · · + xm

− Sum (special case of linear composition):

f1(x) + · · · + fm(x)

− Infimal convolution (special case of image):

inf
x1+···+xm=x

{
f1(x1) + · · · + fm(xm)

}
• Note that image and infimal convolution are spe-
cial cases of partial minimization, and their closure
is not guaranteed even if f, fi are closed



IMAGE AND INFIMAL CONVOLUTION II

• Note also that for F (x) = infAy=x f(y), we have

A epi(f) ⊂ epi(F ) ⊂ cl
(
A epi(f)

)
,

where A is
A(x, w) = (Ax, w)

• From preservation of closure results:

− F is closed and proper, and the infimum in
the definition of F is attained for all x ∈ dom(F )
if every direction of recession of f that be-
longs to N(A), is a direction along which f
is constant.

• For F = f1 + · · · + fm, we have

epi(f1)+· · ·+epi(fm) ⊂ epi(F ) ⊂ cl
(
epi(f1)+· · ·+epi(fm)

)
• Also F is closed and proper, and the infimum is
attained for all x ∈ dom(F ) under a similar condi-
tion on directions of recession of fi



DUAL VIEW OF PRESERVATION OF CLOSURE

• Proper Separation Lemma: Let S and C be
a subspace and a convex set. Then S∩ri(C) �= Ø
if and only if the support function σC satisfies

σC(λ) = σC(−λ) = 0, ∀λ ∈ S⊥ with σC(λ) ≤ 0.

λ 0

S

S

C

λ 0

S

S

C

λ 0

S

S

C

(a) (b) (c)

• Let S be a subspace of �n, let f : �n �→
(−∞,∞] be a proper convex function, and let g
be its conjugate. We have

S ∩ ri
(
dom(f)

)
�= Ø

if and only if every direction of recession of g that
belongs to S⊥ is a direction along which g is con-
stant.



CONJUGATE OF IMAGE THEOREM

• Let f : �n �→ (−∞,∞] be a proper convex
function, and let g be its conjugate. Consider the
function F defined by

F (x) = inf
Ay=x

f(y),

where A is an r × n matrix.

(a) F is convex and its conjugate is

G(λ) = g(A′λ).

(b) If f is closed and the range of A′ contains
a point in ri

(
dom(g)

)
, then F is closed and

proper, and the infimum in the definition of
F is attained for all x ∈ dom(F ).

(c) If f is polyhedral, and the range of A′ con-
tains a point in dom(g), then F is polyhedral,
and the infimum in the definition of F is at-
tained for all x ∈ dom(F ).



CONJUGATE OF INFIMAL CONVOLUTION THEOREM

• Let fi : �n �→ (−∞,∞], i = 1, . . . , m, be proper
convex functions, and let gi be their corresponding
conjugates. Consider the function F defined by

F (x) = inf
x1+···+xm=x

{
f1(x1) + · · · + fm(xm)

}
.

(a) F is convex and its conjugate is

G(λ) = g1(λ) + · · · + gm(λ).

(b) If for some k, the functions f1, . . . , fk are
polyhedral, the functions fk+1, . . . , fm are closed,
and(
∩k

i=1 dom(gi)
)
∩

(
∩m

i=1 ri
(
dom(gi)

))
�= Ø,

then F is closed and proper, and the infimum
in the definition of F is attained for all x ∈
dom(F ).



LINEAR TRANSFORMATIONS – VECTOR SUMS

• Let C, Ci, i = 1, . . . , m, be nonempty closed
convex subsets of �n, and let

D = dom(σC), Di = dom(σCi), i = 1, . . . , m.

(a) Let A be an m × n matrix. Then the set AC
is closed if

R(A′) ∩ ri(D) �= Ø,

where R(A′) is the range of A′.

(b) The vector sum C1 + · · · + Cm is closed if

∩m
i=1ri(Di) �= Ø.

(c) The vector sum C1 + · · ·+Cm is closed if for
some k ≥ 1, C1, . . . , Ck is polyhedral, and

(
∩k

i=1Di

)
∩

(
∩m

i=k+1ri(Di)
)
�= Ø.



SUBGRADIENTS

• Let f : �n �→ (−∞,∞] be a convex function.
A vector λ ∈ �n is a subgradient of f at a point
x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′λ, ∀ z ∈ �n

• λ is a subgradient if and only if

f(z) − z′λ ≥ f(x) − x′λ, ∀ z ∈ �n

so λ is a subgradient at x if and only if the hyper-
plane in �n+1 that has normal (−λ, 1) and passes
through

(
x, f(x)

)
supports the epigraph of f .

z

(x, f(x))

f(z)

(-λ, 1)
0

• The set of all subgradients at x is the subdiffer-
ti l f f t d t d ∂f( )



EXAMPLES OF SUBDIFFERENTIALS

• If f is differentiable ∂f(x) = {∇f(x)}

f(x) = |x|

0

∂f(x)

0

1

- 1

x

f(x) = max{0, (1/2)(x2 - 1)}

0 1- 1 x

∂f(x)

0 1- 1 x

x



EXISTENCE OF SUBGRADIENTS

• Note the connection with the min common/max
crossing construction.

(x, f(x))

f(y)
(-λ, 1)

0

Epigraph
of f

fx(y)

(-λ, 1)

0

Translated
Epigraph
of f

y y

• Let f : �n �→ (−∞,∞] be a proper convex
function. For every x ∈ ri

(
dom(f)),

∂f(x) = S⊥ + G,

where:

− S is the subspace that is parallel to the affine
hull of dom(f)

− G is a nonempty and compact set.

• Furthermore, ∂f(x) is nonempty and compact
if and only if x is in the interior of dom(f).



LECTURE 16

LECTURE OUTLINE

• Calculus of subgradients

• Constrained optimality conditions

• Directional derivatives
***********************************************

• Subgradient inequality: λ ∈ ∂f(x) if

f(z) ≥ f(x) + (z − x)′λ, ∀ z ∈ �n

• Connection with min common/max crossing and
conjugacy, using x-translation

fx(y) = f(x + y) − f(x)

(x, f(x))

f(y)
(-λ, 1)

0

Epigraph
of f

fx(y)

(-λ, 1)

0

Translated
Epigraph
of f

y y



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and δC be its indicator
function.

• For x /∈ C, ∂δC(x) = Ø, by convention.

• For x ∈ C, we have λ ∈ ∂δC(x) iff

δC(z) ≥ δC(x) + λ′(z − x), ∀ z ∈ C,

or equivalently λ′(z − x) ≤ 0 for all z ∈ C. Thus
∂δC(x) is the normal cone of C at x, denoted
NC(x):

NC(x) =
{
λ | λ′(z − x) ≤ 0, ∀ z ∈ C

}
.

• Example: For the case of a polyhedral set

P = {x | a′
ix ≤ bi, i = 1, . . . , m},

we have

NP (x) =
{
�n if x ∈ int(P ),
cone

(
{ai | a′

ix = bi}
)

if x /∈ int(P ).



FENCHEL INEQUALITY

• Let f : �n �→ (−∞,∞] be proper convex and
let g be its conjugate. Using the definition of con-
jugacy, we have Fenchel’s inequality :

x′λ ≤ f(x) + g(λ), ∀ x ∈ �n, λ ∈ �n.

• Proposition: The following two relations are
equivalent for a pair of vectors (x, λ):

(i) x′λ = f(x) + g(λ).

(ii) λ ∈ ∂f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x ∈ ∂g(λ).

x0

Epigraph of f

(-λ,1) λ

Epigraph of g

(-x,1)



MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed convex and let
X∗ be the set of minima of f over �n. Then:

(a) X∗ = ∂g(0). [Since 0 ∈ ∂f(x) iff x ∈ ∂g(0).]

(b) X∗ is nonempty if 0 ∈ ri
(
dom(g)

)
.

(c) X∗ is nonempty and compact if and only if
0 ∈ int

(
dom(g)

)
.

• Proof: (a) From the subgradient inequality,

x∗ minimizes f iff 0 ∈ ∂f(x∗),

which is true if and only if

x∗ ∈ ∂g(0),

so X∗ = ∂g(0).

(b) ∂g(0) is nonempty if 0 ∈ ri
(
dom(g)

)
.

(c) ∂g(0) is nonempty and compact if and only if
0 ∈ int

(
dom(g)

)
. Q.E.D.



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function σC of a nonempty
set C at a vector λ.

• To calculate ∂σC(λ), we introduce the function

h(λ) = σC(λ + λ), λ ∈ �n.

• We have ∂σC(λ) = ∂h(0), so ∂σC(λ) is equal
to the set of minima over �n of the conjugate of h.

• The conjugate of h is supλ∈�n{λ′x − h(λ)}, or

sup
λ∈�n

{λ′x − σC(λ + λ)} = δ(x) − λ
′
x,

where δ is the indicator function of cl
(
conv(C)

)
.

• Hence ∂σC(λ) is equal to the set of minima of
δ(x) − λ

′
x, or equivalently the set of maxima of

λ
′
x over x ∈ cl

(
conv(C)

)
.



EXAMPLE: SUBDIFF. OF POLYHEDRAL FUNCTION

• Let

f(x) = max{a′
1x + b1, . . . , a′

rx + br}.

• For a fixed x ∈ �n, consider

Ax =
{
j | a′

jx + bj = f(x)
}

and the function h(x) = max
{
a′

jx | j ∈ Ax

}
.

x

(x, f(x))

f(x)
(-λ, 1)

0

Epigraph
of f

x

h(x)

(-λ, 1)

0 x

• We have ∂f(x) = ∂h(0).

• Since h is the support function of the finite set
{aj | j ∈ Ax}, we see that ∂h(0) is

∂f(x) = ∂h(0) = conv
(
{aj | j ∈ Ax}

)



SUBDIFFERENTIAL CALCULUS: CHAIN RULE

• Let f : �m �→ (−∞,∞] be a proper convex, and
A be a matrix. We want to calculate ∂F (x), where
F (x) = f(Ax).

• Claim: If R(A) ∩ ri
(
dom(f)

)
, then

∂F (x) = A′∂f(Ax).

