MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

6.334 Power Electronics

Practice Exam A

Problem 1

Figure 1 shows the internal structure and dimensions of a power diode mounted in an axial lead package. The diode is cooled by conduction through its leads, which are soldered to terminals that are assumed to be at temperature T_{A}. Heat is generated at the junction of the diode, which is planar and centered between the two surfaces. The thermal resistivity of Silicon is $1.2{ }^{\circ} \mathrm{C}-\mathrm{cm} / \mathrm{W}$, and the thermal resistivity of copper is $0.25^{\circ} \mathrm{C}-\mathrm{cm} / \mathrm{W}$.
a. Draw the analog circuit model for the thermal system of Fig. 1
b. If the maximum permissible junction temperature of the diode is T_{j} is $225^{\circ} \mathrm{C}$, determine the maximum permissible dissipation for $T_{A}=75^{\circ} \mathrm{C}$.

Figure 1

Problem 2

The switch S of the circuit of Fig. 2 is operated at a constant duty ratio D and a switching frequency f_{r}. At $t=0$ the capacitor is charged to an initial voltage V_{o} and the inductor current is zero. Calculate and sketch the local averages of $i_{L}(t)$ and $v_{\mathrm{C}}(t)$ for $t>0$ under the assumption that $2 \pi f_{s w} \gg(1-D)(L C)^{-12}$.

Figure 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.334 Power Electronics

Practice Exam B

Problem 1

The switch in the circuit of Fig. 1 is operated at a constant duty ratio D and a switching frequency $f_{z^{*}}$. At $t=0$, the inductor is carrying a current I_{o} and the capacitor is uncharged. The switching frequency is much higher than $(1-D)(L C)^{-1 / 2}$. Calculate and sketch $i_{L}(t)$ and $v_{C}(t)$ for t >0.

Figure 1

Problem 2

Derive an averaged model for the up/down converter of Fig. 2 under duty ratio control. You may derive such a model by either direct circuit averaging or by state space averaging. Is the model linear in terms of the control variable d ? Why or why not?

Figure 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem 1

Fig. 3 shows an input filter for a switching power converter. The current drawn by the converter is represented as i_{X}, and the voltage supplying the converter is v_{Y}. The converter switching frequency $1 / \mathrm{T}$ is 100 kHz . You may assume the filter components are ideal.
a. Select component values L, C, and R for the filter such that
i. The maximum output impedance of the filter, Z_{O}, is 1Ω or less at all frequencies
ii. The filter achieves an attenuation of approximately 40 dB (a factor of 100) in current at the switching frequency. That is, $\left|\mathrm{i}_{\mathrm{Y}} / \mathrm{i}_{\mathrm{X}}\right| \approx 0.01$ at the switching frequency.
iii. The filter is well damped, such that it has less than 10 dB of peaking in $\left|\mathrm{i}_{\mathrm{Y}} / \mathrm{i}_{\mathrm{X}}\right|$ near the undamped natural frequency of the filter.
b. Suppose that the load on the filter (slowly) adjusts the local average current $<i_{X}>$ drawn based on the local average voltage $<\mathrm{v}_{\mathrm{X}}>$ to maintain a constant average power draw P_{O}. Please find a (low-frequency) equivalent small-signal resistance r_{E} for this load for the operating point $\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}$ and $\mathrm{V}_{\mathrm{X}}=100 \mathrm{~V}$. Will this load greatly affect the filter damping?
c. Please propose a simple filter modification (e.g., an addition of no more than one component) that would provide higher-order attenuation performance (and increased attenuation) at and above the switching frequency, without harming filter damping. Please specify values for any added or modified components.

Figure 3

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.334 Power Electronics

Practice Exam D

Problem 1

Consider the buck/boost converter of Fig. I operating in the discontinuous conduction mode. (That is, operating such that the inductor current returns to zero before the end of each switching cycle.)

Figure 1

Figure 2
a. Find an averaged model for the system of the form shown in Fig. 2 assuming that the inductor current and output voltage do not vary much over a switching cycle.
b. Assume $\mathrm{R}=2 \mathrm{Ohms}, \mathrm{C}=220 \mathrm{uF}, \mathrm{L}=0.25 \mathrm{mH}, \mathrm{V}_{\mathrm{n}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=-9 \mathrm{~V}$. Find a linearized model for the system for perturbations in the duty ratio about this operating point, and identify the open loop pole location.

Problem 2

A double-insulated window is made of panes of glass 4 mm thick spaced 1 cm apart. Window glass has a thermal resistivity of $100^{\circ} \mathrm{C}-\mathrm{cm} / \mathrm{W}$, and still air has a thermal resistivity of 3050 ${ }^{\circ} \mathrm{C}-\mathrm{cm} / \mathrm{W}$. If the interior of the building is at $25^{\circ} \mathrm{C}$, and the exterior is at $0{ }^{\circ} \mathrm{C}$, what is the rate of heat loss by conduction through the window in $\mathrm{kW} / \mathrm{m}^{2}$?

