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ABSTRACT

A general theory for transmission of finite-length packets over chanmels with inter-
symbol interference and additive Gaussian noise is developed. The theory is based on
general principles of maximum-likelihood (ML} and linear minimum-mean-squared
error (MMSE) estimation, innovations and modal representations of random vectors
via Cholesky factorizations, eigendecompositions, and information theory. Using these
principles, equivalent forward and backward channel models with desirable properties
are developed. Fundamental relations between these theories are presented; for exam-
ple, the mutual information (X ; Y') between the input X and output Y, when X is
a Gaussian vector, is equal to log{{|[Rz 2 ||/||Re e’ (|}, where | Rg z|| and [Rere]
are the effective determinants of the covariance matrices of the effective input and
of the input linear MMSE estimation error, respectively. A Generalized Decision
Feedback Equalization (GDFE} receiver structure is developed and is shown to be
canonical for arbitrary linear Gaussian channels- i.e., a reliably transmitted data rate
of I(X;Y) can be approached arbitrarily closely with this receiver structure on any
linear Gaussian channel with any input covariance matrix Rag. For optimal Rgzx,
the performance of this receiver is in aggregate the same as the well-known vector
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coding (VC) structure, but in detail the structure is quite different from VC or cther
previously proposed block DFE receiver structures.

1 INTRODUCTION

In [1], canonical minimum-mean-squared-error decision-feedback equalization
(MMSE-DFE) receiver structures for infinite-length sequence transmission have
been developed. That paper iHustrated an intimate relationship between
MMSE-DFE equalization performance and the mutual information J (X;Y)
in bits per complex symbol between channel input sequence X and output
sequence Y, given by the formula

I(X,Y) =log, SNRuMMSE-DFE (4.1)

where m,Zw._Sme-me is the signal-te-noise ratio at the decision point of an
MMSE-DFE receiver. From (4.1), it follows that the capacity-achieving trans-
mit power spectrum is the same spectrum that optimizes SNRymsE DFE.
Thus, the performance of a MMSE-DFE transmission system!, with optimized-
spectrum transmit signals and powerful coding, can approach the channel ca-
pacity of an arbitrary stationary linear-ISI Gaussian sequence channel as closely
as capacity can be approached on an ideal Gaussian channel with that same
coding - & situation called “canonical” in [1].

In many applications, however, the number of input symbols and output sam-
ples is finite; e.g., in point-to-point packet transmission when fnite complexity
or delay constraints dictate a block structure, or in multi-user packet transmis-
sion.

In these applications an appropriate channel model is a finite-dimensional ma-
trix model ¥ = HX + N, where X is a random input m-tuple, H is an n x m
channel-response matrix, and N is an additive Gaussian noise n-tuple. (All
quantities are complex.) This paper shows that on such channels the mutual
information J{X;¥) in bits per block is

IX;Y)= log, _mzmm_um.m_ s (4.2)

where SN Bgprg is an appropriately defined matrix. Furthermore, it shows

that a certain Generalized DFE (GDFE) receiver structure is canonical for such
channels.

This paper continues to call a receiver canonical if in combination with the
same sufficiently powerful coding that approaches capacity on the ISI-free chan-
nel, this canonical receiver can achieve arbitrarily low error rates for data rates

approaching the value of the mutual information (X Y') between channel in-
put and output on the ISI-channel. The mutual information that measures a

LThis MMSE-DFE actually can become several parallel MMSE-DFE’s, one for each dis-
connected band of frequencies in the capacity-achieving power spectrum.
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canornical receiver is computed under the assumption that the input statistics
are Gaussian. It should be emphasized that a canonical receiver is not neces-
sarily an optimum receiver, and indeed with no coding or with only moderately
powerful coding it may be distinctly inferior to an optimum receiver. The new
MMSE-DFE receiver structure of this paper, like that of [1], is constructed
using principles of optimum estimation theory, not optimum detection theory,
and therefore may be suboptimum when the input sequence is a discrete digital
sequence, as it always is in practice. As in [1], the point is that a receiver does
not need to do optimum detection to approach channel capacity, when it is
used in conjunction with sufficiently powerful codes.

1.1 Parallel Channels - a simple illustration

of canonical transmission

Suppose H is a square nonsingular n x n diagonal matrix and Rpn = Nol,
then the channel is equivalent to n independent “parallel” subchannels, each
with input/output relation ¥; = H;X; + N;. The signal to noise ratio on the
i** subchannel is SNR; = S, ;|H;|* /Ny with S, ; the mean-square value for the
i** element of the input vector X. For each of these parallel subchannels, the
mutual information is loga(1 + SNR;) bits per subchannel and for the set of
channels, the mutual information is easily determined as [2)

I(X;Y) = log, H;he +SNRy) . (4.3)

=1

Each of the subchannels can be independently coded with a powerful code for
the ideal additive white Gaussian noise channel so that the data rate achieved is
arbitrarily close to the mutual information. The set of such codes and channels
then has an aggregate data rate that is the mutual information for the aggregate
channel. Figure 4.1 illustrates a set of parallel channels.