• Proof: The conjugate of F is

G(λ) = inf
A′µ=λ

g(µ)

where g is the conjugate of f , and the infimum is
attained for all λ ∈ dom(G).

• We have λ ∈ ∂F (x) iff F (x) + G(λ) = x′λ, or
iff there exists a vector µ such that A′µ = λ and
F (x) + g(µ) = x′A′µ, or

f(Ax) + g(µ) = x′A′µ.

Therefore, λ ∈ ∂F (x) iff for some µ such that
A′µ = λ, we have µ ∈ ∂f(Ax). Q.E.D.



SUM OF FUNCTIONS

• Let fi : �n �→ (−∞,∞], i = 1, . . . , m, be proper
convex functions, and let

f = f1 + · · · + fm.

• Assume that

∩m
1=1ri

(
dom(fi)

)
�= Ø.

• Then

∂f(x) = ∂f1(x) + · · · + ∂fm(x), ∀ x ∈ �n.

• Extension: If for some k, the functions fi, i =
1, . . . , k, are polyhedral, it is sufficient to assume
that(

∩k
i=1 dom(fi)

)
∩

(
∩m

i=k+1 ri
(
dom(fi)

))
�= Ø.



CONSTRAINED OPTIMALITY CONDITION

• Let f : �n �→ (−∞,∞] be proper convex, let X
be a convex subset of �n, and assume that one
of the following four conditions holds:

(i) ri
(
dom(f)

)
∩ ri(X) �= Ø.

(ii) f is polyhedral and dom(f) ∩ ri(X) �= Ø.

(iii) X is polyhedral and ri
(
dom(f)

)
∩ X �= Ø.

(iv) f and X are polyhedral, and dom(f) ∩ X �= Ø.

Then, a vector x∗ minimizes f over X if and only
if there exists λ ∈ ∂f(x∗) such that −λ belongs to
the normal cone NX(x∗), i.e.,

λ′(x − x∗) ≥ 0, ∀ x ∈ X.

Proof: x∗ minimizes

F (x) = f(x) + δX(x)

if and only if 0 ∈ ∂F (x∗). Use the formula for
subdifferential of sum. Q.E.D.



DIRECTIONAL DERIVATIVES

• Consider a proper convex f : �n �→ (−∞,∞].
For x ∈ dom(f), the directional derivative of f at
x in the direction y is

f ′(x; y) = lim
α↓0

f(x + αy) − f(x)
α

• Important fact: By convexity, the ratio is
monotonically nondecreasing with α, so

f ′(x; y) = inf
α>0

f(x + αy) − f(x)
α

α

f(x + αy)

0

Slope: f (x;y)

Slope: f(x + αy) - f(x)

α

α

f(x)



DIRECTIONAL DERIVATIVES AND SUBGRADIENTS

• Since f ′(x; ·) is positively homogeneous, its clo-
sure is the support function of the set whose indi-
cator function is the conjugate of f ′(x; ·), i.e., the
set {

λ | λ′y − f ′(x; y) ≤ 0, ∀ y ∈ �n
}

• From the equation

f ′(x; y) = inf
α>0

f(x + αy) − f(x)
α

this set is ∂f(x).

• Conclusion: The support function of ∂f(x) is
(cl f ′)(x, ·).
• Also, for x ∈ ri

(
dom(f)

)
,

f ′(x; ·) = (cl f ′)(x, ·)

• Special case: If f is real-valued,

f ′(x; y) = σ∂f(x)(y), ∀ x, y ∈ �n



DIRECTIONAL DERIVATIVE OF THE MAX FUNCTION

• Consider the directional derivative of the func-
tion

f(x) = max
{
f1(x), . . . , fr(x)

}
,

where fj : �n �→ �, j = 1, . . . , r, are convex
functions.

• Denote

Ax =
{
j | fj(x) = f(x)

}
.

Then it can be shown that

f ′(x; y) = max
{
f ′

j(x; y) | j ∈ Ax

}
, ∀x, y ∈ �n.

• Thus the epigraph of f ′(x; ·) is the intersection
of the epigraphs of f ′

j(x; ·), j ∈ Ax. From this, it
follows that

∂f(x) = conv (∪j∈Ax∂fj(x)) .
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LECTURE OUTLINE

• Descent algorithms for minimization

• Steepest descent

• ε-subgradients and ε-descent
***********************************************

• Recall that the directional derivative of f at x in
the direction y is

f ′(x; y) = lim
α↓0

f(x + αy) − f(x)

α
= inf

α>0

f(x + αy) − f(x)

α

• It is the support function of ∂f(x)

α

f(x + αy)

0

Slope: f (x;y)

Slope: f(x + αy) - f(x)

α

α

f(x)



STEEPEST DESCENT

• Given convex f : �n �→ �, the direction of
steepest descent at x solves

minimize f ′(x; y)
subject to ‖y‖ ≤ 1

• Equivalently, it solves

minimize max
λ∈∂f(x)

y′λ

subject to ‖y‖ ≤ 1

• Using minimax equality, the direction of steepest
descent is y∗ = −λ∗/‖λ∗‖, where λ∗ is the vector
of min norm on ∂f(x).

• Steepest descent method:

xk+1 = xk − αkλk,

where λk is the vector of minimum norm in ∂f(xk),
and αk > 0 is such that f(xk+1) < f(xk).

• Difficulties due to discontinuity of ∂f(x).



ε-SUBGRADIENTS

• Given a proper convex f : �n �→ (−∞,∞] and
ε > 0, we say that λ is an ε-subgradient of f at a
point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′λ − ε, ∀ z ∈ �n

z

(x, f(x) - ε)

f(z)

(-λ, 1)

ε

• The ε-subdifferential ∂εf(x) is the set of all ε-
subgradients of f at x.

• By convention, ∂εf(x) = Ø for x /∈ dom(f).

• We will show that for f closed, ∂εf(x) �= Ø for
x ∈ dom(f).



ε-SUBGRADIENTS AND CONJUGACY I

• Consider x-translation: fx(y) = f(x+ y)− f(x)

• The conjugate of fx, denoted gx is

gx(λ) = sup
y∈�n

{
y′λ−f(x+y)+f(x)

}
= g(λ)+f(x)−λ′x,

where g is the conjugate of f .
fx(y)

0

Translated
Epigraph
of f

y

fx(y)

0 y

fx(y)

0 y

(a)

(b)

(c)

f(x) - (cl f)(x)

gx(λ)

0 λ

gx(λ)

0 λ

Conjugate

gx(λ)

0 λ

f(x) - (cl f)(x)



ε-SUBGRADIENTS AND CONJUGACY II

• Since

λ ∈ ∂f(x) iff sup
y∈�n

{
λ′y − f(x + y) + f(x)

}
≤ 0,

we have

∂f(x) =
{
λ | gx(λ) ≤ 0

}
, ∂εf(x) =

{
λ | gx(λ) ≤ ε

}
fx(y)

0

Translated
Epigraph
of f

y

fx(y)

0 y

fx(y)

0 y

(a)

(b)

(c)

f(x) - (cl f)(x)

gx(λ)

0 λ

gx(λ)

0 λ

Conjugate

gx(λ)

0 λ

f(x) - (cl f)(x)



ε-SUBGRADIENT PROPERTIES

• Let f : �n �→ (−∞,∞] be a proper convex and
let ε > 0. For every x ∈ dom(f), the following
hold:

(a) ∂εf(x) is a closed convex set.

(b) If (cl f)(x) = f(x), then ∂εf(x) �= Ø and its
support function is

σ∂εf(x)(y) = sup
λ∈∂εf(x)

y′λ = inf
α>0

f(x + αy) − f(x) + ε

α

(c) ∂εf(x) is compact iff x ∈ int
(
dom(f)

)
.

(d) If f is real-valued, ∂εf(x) is compact.



ε-DESCENT DIRECTIONS

• We say that y is an ε-descent direction at x ∈
dom(f) if

inf
α>0

f(x + αy) < f(x) − ε.

• Let f : �n �→ (−∞,∞] be a proper convex, let
ε be a positive scalar, and let x ∈ dom(f) be such
that (cl f)(x) = f(x). Then:

(a) We have 0 ∈ ∂εf(x) if and only if

f(x) ≤ inf
z∈�n

f(z) + ε.

(b) We have 0 /∈ ∂εf(x) if and only if there exists
an ε-descent direction.

(c) If 0 /∈ ∂εf(x), the vector −λ where

λ = arg min
λ∈∂εf(x)

‖λ‖,

is an ε-descent direction.



ε-DESCENT METHOD

• Let f : �n �→ (−∞,∞] be a proper convex func-
tion to be minimized, and assume that (cl f)(x) =
f(x) for all x ∈ dom(f).

• ε-Descent method: It stops at an ε-optimal
solution, and otherwise

xk+1 = xk + αkyk,

where yk is an ε-descent direction and αk > 0 is
such that

f(xk + αkyk) ≤ f(xk) − ε

• Implementation: Find the projection

λk = arg min
λ∈∂εf(xk)

‖λ‖,

to determine whether λk = 0.

• If λk �= 0, then yk = −λk is an ε-descent direc-
tion.



OUTER APPROXIMATION VARIANT

• Approximate ∂εf(xk) by a set A(xk) such that

∂εf(xk) ⊂ A(xk) ⊂ ∂γεf(xk),

where γ is a scalar with γ > 1.

• Use yk = −λk with λk = arg minλ∈A(xk) ‖λ‖
• If λk = 0, the method stops, and xk is within γε
of being optimal.

• If λk �= 0, by suitable choice of the stepsize
αk, we can move along the direction yk = −λk to
decrease the cost function by at least ε.