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem 1

The dc/dc converter of Figure 1 takes in an input voltage V_{1}, and generates an output current I_{2}. Derive an averaged model for this converter in continuous conduction under duty ratio control. You may derive such a model by either direct circuit averaging or by state space averaging, but you should express your results as a pair of state-space equations in terms of the local averages of state variables i_{L} and v_{C}.

Figure 1

Problem 2

Figure 2 shows an RF power amplifier, an L-section matching network, and a resistive load.
a. Derive an expression for the input impedance $Z_{i n}$ of the matching network and load in terms of L, C, R, and ω.
b. Find the frequency ω for which the specified matching network components provide an impedance match between the RF amplifier and the load resistance R.
c. Design a different L-section (2 component) matching network that will match the RF power amplifier to the load at an operating frequency of 100 MHz . Specify the component values to be used. (Hint: use a "high-pass" L-section, rather than the "lowpass" L-section that is shown in Fig. 2.)

Figure 2

Problem 3

Figure 3 shows a semiconductor device mounted to a heatsink via an insulating pad. The Semiconductor device has a junction-to-case thermal resistance of $R_{\theta j c}=1.2^{\circ} \mathrm{C} / \mathrm{W}$, and the thermal insulating pad results in a case-to-sink thermal resistance of $R_{\theta c s}=0.8^{\circ} \mathrm{C} / \mathrm{W}$. The heat sink has a sink-to-ambient thermal resistance of $R_{\theta s a}=4{ }^{\circ} \mathrm{C} / \mathrm{W}$, and a thermal capacitance $C_{\theta s}=$ $70 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. The thermal capacitance of the device and thermal pad are negligible. The system operates at an ambient temperature $T_{A}=100^{\circ} \mathrm{C}$. We denote the semiconductor device dissipation in Watts as P_{D}, and the junction temperature of the device as T_{j}.
a. Draw the thermal model for the system of Fig. 3.
b. What is the largest average device dissipation P_{D} that is permissible if the junction temperature T_{j} of the device is to be kept below $175^{\circ} \mathrm{C}$?
c. At startup (after being at zero dissipation for a long time), the device is subjected to a dissipation of 30 W for 0.1 s before dropping to a much lower steady-state level (below that of part B). Please calculate the peak device junction temperature reached during the startup transient for an ambient temperature $T_{A}=100^{\circ} \mathrm{C}$. (Note: An accuracy of $1^{\circ} \mathrm{C}$ is sufficient. You may make reasonable approximations as long as you justify them.)

Figure 3
6.334 Practice Exam 2 - Solutions

PA. 1

$$
\rho_{\theta s_{i}}=1.2^{\circ} \frac{\mathrm{C}-\mathrm{cm}}{\mathrm{w}} \quad \rho_{\theta \mathrm{cu}}=0.25^{\circ} \frac{\mathrm{C}-\mathrm{cm}}{\mathrm{w}}
$$

a).

$$
\begin{aligned}
R=\frac{\sum_{A}}{A} \Rightarrow R_{\theta L-S_{i}}=R_{\theta R-s_{i}} & =\frac{(1.2)(0.025 \mathrm{~cm})}{(0.25 \mathrm{~cm})^{2}} \\
& =0.48{ }^{\circ} \mathrm{C} / \mathrm{w}
\end{aligned}
$$

$$
R_{\text {lead }}=\frac{(0.25)(1 \mathrm{~cm})}{\pi\left(\frac{.2}{2} \mathrm{~cm}\right)^{2}}=7.96 \mathrm{o} / \mathrm{w}
$$

b). $T_{j_{\text {max }}}=225^{\circ} \mathrm{C} \quad \mathrm{KCL}$ of analog circuit:

$$
\begin{gathered}
\frac{2\left(T_{j}-T_{A}\right)}{R_{\text {Plead }}+R_{\theta S i}}=P_{\text {diss }} \\
\frac{2\left(225^{\circ}-75^{\circ}\right)}{7.96^{\circ} \%+0.48 \% / w}=P_{\text {diss }} \\
35.6 w=P_{\text {diss }}
\end{gathered}
$$

PA. 2.

