MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.334 Power Electronics	Issued: April 13, 2007
Problem Set 8	Due: April 20, 2007
Reading: KSV Chapter 9.1–9.5, 9.7.1, matching network paper, KSV Chapter 11 through 11.3.2.	
Note: Work on the design project!	

Problem 8.1 KSV Problem 9.5

Problem 8.2

Consider the system with matching network shown in Fig. 1.

- (a) Select L and C such that the input impedance Z_{in} is 50 Ohms resistive at the Industrial, Scientific, and Medical (ISM) band frequency of 27.12 MHz.
- (b) Find the efficiency of the matching network, assuming that it operates with purely sinusoidal waveforms. For this calculation, please assume that the inductor quality factor $Q_L = 100$ at the operating frequency, and that the capacitor quality factor is sufficiently high that capacitor loss is negligible. (*Note: Recall that inductor quality factor* $Q = \omega L/R$, where R is the equivalent series resistance of the inductor.)

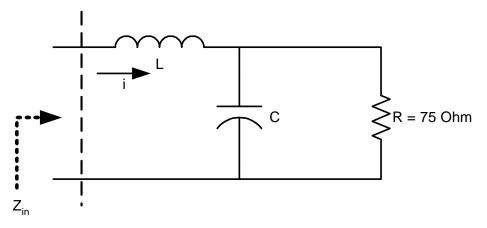


Figure 1 A matching network with a resistive load of 75 Ohms.

Problem 8.3

Consider the full-bridge resonant converter of KSV Fig. 9.19(a). Assuming the rectified output voltage is constant at a voltage V_R , please find an equivalent ac-side resistance for the bridge rectifier R_{eq} as a function of V_R and the ac current magnitude I_A . This can be done with a *describing function approach*, in which one only considers the fundamental ac component of voltage v'_R . Demonstrate that this expression for resistance correctly models power transfer from the dc sources to the rectifier, under the assumption that the inductor current is a pure sinusoid.