• Important special case:

f(x) = f1(x) + · · · + fm(x),

∂εf(x) ⊂ cl
(
∂εf1(x) + · · · + ∂εfm(x)

)
⊂ ∂mεf(x)

At each iteration project on

A(xk) = cl
(
∂εf1(x) + · · · + ∂εfm(x)

)
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LECTURE OUTLINE

• Convexity, geometric multipliers, and duality

• The dual function and the dual problem

• Weak and strong duality

• Duality and geometric multipliers



GEOMETRICAL FRAMEWORK FOR MULTIPLIERS

• We consider the problem

minimize f(x)
subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

• We assume nothing on X, f , and gj , except

−∞ < f∗ = inf
x∈X

gj(x)≤0, j=1,...,r

f(x) < ∞

• A vector µ∗ = (µ∗
1, . . . , µ

∗
r) is said to be a geo-

metric multiplier if µ∗ ≥ 0 and

f∗ = inf
x∈X

L(x, µ∗),

where
L(x, µ) = f(x) + µ′g(x)

• Note that a G-multiplier resembles a Lagrange
multiplier, but is associated with the problem and
not with a specific minimum.



VISUALIZATION

0

(0,f*)

(µ*,1)

w

z

H = {(z,w) | f* = w + Σ j µjzj}*

0

(c)

(0,f*)
(µ*,1)

Set of pairs (g(x),f(x)) corresponding to x
 that  minimize L(x, µ*) over X

z

w

(d)

(a)

0

(µ,1)

S = {(g(x),f(x)) | x ∈ X}

z

w

(g(x),f(x))

L(x,µ) = f(x) + µ'g(x)•

infx ∈ X L(x,µ)•

•

0 z

w

(0,f*)
•

•
•

(b)

S

S S

__ _

• Note: A G-multiplier solves a max-crossing
problem whose min common problem has optimal
value f∗.



EXAMPLES: A G-MULTIPLIER EXISTS

0(-1,0)

(µ*,1) min  f(x) =  (1/2) (x1
2 + x2

2)
s.t.  g(x) = x1 - 1 ≤ 0

 x ∈ X = R2

(b)

0

(0,-1)

(µ*,1)

(0,1) min  f(x) = x1 - x2
s.t.  g(x) = x1 + x2 - 1 ≤ 0

 x ∈ X = {(x1,x2) | x1 ≥ 0, x2 ≥ 0}

(a)

(-1,0)

0

(µ*,1)

min  f(x) = |x1| + x2
s.t.  g(x) = x1 ≤ 0

 x ∈ X = {(x1,x2) | x2 ≥ 0}

(c)

(µ*,1)

(µ*,1)

S = {(g(x),f(x)) | x ∈ X}

S = {(g(x),f(x)) | x ∈ X}

S = {(g(x),f(x)) | x ∈ X}



EXAMPLES: A G-MULTIPLIER DOESN’T EXIST

min  f(x) = x

s.t.  g(x) = x2 ≤ 0
 x ∈ X = R

(a)
(0,f*) = (0,0)

(-1/2,0)

S = {(g(x),f(x)) | x ∈ X}
min  f(x) = - x

s.t.  g(x) = x  - 1/2 ≤ 0
 x ∈ X = {0,1}

(b)

(0,f*) = (0,0)

(1/2,-1)

S = {(g(x),f(x)) | x ∈ X}

• Proposition: Let µ∗ be a geometric multiplier.
Then x∗ is a global minimum of the primal problem
if and only if x∗ is feasible and

x∗ = arg min
x∈X

L(x, µ∗), µ∗
jgj(x∗) = 0, j = 1, . . . , r



THE DUAL FUNCTION AND THE DUAL PROBLEM

• The dual problem is

maximize q(µ)
subject to µ ≥ 0,

where q is the dual function

q(µ) = inf
x∈X

L(x, µ), ∀ µ ∈ �r

• Note: The dual problem is equivalent to a max-
crossing problem.

(µ,1)

H = {(z,w) | w +  µ'z = b}

Optimal
Dual Value

x ∈ X
q(µ) = inf  L(x,µ)

Support points
correspond to minimizers
of L(x,µ) over X

S = {(g(x),f(x)) | x ∈ X}



THE DUAL OF A LINEAR PROGRAM

• Consider the linear program

minimize c′x

subject to e′ix = di, i = 1, . . . , m, x ≥ 0

• Dual function

q(λ) = inf
x≥0

⎧⎨
⎩

n∑
j=1

(
cj −

m∑
i=1

λieij

)
xj +

m∑
i=1

λidi

⎫⎬
⎭

• If cj −
∑m

i=1 λieij ≥ 0 for all j, the infimum
is attained for x = 0, and q(λ) =

∑m
i=1 λidi. If

cj −
∑m

i=1 λieij < 0 for some j, the expression in
braces can be arbitrarily small by taking xj suff.
large, so q(λ) = −∞. Thus, the dual is

maximize
m∑

i=1

λidi

subject to
m∑

i=1

λieij ≤ cj , j = 1, . . . , n.



THE DUAL OF A QUADRATIC PROGRAM

• Consider the quadratic program

minimize 1
2x

′Qx + c′x

subject to Ax ≤ b,

where Q is a given n×n positive definite symmet-
ric matrix, A is a given r × n matrix, and b ∈ �r

and c ∈ �n are given vectors.

• Dual function:

q(µ) = inf
x∈�n

{ 1
2x

′Qx + c′x + µ′(Ax − b)}

The infimum is attained for x = −Q−1(c + A′µ),
and, after substitution and calculation,

q(µ) = − 1
2µ

′AQ−1A′µ−µ′(b+AQ−1c)− 1
2c

′Q−1c

• The dual problem, after a sign change, is

minimize 1
2µ

′Pµ + t′µ

subject to µ ≥ 0,

where P = AQ−1A′ and t = b + AQ−1c.



WEAK DUALITY

• The domain of q is

Dq =
{
µ | q(µ) > −∞

}
• Proposition: q is concave, i.e., the domain Dq

is a convex set and q is concave over Dq.

• Proposition: (Weak Duality Theorem) We
have

q∗ ≤ f∗

Proof: For all µ ≥ 0, and x ∈ X with g(x) ≤ 0,
we have

q(µ) = inf
z∈X

L(z, µ) ≤ f(x) +
r∑

j=1

µjgj(x) ≤ f(x),

so

q∗ = sup
µ≥0

q(µ) ≤ inf
x∈X, g(x)≤0

f(x) = f∗



DUAL OPTIMAL SOLUTIONS AND G-MULTIPLIERS

Proposition: (a) If q∗ = f∗, the set of G-multipliers
is equal to the set of optimal dual solutions.
(b) If q∗ < f∗, the set of G-multipliers is empty (so
if there exists a G-multiplier, q∗ = f∗).

Proof: By definition, µ∗ ≥ 0 is a G-multiplier if
f∗ = q(µ∗). Since q(µ∗) ≤ q∗ and q∗ ≤ f∗,

µ∗ ≥ 0 is a G-multiplier iff q(µ∗) = q∗ = f∗

• Examples (dual functions for the two problems
with no G-multipliers, given earlier):

(a)

f* = 0

µ

q(µ)

1

(b)

µ

q(µ)

f* = 0

- 1

min  f(x) = x

s.t.  g(x) = x2 ≤ 0
 x ∈ X = R

min  f(x) = - x

s.t.  g(x) = x  - 1/2 ≤ 0
 x ∈ X = {0,1}

q(µ) =   min   {x + µx2} ={- 1/(4 µ)   if  µ > 0

-  ∞   if  µ ≤ 0

- 1/2

 x ∈ R

q(µ) =   min   { - x + µ(x - 1/2)} = min{ - µ/2, µ/2 −1}
 x ∈ {0,1}



DUALITY AND MINIMAX THEORY

• The primal and dual problems can be viewed in
terms of minimax theory:

Primal Problem <=> inf
x∈X

sup
µ≥0

L(x, µ)

Dual Problem <=> sup
µ≥0

inf
x∈X

L(x, µ)

• Optimality Conditions: (x∗, µ∗) is an optimal
solution/G-multiplier pair if and only if

x∗ ∈ X, g(x∗) ≤ 0, (Primal Feasibility),

µ∗ ≥ 0, (Dual Feasibility),

x∗ = arg min
x∈X

L(x, µ∗), (Lagrangian Optimality),

µ∗
jgj(x∗) = 0, j = 1, . . . , r, (Compl. Slackness).

• Saddle Point Theorem: (x∗, µ∗) is an opti-
mal solution/G-multiplier pair if and only if x∗ ∈ X,
µ∗ ≥ 0, and (x∗, µ∗) is a saddle point of the La-
grangian, in the sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀ x ∈ X, µ ≥ 0



A CONVEX PROBLEM WITH A DUALITY GAP

• Consider the two-dimensional problem

minimize f(x)
subject to x1 ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) = e−
√

x1x2 , ∀ x ∈ X,

and f(x) is arbitrarily defined for x /∈ X.

• f is convex over X (its Hessian is positive defi-
nite in the interior of X), and f∗ = 1.

• Also, for all µ ≥ 0 we have

q(µ) = inf
x≥0

{
e−

√
x1x2 + µx1

}
= 0,

since the expression in braces is nonnegative for
x ≥ 0 and can approach zero by taking x1 → 0
and x1x2 → ∞. It follows that q∗ = 0.



INFEASIBLE AND UNBOUNDED PROBLEMS

0

min  f(x) = 1/x

s.t.  g(x) = x  ≤ 0

 x ∈ X = {x | x > 0}

(a)
f* = ∞,   q* = ∞

0

S = {(x2,x) | x > 0}

min  f(x) = x

s.t.  g(x) = x2 ≤ 0

 x ∈ X = {x | x > 0}

(b)

f* = ∞,   q* = 0

0

S = {(g(x),f(x)) | x ∈ X}
   = {(z,w) | z > 0}

min  f(x) = x1 + x2
s.t.  g(x) = x1  ≤ 0

 x ∈ X = {(x1,x2) | x1 > 0}

(c)
f* = ∞,   q* = −∞

z

w

w

w

z

z

S = {(g(x),f(x)) | x ∈ X}
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• Conditions for existence of geometric multipliers

• Conditions for strong duality

• Fritz John optimality conditions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• Primal problem: Minimize f(x) subject to x ∈ X,
and g1(x) ≤ 0, . . . , gr(x) ≤ 0 (assuming −∞ <
f∗ < ∞). It is equivalent to infx∈X supµ≥0 L(x, µ).

• Dual problem: Maximize q(µ) subject to µ ≥ 0,
where q(µ) = infx∈X L(x, µ). It is equivalent to
supµ≥0 infx∈X L(x, µ).