$N_{c}(\phi)=V_{0} \quad$ constant duty ratio D
$i_{L}(\theta)=\varnothing \quad$ switching frequency f_{s}
Assume: $2 \pi f_{\text {sw }} \gg D(L C)^{-\frac{1}{2}}$
Recall local average $\bar{X}(t)=\frac{1}{T} \int_{t-T}^{t} x(\tau) d \tau$

$$
\begin{aligned}
& \text { \& } N_{D}(t)=L \frac{d_{i}(t)}{d t}=g(t) v_{c}(t) \\
& L \frac{d i_{i}(t)}{d t}=\overline{q(t) v_{c}(t)}=D \bar{N}_{c}(t) \\
& A \dot{i}_{c}(t)=q(t)\left(-i_{L}(t)\right)=c \frac{d v_{c}(t)}{d t} \\
& \overline{-g(t) i_{L}(t)}=c \frac{d \bar{v}_{c}(t)}{d t}=-D \bar{i}_{L}(t) \\
& c \frac{d \bar{v}_{C}(t)}{d t}=\frac{L c}{D} \frac{d^{2} \bar{c}_{L}(t)}{d t^{2}}=-D \bar{i}_{L}(t) \\
& \frac{d^{2} \bar{i}_{L}(t)}{d t^{2}}+\frac{D^{2}}{L C} \bar{i}_{L}(t)=\varnothing \\
& r^{2}+\frac{D^{2}}{L C}=\varnothing \rightarrow r= \pm j \frac{D}{\sqrt{L C}} \\
& \longrightarrow \bar{i}_{L}(t)=k_{1} \sin \left(\frac{D}{\sqrt{L C}} t\right)+k_{2} \cos \left(\frac{D}{\sqrt{L C}}(t)\right) \\
& \longrightarrow \bar{v}_{c}(t)=\frac{L}{D} \frac{d i_{c}(t)}{d t}=k_{1} \sqrt{\frac{L}{c}} \cos \left(\frac{D}{\sqrt{L C}} t\right)-k_{2} \sqrt{\frac{L}{c}} \sin \left(\frac{D}{\sqrt{L C}} t\right) \\
& \text { True as long } \\
& \text { as } v_{c}>8 \text {. } \\
& \text { when } v_{c} \leq \theta \text {, } \\
& \text { diode stay's } \\
& \text { on regardless } \\
& \text { of the position } \\
& \text { of the switch. }
\end{aligned}
$$

(continued)
PA. 2

$$
\begin{aligned}
& \bar{i}_{L}(\phi)=\varnothing=k_{1} \sin \left(\frac{D}{\sqrt{L C}}(\theta)\right)+k_{2} \cos \left(\frac{1}{\sqrt{L C}}(\theta)\right)^{\prime}=k_{2}=\varnothing \\
& \bar{N}_{c}(\phi)=V_{0}=k_{1} \sqrt{\frac{L}{c}} \cos \left(\frac{D}{\sqrt{C L}(D)}\right)^{\prime} \Rightarrow k_{1}=V_{0} \sqrt{\frac{c}{L}} \\
\Rightarrow & \bar{i}_{L}(t)=V_{0} \sqrt{\frac{C}{L}} \sin \left(\frac{D}{\sqrt{L C}} t\right) \quad \text { while } \bar{N}_{c}(t)>\varnothing \\
\Rightarrow & \bar{N}_{c}(t)=V_{0} \cos \left(\frac{D}{\sqrt{L C}} t\right) \quad \\
& \bar{N}_{c}(t)=\varnothing \text { at } \frac{D}{\sqrt{C L}} t=\frac{\pi}{2} \Rightarrow t=\frac{\pi \sqrt{L C}}{2 D}
\end{aligned}
$$

At $t=\frac{\pi \sqrt{L C}}{2 D}$, the diode clamps $D \bar{v}_{c}(t)$ to \varnothing, meaning that $\bar{i}_{L}(t)$ remains at its peak value and $v_{r}(t)$ remains at \varnothing forever.

$$
\begin{aligned}
& \bar{i}_{L}(t)= \begin{cases}V_{0} \sqrt{\frac{c}{L}} \sin \left(\frac{D}{\sqrt{L C}} t\right) & \text { for } \phi \leq t \leq \frac{\pi \sqrt{L C}}{2 D} \\
V_{0} \sqrt{\frac{c}{L}} & \text { for } t>\frac{\pi \sqrt{L C}}{2 D}\end{cases} \\
& \bar{V}_{c}(t)= \begin{cases}V_{0} \cos \left(\frac{D}{\sqrt{L C}} t\right) & \text { for } 0 \leq t \leq \frac{\pi \sqrt{L C}}{2 D} \\
D & \text { for } t>\frac{\pi \sqrt{L C}}{2 D}\end{cases}
\end{aligned}
$$

Jamie C. Byrum $5 / 2 / 00$

PB: 1

$i_{L}(\phi)=I_{0}$
constant duffy ratio D
$v_{c}(\theta)=\varnothing \quad$ switching frequency os
Assume $2 \pi f_{\text {sw }} \gg(1-\Delta)(2 C)^{-\frac{1}{2}}$

$$
\begin{aligned}
& \text { A } v_{L}(t)=L \frac{d c_{c}(t)}{d t}=v_{c}(t)(1-g(t)) \\
& \left.L \frac{d \overline{c_{c}(t)}}{d t}=\overline{W_{c}(t)(1-q(t))}\right)=D^{\prime} \bar{v}_{c}(t) \\
& i_{c}(t)=C \frac{d N_{c}(t)}{d t}=-i_{L}(t)\left(1-\mathcal{F}^{(t)}\right) \\
& c \frac{d \bar{v}_{c}(t)}{d t}=-\overline{i_{L}(t)(1-g(t))}=-D^{\prime} \bar{i}_{L}(t) \\
& \text { True as } \\
& \text { long as } \\
& i_{2}>\varnothing \text {. } \\
& \begin{array}{l}
\text { If } i_{L} \text { tries } \\
\text { to gu in } \\
\text { the opposite }
\end{array} \\
& \text { the opposite } \\
& \begin{array}{l}
\text { it cannot } \\
\text { flow through }
\end{array} \\
& \text { the diode. } \\
& C\left(\frac{L}{D^{\prime}} \frac{d^{2} \overline{i^{(t)}}}{d t^{2}}\right)=-D^{\prime} \bar{i}_{L}(t) \\
& \frac{d^{2} i_{L}(t)}{d t^{2}}+\frac{D^{\prime 2}}{L C} i_{L}(t)=\varnothing \\
& r^{2}+\frac{D^{\prime 2}}{L C}=\varnothing \rightarrow r= \pm j \frac{D^{\prime}}{\sqrt{L C}}= \pm j \frac{1-D}{\sqrt{L C}} \\
& \rightarrow \bar{i}_{L}(t)=K_{1} \sin \left(\frac{1-D}{\sqrt{L L}} t\right)+K_{2} \cos \left(\frac{1-D}{\sqrt{L C}}(t)\right) \\
& \rightarrow v_{c}(t)=\frac{L}{1-D} \frac{d \bar{i}_{d}(t)}{d t}=k_{1} \sqrt{\frac{L}{c}} \cos \left(\frac{1-D}{\sqrt{c}} t\right)-k_{2} \sqrt{\frac{L}{c}} \sin \left(\frac{1-D}{\sqrt{L C}} t\right)
\end{aligned}
$$

(continued)

$$
\begin{aligned}
& \bar{i}_{L}(\theta)=I_{0}=k_{1} \sin \left(\frac{1-D}{\sqrt{2}}(\phi)\right)+k_{2} \cos \left(\frac{1-\theta}{\sqrt{L C}}(\theta)\right)^{\prime} \Rightarrow k_{2}=I_{0} \\
& \bar{v}_{c}(\theta)=\varnothing=k_{1} \sqrt{\frac{L}{c}} \cos \left(\frac{1-}{\sqrt{c}}(\phi)\right)^{\prime} \Rightarrow k_{1}=\varnothing \\
& \Rightarrow \bar{c}_{L}(t)=I_{0} \cos \left(\frac{1-D}{\sqrt{L C}} t\right) \\
& \Rightarrow v_{c}(t)=-I_{0} \sqrt{\frac{L}{c}} \sin \left(\frac{1-D}{\sqrt{L C}} t\right)
\end{aligned}
$$

$\bar{c}_{L}(t)=\varnothing$ at $t=\frac{\sqrt{L C}}{1-D} \frac{\pi}{2}$. At this time, current attempts to circulate the opposite way through the eqoacitor, which is impossible because of the diode. Thus, $i_{L}=\varnothing$ for $t>\frac{\pi}{2} \frac{\sqrt{L}}{1-D}$, and v_{c} remains at its (negative) peak e value.

$$
\begin{aligned}
& \quad \bar{L}_{L}(t)= \begin{cases}I_{0} \cos \left(\frac{1-D}{\sqrt{L C}} t\right) & \text { for } \varnothing \leq t \leq \frac{\sqrt{L C}}{1-D} \frac{\pi}{2} \\
\varnothing & \text { for } t>\frac{\sqrt{L C}}{1-D} \frac{\pi}{2}\end{cases} \\
& \bar{N}_{L}(t)= \begin{cases}-I_{0} \sqrt{\frac{L}{C}} \sin \left(\frac{1-D}{\sqrt{L C}} t\right) \text { for } \theta \leq t \leq \frac{\sqrt{L C}}{1-D} \frac{\pi}{2} \\
-I_{0} \sqrt{\frac{L}{C}} & \text { for } t>\frac{\sqrt{L C}}{1-D} \frac{\pi}{2}\end{cases} \\
& \underbrace{}_{\frac{\sqrt{L C}}{1-D} \frac{\pi}{2}} t
\end{aligned}
$$

PB. 2.