• µ∗ is a geometric multiplier if and only if f∗ = q∗,
and µ∗ is an optimal solution of the dual problem.

• Question: Under what conditions f∗ = q∗ and
there exists a geometric multiplier?



RECALL NONLINEAR FARKAS’ LEMMA

Let X ⊂ �n be convex, and f : X �→ � and
gj : X �→ �, j = 1, . . . , r, be convex functions.
Assume that

f(x) ≥ 0, ∀ x ∈ F =
{
x ∈ X | g(x) ≤ 0

}
,

and one of the following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
F contains a relative interior point of X.

Then, there exists a vector µ∗ = (µ∗
1, . . . , µ

∗
r) ≥ 0,

such that

f(x) +
r∑

j=1

µ∗
jgj(x) ≥ 0, ∀ x ∈ X

In case (1) the set of such µ∗ is also compact.



APPLICATION TO CONVEX PROGRAMMING

Consider the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X, f : X �→ �, and gj : X �→ � are convex.
Assume that the optimal value f∗ is finite.

• Replace f(x) by f(x)−f∗ and assume that the
conditions of Farkas’ Lemma are satisfied. Then
there exist µ∗

j ≥ 0 such that

f∗ ≤ f(x) +
r∑

j=1

µ∗
jgj(x), ∀ x ∈ X

Since F ⊂ X and µ∗
jgj(x) ≤ 0 for all x ∈ F ,

f∗ ≤ inf
x∈F

⎧⎨
⎩f(x) +

r∑
j=1

µ∗
jgj(x)

⎫⎬
⎭ ≤ inf

x∈F
f(x) = f∗

Thus equality holds throughout, we have

f∗ = inf
x∈X

{f(x) + µ∗′g(x)} ,

and µ∗ is a geometric multiplier.



STRONG DUALITY THEOREM I

Assumption : (Convexity and Linear Constraints)
f∗ is finite, and the following hold:

(1) X = P ∩ C, where P is polyhedral and C is
convex.

(2) The cost function f is convex over C and the
functions gj are affine.

(3) There exists a feasible solution of the prob-
lem that belongs to the relative interior of C.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: If P = �n the result holds by Farkas. If
P �= �n, express P as

P = {x | a′
jx − bj ≤ 0, j = r + 1, . . . , p}

Apply Farkas to the extended representation, with

F = {x ∈ C | a′
jx − bj ≤ 0, j = 1, . . . , p}

Assert the existence of geometric multipliers in
the extended representation, and pass back to the
original representation. Q.E.D.



STRONG DUALITY THEOREM II

Assumption : (Linear and Nonlinear Constraints)
f∗ is finite, and the following hold:

(1) X = P ∩ C, with P : polyhedral, C: convex.

(2) The functions f and gj , j = 1, . . . , r, are
convex over C, and the functions gj , j =
r + 1, . . . , r, are affine.

(3) There exists a feasible vector x̄ such that
gj(x̄) < 0 for all j = 1, . . . , r.

(4) There exists a vector that satisfies the lin-
ear constraints [but not necessarily the con-
straints gj(x) ≤ 0, j = 1, . . . , r] and belongs
to the relative interior of C.

Proposition : Under the above assumption, there
exists at least one geometric multiplier.

Proof: If P = �n and there are no linear con-
straints (the Slater condition), apply Farkas. Oth-
erwise, lump the linear constraints within X, as-
sert the existence of geometric multipliers for the
nonlinear constraints, then use the preceding du-
ality result for linear constraints. Q.E.D.



THE PRIMAL FUNCTION

• Minimax theory centered around the function

p(u) = inf
x∈X

sup
µ≥0

{
L(x, µ) − µ′u

}
• Properties of p around u = 0 are critical in an-
alyzing the presence of a duality gap and the ex-
istence of primal and dual optimal solutions.

• p is known as the primal function of the con-
strained optimization problem.

• We have

sup
µ≥0

{
L(x, µ) − µ′u

}
= sup

µ≥0

{
f(x) + µ′

(
g(x) − u

)}
=

{
f(x) if g(x) ≤ u,
∞ otherwise.• So

p(u) = inf
x∈X

g(x)≤u

f(x)

and p(u) can be viewed as a perturbed optimal
value [note that p(0) = f∗].



CONDITIONS FOR NO DUALITY GAP

• Apply the minimax theory specialized to L(x, µ).

• Assume that f∗ < ∞, and that X is convex, and
L(·, µ) is convex over X for each µ ≥ 0. Then:

− p is convex.

− There is no duality gap if and only if p is lower
semicontinuous at u = 0.

• Conditions that guarantee lower semicontinuity
at u = 0, correspond to those for preservation of
closure under partial minimization, e.g.:

− f∗ < ∞, X is convex and compact, and for
each µ ≥ 0, the function L(·, µ), restricted to
have domain X, is closed and convex.

− Extensions involving directions of recession
of X, f , and gj , and guaranteeing that the
minimization in p(u) = inf x∈X

g(x)≤u
f(x) is (ef-

fectively) over a compact set.

• Under the above conditions, there is no duality
gap, and the primal problem has a nonempty and
compact optimal solution set. Furthermore, the
primal function p is closed, proper, and convex.



RELATION OF PRIMAL AND DUAL FUNCTIONS

• Consider the dual function q. For every µ ≥ 0,
we have

q(µ) = inf
x∈X

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u, j=1,...,r}

{f(x) + µ′g(x)}

= inf
{(u,x)|x∈X, g(x)≤u}

{f(x) + µ′u}

= inf
u∈�r

inf
x∈X, g(x)≤u

{f(x) + µ′u} .

• Thus

q(µ) = inf
u∈�r

{
p(u) + µ′u

}
, ∀ µ ≥ 0

S={(g(x),f(x)) | x  ∈ X}

f*

u

w

q* p(u)

q(µ) = infu{p(u) + µ′u}

(µ,1)



SUBGRADIENTS OF THE PRIMAL FUNCTION

S ={(g(x),f(x)) | x ∈ X}

u

p(u)f*

0

Slope: -µ*

(µ*,1)

• Assume that p is convex, p(0) is finite, and p is
proper. Then:

− The set of G-multipliers is −∂p(0). This fol-
lows from the relation

q(µ) = inf
u∈�r

{
p(u) + µ′u

}

− If p is differentiable at 0, there is a unique
G-multiplier: µ∗ = −∇p(0).

− If the origin lies in the interior of dom(p), the
set of G-multipliers is nonempty and com-
pact. (This is true iff the Slater condition
holds.)



FRITZ JOHN THEORY FOR CONVEX PROBLEMS

• Assume that X is convex, the functions f and
gj are convex over X, and f∗ < ∞. Then there
exist a scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r)

satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(0,f*)

(µ∗,µ0
∗)

w

u

M = {(u,w) | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w}

S = {(g(x),f(x)) | x ∈ X}

• If the multiplier µ∗
0 can be proved positive, then

µ∗/µ∗
0 is a G-multiplier.

• Under the Slater condition (there exists x ∈ X
s.t. g(x) < 0), µ∗

0 cannot be 0; if it were, then
0 = infx∈X µ∗′g(x) for some µ∗ ≥ 0 with µ∗ �= 0,
while we would also have µ∗′g(x) < 0.



FRITZ JOHN THEORY FOR LINEAR CONSTRAINTS

• Assume that X is convex, f is convex over X,
the gj are affine, and f∗ < ∞. Then there exist a
scalar µ∗

0 and a vector µ∗ = (µ∗
1, . . . , µ

∗
r), satisfy-

ing the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}

.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

(iv) If the index set J = {j �= 0 | µ∗
j > 0} is

nonempty, there exists a vector x̃ ∈ X such
that f(x̃) < f∗ and µ∗′

g(x̃) > 0.

• Proof uses Polyhedral Proper Separation Th.

• Can be used to show that there exists a geomet-
ric multiplier if X = P ∩C, where P is polyhedral,
and ri(C) contains a feasible solution.

• Conclusion: The Fritz John theory is suffi-
ciently powerful to show the major constraint qual-
ification theorems for convex programming.



LECTURE 20

LECTURE OUTLINE

• Fenchel Duality

• Monotropic Programming
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• We introduce another “standard” framework:

minimize f1(x) − f2(x)
subject to x ∈ X1 ∩ X2,

where f1, f2 : �n �→ �, and X1, X2 are subsets of
�n.

• While it can be shown to be equivalent to the
Lagrangian framework

minimize f(x)
subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

it is more convenient for some types of applica-
tions, including network flow, and conic/semidefinite
programming.



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) − f2(x)
subject to x ∈ X1 ∩ X2,

where f1, f2 : �n �→ �, and X1, X2 are subsets of
�n.

• Assume that f∗ < ∞.

• Convert the problem to

minimize f1(y) − f2(z)
subject to z = y, y ∈ X1, z ∈ X2,

and dualize the constraint z = y:

q(λ) = inf
y∈X1, z∈X2

{
f1(y) − f2(z) + (z − y)′λ

}
= inf

z∈X2

{
z′λ − f2(z)

}
− sup

y∈X1

{
y′λ − f1(y)

}
= g2(λ) − g1(λ)



PRIMAL FENCHEL DUALITY THEOREM

• We view f1 and −f2 as extended real-valued
with domains X1 and X2, and write the primal and
dual problems as

min
x∈�n

{
f1(x) − f2(x)

}
, max

λ∈�n

{
g2(λ) − g1(λ)

}
• Use strong duality theorems for the problem

min
z=y, y∈X1, z∈X2

{
f1(y) − f2(z)

}
• Primal Fenchel Duality Theorem: The dual
problem has an optimal solution and we have

inf
x∈�n

{
f1(x) − f2(x)

}
= max

λ∈�n

{
g2(λ) − g1(λ)

}
,

if f1, −f2, X1, X2 are convex, and one of the fol-
lowing two conditions holds:

− The relative interiors of X1 and X2 intersect

− X1 and X2 are polyhedral, and f1 and f2

can be extended to real-valued convex and
concave functions over �n.