$\nrightarrow \quad \frac{d_{i l}}{d t}=\frac{v_{i n}}{L} q(t)+\frac{v_{0}}{L}(1-q(t))$

* $\frac{d N_{c}}{d t}=-\frac{v_{0}}{R C}-\frac{i \ell}{C}(1-q(t))$
* $\frac{d_{i}}{d t}=\overline{N_{i_{n}}}{ }_{L}(t)+\overline{v_{0}(1-g(t))}$
(1) $\frac{d \overline{\sigma_{L}}}{d t}=\frac{\overline{v_{13}}}{L} d(t)+\frac{\bar{v}_{0}}{L} d^{\prime}(t)$ where $\bar{q}(t)=d(t)$
* $\quad \frac{d \overline{N_{c}}}{d t}=-\frac{\overline{N_{0}}}{R C}-\frac{i \varrho}{C}(1-q(t))$
(2) $\frac{d \bar{\pi}_{c}}{d t}=\frac{-\overline{N_{0}}}{R C}-\frac{\overline{C_{l}}}{C} d^{\prime}(t)$

Consider equation (1):

$$
\begin{aligned}
& \left(d(t)+d^{\prime}(t)\right) \frac{d \bar{l}_{L}}{d t}=\frac{\overline{v_{n}}}{L} d(t)+\frac{\bar{v}_{0}}{L} d^{\prime}(t) \\
& \left(\frac{d \bar{i}_{L}}{d t}-\frac{\overline{v_{n}}}{L}\right) d(t)=\left(\frac{\bar{v}_{0}}{L}-\frac{d \bar{L}_{L}}{d t}\right) d^{\prime}(t)
\end{aligned}
$$

(continued)
PB. 2

$$
\left(\frac{\bar{v}_{0}}{L}-\frac{d-}{d t}\right)=\frac{d(t)}{d(t)}\left(\frac{d \bar{i}_{L}}{d t}-\frac{\bar{N}_{1 n}}{L}\right)
$$

Looks like a transformer with tums ratio

$$
\frac{N_{2}}{N_{1}}=\frac{d(t)}{d^{\prime}(t)}
$$

Consider equation (2): By average model, we ned average circuit to the left of the copociten to provide current $-\bar{c}_{l} d^{\prime}(t)$ to the capacitor.
If we model switch and diode together as a transformer with $N_{2}=d(t)$ and $N_{1}=d^{\prime}(t)$, then the current through the secondary winding will be?

$$
\begin{aligned}
\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}} \Rightarrow I_{2} & =\frac{N_{1}}{N_{2}} I_{1} \\
& =\frac{d^{\prime}(t)}{d(t)} I_{1}=-\bar{i}_{e} \cdot d^{\prime}(t)
\end{aligned}
$$

so, $\quad I_{1}=d(t) \bar{i}_{\ell}$
and $I_{2}-I_{1}=-\bar{i}_{2} d^{\prime}(t)-d(t) \bar{i}_{\ell}=-\bar{i}_{l}$
Thus, all of the above is consistent with an average model containing a transtarmen with $N_{1}=d^{\prime}(t), \quad N_{2}=d(t)$, and whose connection between the primary ard secondary sides connects to L.

This model is nonlinear in terms of the central variable d, because the control $o f$ (or $d^{\prime}=1-d$) is mulxplied by the state variables i_{L} and $\bar{v}_{0}\left(=\bar{v}_{c}\right)$ in the two arrage-model state equations.

Practice Exam C.
Problem 1
a) Select L, C, R such:

$$
+\left|z_{0}\right|_{\max }=\left|\Omega+\left|\frac{i y}{i x}\right|_{\left.\right|_{\omega=\omega s}}=0.01+\left|\frac{i y}{i x}\right|_{\max }=100\right.
$$

The impedance Z_{0} is: $\quad Z_{0}(\omega)=R / / \omega L / / \omega C$
$\left|Z_{0}\right|(\omega)$ will be maximum at resonance $\omega_{0}=\frac{1}{\sqrt{L C}}$
and will be equal to $\left|Z_{0}\right|_{\text {max }}=R$