OPTIMALITY CONDITIONS

• There is no duality gap, while (x∗, λ∗) is an
optimal primal and dual solution pair, if and only if

x∗ ∈ dom(f1)∩dom(−f2), (primal feasibility),

λ∗ ∈ dom(g1) ∩ dom(−g2), (dual feasibility),

x∗ ∈ arg max
y∈�n

{
y′λ∗ − f1(y)

}
x∗ ∈ arg min

z∈�n

{
z′λ∗ − f2(z)

}
, (Lagr. optimality).

0 x

f1(x)

Slope = λ
g2(λ) - g1(λ)

x*

f2(x)

Slope = λ*

g2(λ*) - g1(λ*)

(- λ*,1)

(- λ,1)

• Note: The Lagrangian optimality condition is
equivalent to λ∗ ∈ ∂f1(x∗) ∩ ∂f1(x∗).



DUAL FENCHEL DUALITY THEOREM

• The dual problem

max
λ∈�n

{
g2(λ) − g1(λ)

}
is of the same form as the primal.

• By the conjugacy theorem, if the functions f1

and f2 are closed, in addition to being convex and
concave, they are the conjugates of g1 and g2.

• Conclusion: The primal problem has an opti-
mal solution and we have

min
x∈�n

{
f1(x) − f2(x)

}
= sup

λ∈�n

{
g2(λ) − g1(λ)

}
,

if one of the following two conditions holds

− The relative interiors of dom(g1) and dom(−g2)
intersect

− dom(g1) and dom(−g2) are polyhedral, and
g1 and g2 can be extended to real-valued
convex and concave functions over �n.



MONOTROPIC PROGRAMMING

min
x∈S

n∑
i=1

fi(xi)

where x = (x1, . . . , xn) ∈ �n and

fi : � �→ (−∞,∞] are proper convex

S is a subspace

• Special cases: Linear and quadratic programs

• Duality framework:

min
x∈S, z=x

n∑
i=1

fi(zi)

Assign a multiplier λ ∈ �n to z = x, and obtain
the dual function

q(λ) = inf
x∈S

λ′x +
n∑

i=1

inf
zi∈�

{
fi(zi) − λizi

}

=
{ ∑n

i=1 qi(λi) if λ ∈ S⊥,
−∞ otherwise,

where qi(λi) = infzi∈�
{
fi(zi) − λizi

}
.



OPTIMALITY CONDITIONS

• A pair (x, λ) satisfies the Lagrangian optimality
condition, if and only if xi attains the infimum in
the equation

qi(λi) = inf
zi∈�

{
fi(zi) − λizi

}
, i = 1, . . . , n,

• Equivalently, if and only if (x, λ) lies in the set

Γ =
{
(x, λ) | xi ∈ dom(fi), f−

i (xi) ≤ λi ≤ f+
i (xi), ∀ i

}
• Assume that −∞ < f∗ < ∞. The vectors x∗

and λ∗ are optimal primal and dual solutions, and
there is no duality gap if and only if

x∗ ∈ S, λ∗ ∈ S⊥, (x∗, λ∗) ∈ Γ

• In specific contexts (e.g., electric networks),
these conditions can be interpreted as physical
laws (e.g., Kirchhoff’s and Ohm’s laws).



EXTENDED MONOTROPIC PROGRAMMING

• Additive but nonseparable version:

min
x∈S

m∑
i=1

fi(x)

where fi : � �→ (−∞,∞] are proper convex and
S is a subspace.

• Duality framework:

min
x∈S, zi=x, i=1,...,m

m∑
i=1

fi(zi)

Assign a multiplier λi ∈ �n to each constraint zi =
x, and obtain the dual function

q(λ) = inf
x∈S

(
m∑

i=1

λi

)′

x +
m∑

i=1

inf
zi∈�n

{
fi(zi) − λ′

izi

}

=
{ ∑m

i=1 qi(λi) if
∑m

i=1 λi ∈ S⊥,
−∞ otherwise,

where qi(λi) = infzi∈�n

{
fi(zi) − λ′

izi

}
.



DUALITY THEORY FOR EXTENDED M.P.

• Main Duality Theorem: Assume that the
problem is feasible, and that for all feasible x,

fi(x) = (cl fi)(x), i = 1, . . . , m,

and the set

T (x, ε) = S⊥ + ∂εf1(x) + · · · + ∂εfm(x)

is closed for all ε > 0. Then q∗ = f∗.

• The proof is unusual. We apply the ε-descent
method with outer approximation of the ε-subdifferential
Assuming f∗ > −∞, the method terminates with
x such that 0 ∈ T (x, ε), and λi ∈ ∂εfi(x) such that

λ1 + · · · + λm ∈ S⊥.

We argue that

f(x) ≤ q(λ1, . . . , λm) + mε

from which we obtain f∗ ≤ q∗ + mε.



DUALITY THEOREMS

• Assume the functions fi are closed proper con-
vex.

• Primal Theorem: Assume that the primal
problem is feasible, and that each fi is real-valued,
or is polyhedral, or is one-dimensional. Then q∗ =
f∗.

• Monotropic Programming Duality Theo-
rem: Consider the separable special case (i.e.,
the monotropic programming problem). Assume
that either the primal or the dual problem is feasi-
ble. Then q∗ = f∗.

• Slight extensions are possible, where each fi

is assumed to satisfy

fi(x) = (cl fi)(x),

for all feasible x, instead of being closed, etc.



LECTURE 21

LECTURE OUTLINE

• Conic Programming

• Quadratic-Conic Programming

• Semidefinite Programming

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• A conic problem is to minimize a convex function
subject to a cone constraint.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.



CONIC DUALITY I

• Consider the problem

minimize f(x)
subject to x ∈ C,

where C is a convex cone, and f : �n �→ (−∞,∞]
is convex.

• Apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
−∞ if x /∈ C.

We have

g1(λ) = sup
x∈�n

{
λ′x−f(x)

}
, g2(λ) = inf

x∈C

x′λ =

{
0 if λ ∈ Ĉ,

−∞ if λ /∈ Ĉ,

where Ĉ is the negative polar cone (sometimes
called the dual cone of C):

Ĉ = −C∗ = {λ | x′λ ≥ 0, ∀ x ∈ C}



CONIC DUALITY II

• Fenchel duality can be written as

inf
x∈C

f(x) = sup
λ∈Ĉ

−g(λ),

where g(λ) is the conjugate of f .

• By the Primal Fenchel Theorem, there is no
duality gap and the sup is attained if one of the
following holds:

(a) ri(dom(f)) ∩ ri(C) �= Ø.

(b) f can be extended to a real-valued convex
function over �n, and dom(f) and C are
polyhedral.

• Similarly, by the Dual Fenchel Theorem, if f is
closed and C is closed, there is no duality gap
and the infimum in the primal problem is attained
if one of the following two conditions holds:

(a) ri(dom(g)) ∩ ri(Ĉ) �= Ø.

(b) g can be extended to a real-valued convex
function over�n, and dom(g) and Ĉ are poly-
hedral.



LINEAR-CONIC PROBLEMS

• Let f be affine, f(x) = c′x, with dom(f) being an
affine set, dom(f) = b+S, where S is a subspace.

• The primal problem is

minimize c′x

subject to x − b ∈ S, x ∈ C.

• The conjugate is

g(λ) = sup
x−b∈S

(λ − c)′x = sup
y∈S

(λ − c)′(y + b)

=
{

(λ − c)′b if λ − c ∈ S⊥,
∞ if λ − c /∈ S⊥,

so the dual problem is

minimize b′λ

subject to λ − c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



CONIC-QUADRATIC PROGRAMMING

• Conic-quadratic programming is the linear-conic
problem

minimize c′x

subject to Aix − bi ∈ Ci, i = 1, . . . , m,

where c, bi are vectors, Ai are matrices, bi is a
vector in �ni , and Ci is the second order cone

C =
{

(x1, . . . , xn) | xn ≥
√

x2
1 + · · · + x2

n−1

}

x1

x2

x3



CONIC-QUADRATIC DUALITY

• The dual of the quadratic-conic problem (viewed
as a special case of a linear-conic problem) is (af-
ter some manipulation)

maximize
m∑

i=1

b′iλi

subject to
m∑

i=1

A′
iλi = c, λi ∈ Ci, i = 1, . . . , m,

where λ = (λ1, . . . , λm).

• The duality theory is derived from (and is no
more favorable than) the one for linear-conic prob-
lems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, conic-quadratic problems can be rec-
ognized from the presence of norm or convex quadratic
functions in the cost or the constraint functions.

• There are many applications.



SEMIDEFINITE PROGRAMMING

• Consider the symmetric n × n matrices. Inner
product < X, Y >= trace(XY ) =

∑n
i,j=1 xijyij .

• Let D be the cone of pos. semidefinite matrices.
Note that D is self-dual [D = D̂, i.e., < X, Y >≥ 0
for all y ∈ D iff X ∈ D], and its interior is the set
of pos. definite matrices.

• Fix symmetric matrices C, A1, . . . , Am, and vec-
tors b1, . . . , bm, and consider

minimize < C, X >

subject to < Ai, X >= bi, i = 1, . . . , m, X ∈ D

• Viewing this as an affine cost conic problem,
the dual problem (after some manipulation) is

maximize
m∑

i=1

biλi

subject to C − (λ1A1 + · · · + λmAm) ∈ D

• There is no duality gap if there exists λ such
that C − (λ1A1 + · · · + λmAm) is pos. definite.



LECTURE 22

LECTURE OUTLINE

• Overview of Dual Methods

• Nondifferentiable Optimization

********************************

• Consider the primal problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

assuming −∞ < f∗ < ∞.

• Dual problem: Maximize

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{f(x) + µ′g(x)}

subject to µ ≥ 0.



PROS AND CONS FOR SOLVING THE DUAL

• The dual is concave.

• The dual may have smaller dimension and/or
simpler constraints.

• If there is no duality gap and the dual is solved
exactly for a geometric multiplier µ∗, all optimal
primal solutions can be obtained by minimizing
the Lagrangian L(x, µ∗) over x ∈ X.

• Even if there is a duality gap, q(µ) is a lower
bound to the optimal primal value for every µ ≥ 0.