Hence we went $R \leq 1 \Omega$
Now let's take a look al $\left|\frac{i y}{i x}\right|(\omega)$:

$$
\begin{aligned}
& \frac{i y}{i x}=\frac{\frac{1}{S C}}{\frac{1}{S C}+\frac{S L}{1+s \frac{L}{R}}}=\frac{1}{1+\frac{s^{2} L C}{1+S \frac{L}{R}}}=\frac{1+s L / R}{1+S \frac{L}{R}+s^{2} L C} \\
& \frac{i y}{i x}(s)=\frac{1+S L / R}{1+\frac{S}{Q \omega_{0}}+\frac{S^{2}}{\omega_{0}^{2}}}=\frac{1+\frac{S}{Q \omega_{0}}}{1+\frac{S}{Q \omega_{0}}+\frac{s^{2}}{\omega_{0}^{2}}}
\end{aligned}
$$

where $\quad \omega_{\phi}=\frac{1}{\sqrt{L C}} \quad Q=R \sqrt{\frac{C}{L}}$

The Bode Plot of $\left|\frac{i y}{i x}\right|$ is:

Hence to achee a maximum of 10 dB peaking near wo Ineed

$$
Q=R_{\sqrt{ }} \sqrt{\frac{C}{L}}<3.1622[10 \mathrm{~dB}]
$$

The attenuation at $\omega=Q w_{\infty}$ is

$$
\begin{aligned}
& \left|\frac{i y}{1 x}\right| \cong-40 \log (Q) \quad \text { for } Q=3.1622 \\
& \left|\frac{i y}{1 x}\right|=-20 d B
\end{aligned}
$$

Hence to achive -40 dB attenuation at $\omega=\omega s$ I need

$$
\begin{aligned}
Q \omega_{\phi} & =0.1 \omega_{s}=R / L \\
\omega_{\phi} & =\frac{0.1(2 \pi \cdot 100 \mathrm{~K})}{3.1622}=19.869 \times 10^{3} \mathrm{ad} / \mathrm{s}=\frac{1}{\sqrt{L C}}
\end{aligned}
$$

with $R=1$:

$$
L=\frac{1}{0.1(2 \pi \times 100 \mathrm{k})}=\underline{15.915 S \mu H}
$$

$$
\omega_{0}^{2}=\frac{1}{L C}=\left(\frac{0.1 \omega_{5}}{Q}\right)^{2}
$$

hence

$$
\begin{aligned}
& \text { e } \quad C=\frac{1}{L\left[\frac{0.1 \omega 5}{Q}\right]^{2}}=\frac{1}{15.9155 \mu\left[\frac{0.1 \times 2 \times \pi \times 100 \mathrm{k}}{3.1622}\right]^{2}} \\
& C=159.1549 \mu \mathrm{~F}
\end{aligned}
$$

The component values for the filter are:

$$
R=1 \Omega \quad L=15.9155 \mu H \quad C=159.1589 \mu \mathrm{~F}
$$

$\left|\frac{9 v}{9 x}\right|$

$\left|z_{\phi}\right|$

b) $i=\frac{P_{0}}{v} \quad R_{e q}=\left(\left.\frac{d i}{d v}\right|_{v_{x}} ^{-1}=-\left.\frac{P_{0}}{v_{x}^{2}}\right|_{v_{x}}=\left(-\frac{P_{0}}{v_{x}^{2}}\right)^{-1}\right.$

$$
R_{\text {eq }}=\left(-\frac{10}{(100)^{2}}\right)^{-1}=-\frac{(100)^{2}}{10}=-1 k \Omega
$$

\mid Req $_{I}|>\rangle \mid$ Efilt $\left._{\text {max }}\right|_{\text {hence }}$ it won't affect the filtes damping
c) $\frac{i y}{i x}=\frac{z_{c}}{z_{c}+z_{R \| L}} \cdot \frac{z_{R M}}{z_{R L}}=\frac{z_{c} \| z_{R M}}{z_{R L}}$

ZRM:
R / L
$z_{c} / z_{e / / L}$

Desied $z_{\text {RIIL }}$
$\frac{R}{L}$

$$
L_{x}<L_{1}
$$

PD. 1

Discontinuous Conduction Assume constant um= Win

$\frac{\bar{V}_{0}}{L} \Delta t=\frac{V_{i n} D T}{L} \Rightarrow \Delta t=-\frac{V_{i n}}{V_{0}} \Delta T$ (Since \bar{V}_{0} is negoline)
a) Find $\bar{i}=f\left(\bar{u}_{0}, V_{n}, D\right)$ geometrically

$$
\begin{aligned}
i_{d} & =\frac{1}{T}(\text { Area of triangle })=\frac{1}{T}\left(\frac{1}{2}\right)(\text { haw })(\text { height }) \\
& =\frac{1}{2 T}\left(\frac{-V_{\text {in }}}{V_{0}} D T\right)\left(\frac{V_{\text {in }} D T}{L}\right)=\frac{-\left(D V_{\text {in }}\right)^{2} T}{2 \bar{V}_{0} L} \bar{i}_{d}=f\left(\bar{v}_{0}, V_{\text {in }}, D\right)
\end{aligned}
$$

The average model is in Figure 2
b). $R=2 \mathrm{~N}, C=220 \mu \mathrm{~F}, L=0.25 \mathrm{mH}, V_{m}=12 \mathrm{~V}, V_{0}=-9 \mathrm{~V}$ Linearize $i_{d}=I_{d}+\tilde{i}_{d}$

$$
\begin{aligned}
& v_{0}=V_{0}+\tilde{v}_{0} \rightarrow \tilde{v}_{0}=v_{0}-V_{0} \\
& d=D+\tilde{d} \rightarrow \tilde{d}=d-D
\end{aligned}
$$

(continued)
PD. 1

$$
\text { Operating Point: } I d=f\left(V_{0}, V_{\text {in }}, \Delta\right)=\frac{-\left(D V_{i n}\right)^{2} T}{2 V_{0} L}
$$

First order Taylor expansion

$$
\begin{aligned}
& i_{d}=I_{d}+\tilde{i}_{d} \\
& \begin{array}{l}
=I_{d}+i_{d} \\
=f\left(V_{0}, V_{i n}, \Delta\right)+\frac{\partial f}{\partial d}| |_{V_{g} V_{i n}, D}^{(d-\Delta)}+\left.\frac{\tilde{d}}{\partial N_{0}}\right|_{V_{0}, V_{v n}, \Delta} ^{\left(v_{0}-V_{0}\right)}
\end{array} \\
& f_{d}+\tilde{i}_{d}=I / d-\frac{\Delta V_{i n}{ }^{2} T}{V_{0} L} \tilde{d}+\frac{\left(D V_{m}\right)^{2} T}{2 V_{0}{ }^{2} L} \tilde{v}_{0} \\
& \tilde{i}_{d}=\frac{\left(\Delta V_{i n}\right)^{2} T_{0}}{2 V_{0}{ }^{2} L} \tilde{V}_{0}-\frac{\Delta V_{n}{ }^{2} T}{V_{0} L} \tilde{d}
\end{aligned}
$$

Atoperasing point, capacitor is an open circint.

$$
\begin{aligned}
& \therefore I_{d}=\frac{-V_{0}}{R}=\frac{-\left(\Delta V_{m}\right)^{2} T}{2 V_{0} L} \Rightarrow R=\frac{2 V_{0}^{2} L}{\left(\Delta V_{m}\right)^{2} T} \\
& \frac{1}{E}=\frac{\left(D V_{m}\right)^{2} T}{2 V_{0}^{2} L} \Rightarrow \frac{2 V_{0}}{D R}=\frac{\Delta V_{m}^{2} T}{K_{2} L} \\
& \therefore \tilde{i}_{d}=\frac{\tilde{v}_{0}}{R}-\frac{2 V_{0}}{D R} \tilde{d} \quad-\frac{2 V_{0}}{D R} \tilde{\delta} \sum_{R}\left\{\frac{\tilde{v}_{0}}{R} \downarrow \subset \frac{1}{T} \sum_{-\infty}+\right. \\
& \tilde{N}_{0}=\frac{-2 V_{0}}{D R} \widetilde{d}(Z(s)) \quad Z(s)=\frac{\frac{R}{2 S C}}{\frac{t R+\frac{1}{S C}}{s R}}=\frac{R}{s R C+2} \\
& \frac{\tilde{v}_{0}}{\tilde{d}}=-\frac{2 V_{0}}{D R} \frac{R}{S R C+2}=\frac{-2 V_{0}}{s R C+2}=\frac{\tilde{v}_{0}}{\tilde{d}} \\
& \text { Open loo pole is at } \leq=\frac{-2}{R C}=-4545.45 \\
& \text { Left-hand pome, so open-loop stable. }
\end{aligned}
$$