• Evaluating q(µ) requires minimization of L(x, µ)
over x ∈ X.

• The dual function is often nondifferentiable.

• Even if we find an optimal dual solution µ∗, it
may be difficult to obtain a primal optimal solution.



DUAL DERIVATIVES

• Let

xµ ∈ arg min
x∈X

L(x, µ) = arg min
x∈X

{
f(x) + µ′g(x)

}
Then for all ν ∈ �r,

q(ν) = inf
x∈X

{
f(x) + ν′g(x)

}
≤ f(xµ) + ν′g(xµ)
= f(xµ) + µ′g(xµ) + (ν − µ)′g(xµ)
= q(µ) + (ν − µ)′g(xµ).

• Thus g(xµ) is a subgradient of q at µ.

• Proposition: Let X be compact, and let f and
g be continuous over X. Assume also that for ev-
ery µ, L(x, µ) is minimized over x ∈ X at a unique
point xµ. Then, q is everywhere continuously dif-
ferentiable and

∇q(µ) = g(xµ), ∀ µ ∈ �r



NONDIFFERENTIABILITY OF THE DUAL

• If there exists a duality gap, the dual function
is nondifferentiable at every dual optimal solution
(see the textbook).

• Important nondifferentiable case: When q is
polyhedral, that is,

q(µ) = min
i∈I

{
a′

iµ + bi

}
,

where I is a finite index set, and ai ∈ �r and bi

are given (arises when X is a discrete set, as in
integer programming).

• Proposition: Let q be polyhedral as above,
and let Iµ be the set of indices attaining the mini-
mum

Iµ =
{
i ∈ I | a′

iµ + bi = q(µ)
}

The set of all subgradients of q at µ is

∂q(µ) = conv
(
{ai | i ∈ Iµ}

)



NONDIFFERENTIABLE OPTIMIZATION

• Consider maximization of q(µ) over M = {µ ≥
0 | q(µ) > −∞}
• Subgradient method:

µk+1 =
[
µk + skgk

]+
,

where gk is the subgradient g(xµk), [·]+ denotes
projection on the closed convex set M , and sk is
a positive scalar stepsize.

M

gk

µk

µk + skgk

[µk + skgk]+

µ*

Contours of q



KEY SUBGRADIENT METHOD PROPERTY

• For a small stepsize it reduces the Euclidean
distance to the optimum.

M

gk

µk

µk + skgk

µk+1 = [µk + skgk]+
µ*

< 90o

Contours of q

• Proposition: For any dual optimal solution µ∗,
we have

‖µk+1 − µ∗‖ < ‖µk − µ∗‖,

for all stepsizes sk such that

0 < sk <
2
(
q(µ∗) − q(µk)

)
‖gk‖2



CONVERGENCE MECHANISM

• Assume constant stepsize: sk ≡ s

• If ‖gk‖ ≤ C for some constant C and all k,

‖µk+1−µ∗‖2 ≤ ‖µk−µ∗‖2−2s
(
q(µ∗)−q(µk)

)
+s2C2,

so the distance to the optimum decreases if

0 < s <
2
(
q(µ∗) − q(µk)

)
C2

or equivalently, if µk belongs to the level set

{
µ

∣∣∣ q(µ) < q(µ∗) − sC2

2

}

• With a little further analysis, it can be shown
that the method, at least asymptotically, reaches
this level set, i.e.

lim sup
k→∞

q(µk) ≥ q(µ∗) − sC2

2



CONVERGENCE ANALYSIS

• Consider a generic convex problem

min
x∈X

f(x)

where f : �n �→ � is a convex function and X is
a closed convex set, and the subgradient method

xk+1 = [xk − αkgk]+ ,

where gk is a subgradient of f at xk, αk is a positive
stepsize, and [·]+ denotes projection on the set X.

• Assumption: (Subgradient Boundedness)

||g|| ≤ C, ∀ g ∈ ∂f(xk), ∀ i, k,

for some scalar C. (Satisfied when f is polyhedral
as in integer programming.)

• Key Lemma: For all y ∈ X and k,

||xk+1−y||2 ≤ ||xk−y||2−2αk

(
f(xk)−f(y)

)
+α2

kC2



STEPSIZE RULES

• Constant Stepsize αk ≡ α:

− By key lemma with f(y) ≈ f∗, it makes progress

to the optimal if 0 < α <
2
(
f(xk)−f∗

)
C2 , i.e., if

f(xk) > f∗ +
αC2

2

• Diminishing Stepsize αk → 0,
∑

k αk = ∞:

− Eventually makes progress (once αk becomes
small enough). Can show that

lim inf
k→∞

f(xk) = f∗

• Dynamic Stepsize αk = f(xk)−fk

C2 where fk = f∗

or (more practically) an estimate of f∗:

− If fk = f∗, makes progress at every iteration.
If fk < f∗ it tends to oscillate around the
optimum. If fk > f∗ it tends towards the
level set {x | f(x) ≤ fk}.

− fk can be adjusted based on the progress of
the method.
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LECTURE OUTLINE

• Additional Dual Methods

• Cutting Plane Methods

• Decomposition

********************************

• Consider the primal problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

assuming −∞ < f∗ < ∞.

• Dual problem: Maximize

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{f(x) + µ′g(x)}

subject to µ ∈ M = {µ | µ ≥ 0, q(µ) > −∞}.



CUTTING PLANE METHOD

• kth iteration, after µi and gi = g
(
xµi

)
have been

generated for i = 0, . . . , k − 1: Solve

max
µ∈M

Qk(µ)

where

Qk(µ) = min
i=0,...,k−1

{
q(µi) + (µ − µi)′gi

}
Set

µk = arg max
µ∈M

Qk(µ)

M

q(µ)

µ1µ0 µ2µ3 µ*

µ

q(µ0) + (µ − µ0)'g(x   )µ0

q(µ1) + (µ − µ1)'g(x   )µ1



POLYHEDRAL CASE

q(µ) = min
i∈I

{
a′

iµ + bi

}
where I is a finite index set, and ai ∈ �r and bi

are given.

• Then subgradient gk in the cutting plane method
is a vector aik for which the minimum is attained.

• Finite termination expected.

M

q(µ)

µ1µ0 µ2µ3

µ

µ*µ4 =



CONVERGENCE

• Proposition: Assume that the max of Qk over
M is attained and that the sequence gk is bounded.
Then every limit point of a sequence {µk} gener-
ated by the cutting plane method is a dual optimal
solution.

Proof: gi is a subgradient of q at µi, so

q(µi) + (µ − µi)′gi ≥ q(µ), ∀ µ ∈ M,

Qk(µk) ≥ Qk(µ) ≥ q(µ), ∀ µ ∈ M. (1)

• Suppose {µk}K converges to µ̄. Then, µ̄ ∈ M ,
and from (1), we obtain for all k and i < k,

q(µi) + (µk − µi)′gi ≥ Qk(µk) ≥ Qk(µ̄) ≥ q(µ̄)

• Take the limit as i → ∞, k → ∞, i ∈ K, k ∈ K,

lim
k→∞, k∈K

Qk(µk) = q(µ̄)

Combining with (1), q(µ̄) = maxµ∈M q(µ).



LAGRANGIAN RELAXATION

• Solving the dual of the separable problem

minimize
J∑

j=1

fj(xj)

subject to xj ∈ Xj , j = 1, . . . , J,
J∑

j=1

Ajxj = b.

• Dual function is

q(λ) =
J∑

j=1

min
xj∈Xj

{
fj(xj) + λ′Ajxj

}
− λ′b

=
J∑

j=1

{
fj

(
xj(λ)

)
+ λ′Ajxj(λ)

}
− λ′b

where xj(λ) attains the min. A subgradient at λ is

gλ =
J∑

j=1

Ajxj(λ) − b



DANTSIG-WOLFE DECOMPOSITION

• D-W decomposition method is just cutting plane
applied to the dual problem maxλ q(λ).

• At the kth iteration, we solve the “approximate
dual”

λk = arg max
λ∈�r

Qk(λ) ≡ min
i=0,...,k−1

{
q(λi)+(λ−λi)′gi

}

• Equivalent linear program in v and λ

maximize v

subject to v ≤ q(λi) + (λ − λi)′gi, i = 0, . . . , k − 1

The dual of this (called master problem) is

minimize
k−1∑
i=0

ξi
(
q(λi) − λi′gi

)

subject to
k−1∑
i=0

ξi = 1,
k−1∑
i=0

ξigi = 0,

ξi ≥ 0, i = 0, . . . , k − 1,



DANTSIG-WOLFE DECOMPOSITION (CONT.)

• The master problem is written as

minimize
J∑

j=1

(
k−1∑
i=0

ξifj

(
xj(λi)

))

subject to
k−1∑
i=0

ξi = 1,
J∑

j=1

Aj

(
k−1∑
i=0

ξixj(λi)

)
= b,

ξi ≥ 0, i = 0, . . . , k − 1.

• The primal cost function terms fj(xj) are ap-
proximated by

k−1∑
i=0

ξifj

(
xj(λi)

)

• Vectors xj are expressed as

k−1∑
i=0

ξixj(λi)



GEOMETRICAL INTERPRETATION

• Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

0

Xj

fj(xj)

xj

xj(λ
0) xj(λ

1)xj(λ
2) xj(λ

3)

• This is a “dual” operation to the one involved
in the cutting plane approximation, which can be
viewed as outer linearization.



LECTURE 24

LECTURE OUTLINE

• We start a 2-lecture series on nonconvex (but
smooth) optimization

• Conical approximations

• Conditions for optimality

−−−−−−−−−−−−−−−−−−−−−−−−−−
• A basic necessary condition:

− If x∗ minimizes a function f(x) over x ∈ X,
then for every y ∈ �n, α∗ = 0 minimizes
g(α) ≡ f(x + αy) over the line subset

{α | x + αy ∈ X}

• Special cases of this condition (f : differen-
tiable):

− X = �n: ∇f(x∗) = 0.

− X is convex: ∇f(x∗)′(x−x∗) ≥ 0, ∀ x ∈ X.

• We will aim for more general conditions.



CONE OF FEASIBLE DIRECTIONS

• Consider a subset X of �n and a vector x ∈ X.

• A vector y ∈ �n is a feasible direction of X at x
if there exists an α > 0 such that x + αy ∈ X for
all α ∈ [0, α].

• The set of all feasible directions of X at x is
denoted by FX(x).

• FX(x) is a cone containing the origin. It need
not be closed or convex.

• If X is convex, FX(x) consists of the vectors of
the form α(x − x) with α > 0 and x ∈ X.

• Easy optimality condition: If x∗ minimizes
a differentiable function f(x) over x ∈ X, then

∇f(x∗)′y ≥ 0, ∀ y ∈ FX(x∗)

• Difficulty: The condition may be vacuous be-
cause there may be no feasible directions (other
than 0), e.g., take X to be the boundary of a circle.



TANGENT CONE

• Consider a subset X of �n and a vector x ∈ X.

• A vector y ∈ �n is said to be a tangent of X at x if
either y = 0 or there exists a sequence {xk} ⊂ X
such that xk �= x for all k and

xk → x,
xk − x

‖xk − x‖ → y

‖y‖

• The set of all tangents of X at x is called the
tangent cone of X at x, and is denoted by TX(x).

X
x

x + yk

x + yk+1

xk

xk+1

x + y

Ball of 
radius ||y||

• y is a tangent of X at x iff there exists {xk} ⊂ X
with xk → x, and a positive scalar sequence {αk}
such that αk → 0 and (xk − x)/αk → y.



EXAMPLES

x1

x2

(a)

x1

x2

(b)

(1,2)
TX(x) = cl(FX(x))

x = (0,1)
x = (0,1)

TX(x)

• In (a), X is convex: The tangent cone TX(x) is
equal to the closure of the cone of feas. directions
FX(x).

• In (b), X is nonconvex: TX(x) is closed but
not convex, while FX(x) consists of just the zero
vector.

• In general, FX(x) ⊂ TX(x).

• For X: polyhedral, FX(x) = TX(x).



RELATION OF CONES

• Let X be a subset of �n and let x be a vector
in X. The following hold.

(a) TX(x) is a closed cone.

(b) cl
(
FX(x)

)
⊂ TX(x).

(c) If X is convex, then FX(x) and TX(x) are
convex, and we have

cl
(
FX(x)

)
= TX(x)

Proof: (a) Let {yk} be a sequence in TX(x) that
converges to some y ∈ �n. We show that y ∈
TX(x) ...

(b) Every feasible direction is a tangent, so FX(x) ⊂
TX(x). Since by part (a), TX(x) is closed, the re-
sult follows.

(c) Since X is convex, the set FX(x) consists of
the vectors of the form α(x − x) with α > 0 and
x ∈ X. Verify definition of convexity ...



NORMAL CONE

• Consider subset X of �n and a vector x ∈ X.

• A vector z ∈ �n is said to be a normal of X at x
if there exist sequences {xk} ⊂ X and {zk} with

xk → x, zk → z, zk ∈ TX(xk)∗, ∀ k

• The set of all normals of X at x is called the
normal cone of X at x and is denoted by NX(x).

• Example:

NX(x)
x = 0

X

TX(x) = Rn

• NX(x) is “usually equal” to the polar TX(x)∗,
but may differ at points of “discontinuity” of TX(x).



RELATION OF NORMAL AND POLAR CONES

• We have TX(x)∗ ⊂ NX(x).

• When NX(x) = TX(x)∗, we say that X is regular
at x.

• If X is convex, then for all x ∈ X, we have

z ∈ TX(x)∗ if and only if z′(x−x) ≤ 0, ∀ x ∈ X

Furthermore, X is regular at all x ∈ X. In partic-
ular, we have

TX(x)∗ = NX(x), TX(x) = NX(x)∗

• Note that convexity of TX(x) does not imply
regularity of X at x.

• Important fact in nonsmooth analysis: If X is
closed and regular at x, then

TX(x) = NX(x)∗.

In particular, TX(x) is convex.



A BASIC OPTIMALITY CONDITION

• Let f : �n �→ � be a smooth function. If x∗ is a
local minimum of f over a set X ⊂ �n, then

∇f(x∗)′y ≥ 0, ∀ y ∈ TX(x∗)

Proof: Let y ∈ TX(x∗) with y �= 0. Then, there
exist {ξk} ⊂ � and {xk} ⊂ X such that xk �= x∗

for all k, ξk → 0, xk → x∗, and

(xk − x∗)/‖xk − x∗‖ = y/‖y‖ + ξk

By the Mean Value Theorem, we have for all k

f(xk) = f(x∗) + ∇f(x̃k)′(xk − x∗),

where x̃k is a vector that lies on the line segment
joining xk and x∗. Combining these equations,

f(xk) = f(x∗) + (‖xk − x∗‖/‖y‖)∇f(x̃k)′yk,

where yk = y + ‖y‖ξk. If ∇f(x∗)′y < 0, since
x̃k → x∗ and yk → y, for sufficiently large k,
∇f(x̃k)′yk < 0 and f(xk) < f(x∗). This con-
tradicts the local optimality of x∗.



CONSTRAINTS - LAGRANGE MULTIPLIERS

minimize f(x)
subject to x ∈ X, h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

where f , hi, gj : �n �→ � are smooth functions,
and X is a nonempty closed set.

• Let x∗ be a local minimum. Then λ∗ = (λ∗
1, . . . , λ

∗
m)

and µ∗ = (µ∗
1, . . . , µ

∗
r) are Lagrange multipliers if

µ∗
j ≥ 0, µ∗

j = 0, ∀ j with gj(x∗) < 0,

∇xL(x∗, λ∗, µ∗)′y ≥ 0, ∀ y ∈ TX(x∗),

where

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x)

• Note: When X = �n, then TX(x∗) = �n and

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑
j=1

µ∗
j∇gj(x∗) = 0



EXAMPLE OF NONEXISTENCE

OF A LAGRANGE MULTIPLIER

x1

x2

∇f(x*) = (1,1)

∇h1(x*) = (2,0)∇h2(x*) = (-4,0)

h1(x) = 0

h2(x) = 0

2−1 x*

Minimize
f(x) = x1 + x2

subject to the two constraints

h1(x) = (x1 + 1)2 + x2
2 − 1 = 0,

h2(x) = (x1 − 2)2 + x2
2 − 4 = 0



CLASSICAL ANALYSIS

• Necessary condition at a local minimum x∗:

−∇f(x∗) ∈ T (x∗)∗

• Assume linear equality constraints only

hi(x) = a′
ix − bi, i = 1, . . . , m,

• The tangent cone is

T (x∗) = {y | a′
iy = 0, i = 1, . . . , m}

and its polar, T (x∗)∗, is the range space of the ma-
trix having as columns the ai, so for some scalars
λ∗

i

∇f(x∗) +
m∑

i=1

λ∗
i ai = 0



QUASIREGULARITY

• If the hi are nonlinear AND

T (x∗) = {y | ∇hi(x∗)′y = 0, i = 1, . . . , m} (∗)

similarly, for some scalars λ∗
i , we have

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) = 0

• Eq. (∗) (called quasiregularity) can be shown to
hold if the ∇hi(x∗) are linearly independent

• Extension to inequality constraints: If quasireg-
ularity holds, i.e.,

T (x∗) = {y | ∇hi(x
∗)′y = 0, ∇gj(x

∗)′y ≤ 0, ∀j ∈ A(x∗)}

where A(x∗) = {j | gj(x∗) = 0}, the condition
−∇f(x∗) ∈ T (x∗)∗, by Farkas’ lemma, implies
µ∗

j = 0 ∀ j /∈ A(x∗) and

∇f(x∗) +
m∑

i=1

λ∗
i∇hi(x∗) +

r∑
j=1

µ∗
j∇gj(x∗) = 0



LECTURE 25

LECTURE OUTLINE

• Enhanced Fritz John Conditions

• Pseudonormality

• Constraint qualifications

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• Problem

minimize f(x)
subject to x ∈ X, h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gr(x) ≤ 0

where f , hi, gj : �n �→ � are smooth functions,
and X is a nonempty closed set.

• To simplify notation, we will often assume no
equality constraints.



DEFINITION OF LAGRANGE MULTIPLIER

• Consider the Lagrangian function

L(x, λ, µ) = f(x) +
m∑

i=1

λihi(x) +
r∑

j=1

µjgj(x)

Let x∗ be a local minimum. Then λ∗ and µ∗ are
Lagrange multipliers if for all j,

µ∗
j ≥ 0, µ∗

j = 0 if gj(x∗) < 0,

and the Lagrangian is stationary at x∗, i.e., has
≥ 0 slope along the tangent directions of X at x∗

(feasible directions in case where X is convex):

∇xL(x∗, λ∗, µ∗)′y ≥ 0, ∀ y ∈ TX(x∗)

• Note 1: If X = �n, Lagrangian stationarity
means ∇xL(x∗, λ∗, µ∗) = 0.

• Note 2: If X is convex and the Lagrangian
is convex in x for µ ≥ 0, Lagrangian stationarity
means that L(·, λ∗, µ∗) is minimized over x ∈ X
at x∗.



ILLUSTRATION OF LAGRANGE MULTIPLIERS

X

(TX(x*))*

∇f(x*)

∇g(x*)

g(x) < 0

Level Sets
of  f

... .
xk

x*
x*

∇g1(x*)

∇g2(x*)

g1(x) < 0

g2(x) < 0

Level Sets
of  f

∇f(x*)

.

xk

...

(a) (b)

• (a) Case where X = �n: −∇f(x∗) is in the
cone generated by the gradients ∇gj(x∗) of the
active constraints.

• (b) Case where X �= �n: −∇f(x∗) is in the
cone generated by the gradients ∇gj(x∗) of the
active constraints and the polar cone TX(x∗)∗.