P D. 2

$$
\begin{aligned}
& R_{\text {gghoss }}=\frac{\rho_{0 \text { ghal }} \rho}{A}=\frac{\left(100^{\circ} \mathrm{ccm}\right)(0.4 \mathrm{~cm})}{A \mathrm{~cm}^{2}}=\frac{40^{\circ} \mathrm{C} / \mathrm{W}}{A} \\
& R_{\text {Goir }}=\frac{P_{\text {ourl }}}{A}=\frac{\left(3050 \frac{0 \mathrm{ccom}}{\mathrm{wm}}\right)(1 \mathrm{~cm})}{A \mathrm{~cm}^{2}}=\frac{3050 \mathrm{ch} / \mathrm{w}}{A} \\
& T_{I}-T_{E}=P_{\text {diss }}\left(2 R_{\text {glass }}+R_{\text {oair }}\right) \\
& 25^{\circ} \mathrm{C}=\operatorname{Pdiss}\left(\frac{80}{A} \mathrm{c} / \omega+\frac{3050}{A} \mathrm{c} / \omega\right) \\
& 25^{\circ} \mathrm{C}=\operatorname{Pd}_{\text {diss }}\left(\frac{3130}{\mathrm{~A}}{ }^{\circ} / \mathrm{w}\right) \\
& P_{\text {diss }}=0.00799 \mathrm{~A}(\mathrm{~W}) \quad \text { A is in } \mathrm{cm}^{2} \\
& =0.00000799 \mathrm{~A}(\mathrm{~kW}) \\
& \frac{P_{\text {diss }}}{\mathrm{cm}^{2}}=0,00000799 \frac{\mathrm{kw}}{\mathrm{~cm}^{2}} \cdot \frac{(100 \mathrm{~cm})^{2}}{\mathrm{~m}^{2}}=0,0799 \frac{\mathrm{kw}}{\mathrm{~m}^{2}}
\end{aligned}
$$

SOLUTIONS
Problem 1:
Using method of assumed states:

$$
q(t)=1
$$

$$
q(t)=0
$$

Averaping:

$$
\left\{\begin{array}{l}
L \frac{d T_{L}}{d t}=d \bar{V}_{1}-(1-d) \bar{V}_{c} \quad \text { where } d=\overline{q(t)} \\
C \frac{d \bar{V}_{c}}{d t}=-d \bar{L}_{2}+(1-d) \bar{I}_{L}
\end{array}\right.
$$

Problem 2
(a) $Z_{\text {in }}=s L+\left(\frac{1}{s C}+R\right)$

$$
=R \frac{s^{2} L C+\frac{L}{R} s+1}{s R C+1}=R \frac{\left(1-L C \omega^{2}\right)+j \omega \frac{L}{R}}{1+j \omega R C}
$$

(b) Separating the real and imapinary part of $Z_{i n}$:

$$
\begin{aligned}
Z_{\text {in }} & =R \frac{\left(1-L C \omega^{2}\right)+J \omega \frac{L}{R}}{1+J \omega R C} \cdot \frac{1-J \omega R C}{1-J \omega R C} \\
& =\frac{R}{1+\omega^{2} R^{2} C^{2}}+J \frac{\omega\left[R^{2} C+R^{2} C^{2} L \omega^{2}+L\right]}{1+\omega^{2} R^{2} c^{2}}
\end{aligned}
$$

Trusting the correct design of the maching network:

$$
\begin{aligned}
& \frac{R}{1+w_{0}^{2} R^{2} c^{2}}=R_{s} \\
& \Rightarrow w_{0}=\frac{1}{R C} \cdot \sqrt{\frac{R}{R_{s}}-1}=2 \cdot \pi \cdot 100 \cdot 10^{3} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

(c) We will design a L-section network of the form:

The values of C^{*}, L^{*} can be easily obtained from the low-poss design by choosing these values:

$$
\left\{\begin{array} { l }
{ \frac { 1 } { S C ^ { * } } = - s L } \\
{ S L ^ { * } = - \frac { 1 } { S C } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
C^{*}=\frac{1}{w^{2} L} \\
L^{*}=\frac{1}{w^{2} C}
\end{array}\right.\right.
$$

Problem

$$
\therefore \quad \begin{aligned}
& C^{+}=45.0 \mathrm{pF} \\
& L^{*}=169 \mathrm{nH}
\end{aligned}
$$

Problem 3
(a)

(b)

$$
\begin{aligned}
& T_{J_{1} \text { max }}=175^{\circ} \mathrm{C} \\
& P_{D_{1} \text { max }}=\frac{T_{J_{\text {max }}}-T_{A}}{R_{\theta_{J C}}+R_{\theta C S}+R_{\theta c a}}=12.5 \mathrm{~W}
\end{aligned}
$$

(c) At startup we con assume $T_{J}=0$ as well as T_{s} (sink temperature).

The amount of energy dissipated in this pulse is:

$$
E_{D}=3 \mathrm{~J}
$$

Therefore: T_{s} must always remain below $\frac{E_{0}^{*}}{\operatorname{Cos}}=43 \mathrm{~m}^{\circ} \mathrm{C}$

Approximatiny: $T_{J} \approx P_{D}^{*} \cdot\left(R_{\theta J C}+R_{\theta c s}\right)+\frac{E_{B}^{*}}{C_{\theta s}}+T_{A}$

$$
\begin{aligned}
& \approx P_{p}^{*}\left(R_{\theta J C}+R_{\theta C S}\right)+T_{A} \\
& =160^{\circ} \mathrm{C}
\end{aligned}
$$