ENHANCED FRITZ JOHN NECESSARY CONDITIONS

If x∗ is a local minimum, there exist µ∗
0, µ

∗
1, . . . , µ

∗
r ,

satisfying the following:

(i) −

⎛
⎝µ∗

0∇f(x∗) +
r∑

j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

(ii) µ∗
0, µ

∗
1, . . . , µ

∗
r ≥ 0 and not all 0

(iii) If
J = {j �= 0 | µ∗

j > 0}

is nonempty, there exists a sequence {xk} ⊂
X converging to x∗ and such that for all k,

f(xk) < f(x∗), gj(xk) > 0, ∀ j ∈ J,

g+
j (xk) = o

(
min
j∈J

gj(xk)
)

, ∀ j /∈ J

• Note: In the classical Fritz John theorem, con-
dition (iii) is replaced by the weaker condition that

µ∗
j = 0, ∀ j with gj(x∗) < 0



GEOM. INTERPRETATION OF LAST CONDITION

X

(TX(x*))*

∇f(x*)

∇g(x*)

g(x) < 0

Level Sets
of  f

... .
xk

x*
x*

∇g1(x*)

∇g2(x*)

g1(x) < 0

g2(x) < 0

Level Sets
of  f

∇f(x*)

.

xk

...

(a) (b)

• Note: Multipliers satisfying the classical Fritz
John conditions may not satisfy condition (iii).

• Example: Start with any problem minh(x)=0 f(x)
that has a local min-Lagrange multiplier pair (x∗, λ∗)
with ∇f(x∗) �= 0 and ∇h(x∗) �= 0. Convert it to
the problem minh(x)≤0,−h(x)≤0 f(x). The (µ∗

0, µ
∗)

satisfying the classical FJ conditions are:

µ∗
0 = 0, µ∗

1 = µ∗
2 �= 0 or µ∗

0 > 0, (µ∗
0)−1(µ∗

1−µ∗
2) = λ∗

The enhanced FJ conditions are satisfied only for

µ∗
0 > 0, µ∗

1 = λ∗/µ∗
0, µ∗

2 = 0 or µ∗
0 > 0, µ∗

1 = 0, µ∗
2 = −λ∗/µ∗

0



PROOF OF ENHANCED FJ THEOREM

• We use a quadratic penalty function approach.
Let g+

j (x) = max{0, gj(x)}, and for each k, con-
sider

min
X∩S

F k(x) ≡ f(x) +
k

2

r∑
j=1

(
g+

j (x)
)2 +

1
2
||x− x∗||2

where S = {x | ||x − x∗|| ≤ ε}, and ε > 0 is such
that f(x∗) ≤ f(x) for all feasible x with x ∈ S.
Using Weierstrass’ theorem, we select an optimal
solution xk. For all k, F k(xk) ≤ F k(x∗), or

f(xk) +
k

2

r∑
j=1

(
g+

j (xk)
)2 +

1
2
||xk − x∗||2 ≤ f(x∗)

Since f(xk) is bounded over X ∩ S, g+
j (xk) → 0,

and every limit point x of {xk} is feasible. Also,
f(xk) + (1/2)||xk − x∗||2 ≤ f(x∗) for all k, so

f(x) +
1
2
||x − x∗||2 ≤ f(x∗)

• Since x ∈ S and x is feasible, we have f(x∗) ≤
f(x), so x = x∗. Thus xk → x∗, and xk is an
interior point of the closed sphere S for all large k.



PROOF (CONTINUED)

• For k large, we have the necessary condition
−∇F k(xk) ∈ TX(xk)∗, which is written as

−
(
∇f(xk) +

r∑
j=1

ζk
j ∇gj(x

k) + (xk − x∗)

)
∈ TX(xk)∗,

where ζk
j = kg+

j (xk). Denote

δk =

√√√√1 +
r∑

j=1

(ζk
j )2, µk

0 =
1
δk

, µk
j =

ζk
j

δk
, j > 0

Dividing with δk,

−

(
µk

0∇f(xk) +

r∑
j=1

µk
j ∇gj(x

k) +
1

δk
(xk − x∗)

)
∈ TX(xk)∗

Since by construction (µk
0)2+

∑r
j=1(µ

k
j )2 = 1, the

sequence {µk
0 , µk

1 , . . . , µk
r} is bounded and must

contain a subsequence that converges to some
limit {µ∗

0, µ
∗
1, . . . , µ

∗
r}. This limit has the required

properties ...



CONSTRAINT QUALIFICATIONS

Suppose there do NOT exist µ1, . . . , µr, satisfying:

(i) −
∑r

j=1 µj∇gj(x∗) ∈ NX(x∗).

(ii) µ1, . . . , µr ≥ 0 and not all 0.

• Then we must have µ∗
0 > 0 in FJ, and can take

µ∗
0 = 1. So there exist µ∗

1, . . . , µ
∗
r , satisfying all the

Lagrange multiplier conditions except that:

−

⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

rather than −(·) ∈ TX(x∗)∗ (such multipliers are
called R-multipliers).

• If X is regular at x∗, R-multipliers are Lagrange
multipliers.

• LICQ (Lin. Independence Constr. Qual.):
There exists a unique Lagrange multiplier vector
if X = �n and x∗ is a regular point , i.e.,{

∇gj(x∗) | j with gj(x∗) = 0
}

are linearly independent.



PSEUDONORMALITY

A feasible vector x∗ is pseudonormal if there are
NO scalars µ1, . . . , µr, and a sequence {xk} ⊂
Xsuch that:

(i) −
(∑r

j=1 µj∇gj(x∗)
)
∈ NX(x∗).

(ii) µj ≥ 0, for all j = 1, . . . , r, and µj = 0 for all
j /∈ A(x∗).

(iii) {xk} converges to x∗ and

r∑
j=1

µjgj(xk) > 0, ∀ k

• From Enhanced FJ conditions:

− If x∗ is pseudonormal there exists an R-multiplier
vector.

− If in addition X is regular at x∗, there exists
a Lagrange multiplier vector.



GEOM. INTERPRETATION OF PSEUDONORMALITY I

• Assume that X = �n

Tε

u1

u2

0

Tε

u1

u2

0

Not Pseudonormal

µ

Tε

u1

u2

0

µ

Pseudonormal
gj: Concave

Pseudonormal
∇gj: Linearly Indep.

• Consider, for a small positive scalar ε, the set

Tε =
{
g(x) | ‖x − x∗‖ < ε

}
• x∗ is pseudonormal if and only if either

− (1) the gradients ∇gj(x∗), j = 1, . . . , r, are
linearly independent, or

− (2) for every µ ≥ 0 with µ �= 0 and such
that

∑r
j=1 µj∇gj(x∗) = 0, there is a small

enough ε, such that the set Tε does not cross
into the positive open halfspace of the hyper-
plane through 0 whose normal is µ. This is
true if the gj are concave [then µ′g(x) is max-
imized at x∗ so µ′g(x) ≤ 0 for all x ∈ �n].



GEOM. INTERPRETATION OF PSEUDONORMALITY II

• Assume that X and the gj are convex, so that

−

⎛
⎝ r∑

j=1

µj∇gj(x∗)

⎞
⎠ ∈ NX(x∗)

if and only if x∗ ∈ arg minx∈X

∑r
j=1 µjgj(x). Pseu-

donormality holds if and only if for every hyper-
plane with normal µ ≥ 0 that passes through the
origin and supports the set G = {g(x) | x ∈ X},
contains G in its negative halfspace.

(a)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: pseudonormal
(Slater criterion)

H

(b)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: pseudonormal
(Linearity criterion)

H

(c)

0

G = {g(x) | x ∈ X}

g(x*)

µ

x*: not pseudonormal

H



SOME MAJOR CONSTRAINT QUALIFICATIONS

CQ1: X = �n, and the functions gj are concave.

CQ2: There exists a y ∈ NX(x∗)∗ such that

∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)

• Special case of CQ2: The Slater condition (X
is convex, gj are convex, and there exists x ∈ X
s.t. gj(x) < 0 for all j).

• CQ2 is known as the (generalized) Mangasarian-
Fromowitz CQ. The version with equality constraints:

(a) There does not exist a nonzero vector λ =
(λ1, . . . , λm) such that

m∑
i=1

λi∇hi(x∗) ∈ NX(x∗)

(b) There exists a y ∈ NX(x∗)∗ such that

∇hi(x∗)′y = 0, ∀ i, ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)



CONSTRAINT QUALIFICATION THEOREM

• If CQ1 or CQ2 holds, then x∗ is pseudonormal.

Proof: Assume that there are scalars µj , j =
1, . . . , r, satisfying conditions (i)-(iii) of the defini-
tion of pseudonormality. Then assume that each
of the constraint qualifications is in turn also sat-
isfied, and in each case arrive at a contradiction.

Case of CQ1 : By the concavity of gj , the condition∑r
j=1 µj∇gj(x∗) = 0, implies that x∗ maximizes

µ′g(x) over x ∈ �n, so

µ′g(x) ≤ µ′g(x∗) = 0, ∀ x ∈ �n

This contradicts condition (iii) [arbitrarily close to
x∗, there is an x satisfying

∑r
j=1 µjgj(x) > 0].

Case of CQ2 : We must have µj > 0 for at least
one j, and since µj ≥ 0 for all j with µj = 0 for
j /∈ A(x∗), we obtain

r∑
j=1

µj∇gj(x∗)′y < 0,

for the vector y of NX(x∗)∗ that appears in CQ2.



PROOF (CONTINUED)

Thus,

−
r∑

j=1

µj∇gj(x∗) /∈
(
NX(x∗)∗

)∗
Since NX(x∗) ⊂

(
NX(x∗)∗

)∗
,

−
r∑

j=1

µj∇gj(x∗) /∈ NX(x∗)

a contradiction of conditions (i) and (ii). Q.E.D.

• If X = �n, CQ2 is equivalent to the cone
{y | ∇gj(x∗)′y ≤ 0, j ∈ A(x∗)} having nonempty
interior, which (by Gordan’s theorem) is equivalent
to conditions (i) and (ii) of pseudonormality.

• Note that CQ2 can also be shown to be equiv-
alent to conditions (i) and (ii) of pseudonormality,
even when X �= �n, as long as X is regular at
x∗. These conditions can in turn can be shown in
turn to be equivalent to nonemptiness and com-
pactness of the set of Lagrange multipliers (which
is always closed and convex as the intersection of
a collection of halfspaces).