The energy (values of S; ; allocated to each subchannel can be determined by
a “water-filling” solution [2] and capacity for this block-diagonal-H channel
can then be achieved with the same powerful codes that would be used on an
ISI-free white-Gaussian noise channel.

While the parallel channels example is trivial, it is also very important in
the study of canonical transmission because all the structures that this paper
derives for more general H eventually reduce to a set of parallel channels for
which the mutual information is the same as the original channel and the same
powerful codes that would be used on an AWGN channel can be applied to
achieve the highest possible data rates. This paper often uses the example of
a one-dimensional channel to illustrate various properties, which can tacitly be
inferred to be equivalent to the set of parallel channels.
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Figure 4.1 Paralle] independent channels and equivalent channel.

1.2 More general canonical transmission

Like the well-known vector coding (VC) structure (which is sh

mv.mn:m case of the GDFE) [3] -[11], the canonical OU%M structure MMW&MWW% MM
this paper (which is not the same as the DFE receiver structures of [12] -[17])
mmmnﬁ.,\m_w mmnoBﬁo@.mm & matrix (block) channel into a number r of decoupled
o:m-a_smnmpozww Gaussian subchannels with signal-to-noise Sﬂwm SNR;, 1 £
J <y, .mcnr that the sum of the component mutual informations J, = _oM (1 “_..
SNR;)} is equal to 1 (X;Y). It then follows from the channel oomwsm gmwnmg
that *..9, any rate B; < J; there exists a discrete (non-Gaussian) code of rate B,
that is capable of achieving arbitrarily low error rates on the i m:w%musmm
By using such a code on each subchannel, an aggregate rate arbitrarily QOmm,

ﬁowuﬁM\Eﬁm . . .. ..
o Q.m o v nmwzonwombvmwagmﬁﬂﬁﬁomépmr arbitrarily low probability

More mmnmn.wmw. than the VC special case of the GDFE, the subchannels in the
GDFE recelver are not completely independent, but rather are decoupled by use
of the .Mamm_ DFE assumption,” which is that the inputs to “past” subchannels
are available to the receiver when decoding the current subchannel,

It is shown that the GDFE receiver i i i
: ! €r 18 canonical even in the general i
which the input covariance matrix : hannel

Ry does not commute with th

: : n ; : e channel
no§%ﬂbnm matrix H* awam » in which case the vector coding special case is
not defined. However, the optimum Rz, which is the same for all cases of the
GDFE, always commutes with If "RpnH.

The set &. {SNR,} also differ. In the Jimit of large blocks (long packet len ths)
and stationary channels, one special case known as the “packet” GDFE Hmnm?mn
wv?.ommrmm the MMSE-DFE receiver structyre {or structures for disconnected
n.wmsms_mmﬁou bands) of [1], Cholesky factorization becomes spectral factoriza-
tion, mbn.m all SNR; tend to become equal, provided that all subchannels are
smmn_,. With ﬁ.rm vector coding special case, the {SN Ry} are distributed in water-
pouring fashion as a function of frequency and vector coding tends to what is
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known as multitone transmission [4]. However, the products of the (14 SNR;)

for the set of subchannels in both cases are the same and equal to 27 X “u\v, as
is always the case with any GDFE.

After introducing the general linear Gaussian block channel model, Section
2 discusses modal representations of random vectors based on eigendecompo-
sitions and innovations representations {or “Cholesky” factorizations), which
are the basic tools used to develop our cancnical receivers. It then reviews
general principles of linear MMSE estimation. Finally, it discusses additionat
information-theoretic properties that hold when X is Gaussian.

Section 3 begins by reducing the general channel model without loss of opti-
mality to equivalent forward and backward matrix channel models that have
many nice properties: unnecessary dimensions are eliminated, all matrices are
square and nonsingular, and the channel-response matrix is equal to the noise
covariance matrix. The operation of elimination of unnecessary dimensions
is crucial in canonical receivers and asymptotically corresponds as the packet
length increases to “symbol rate” optimization and carrier (center) frequency
optimization in each used band for the MMSE-DFE. Elimination of unneces-
sary dimensions also corresponds to selecting good frequency bands for trans-
mission in a vector coding (or multitone) transmission system as packet length
increases. The optimum ML and linear MMSE estimators are developed from
these models. When the input X is Gaussian, some interesting connections are
developed between mutual information and optimal estimation. For example,

I{X,Y) =logliRg 'z ||/l|Re-e ] , (44)

where [[Ry x| and |Rere-]| are the effective determinants of the covariance
matrices of the effective input and of the error in the linear MMSE estimate of
the input, respectively. Also,

I(X;Y) = log}SN Reprs| = log [T + SN Ry (4.5)

where SN Rgpre and SN Ry, are matrix generalizations of the usual one-
dimensional SNRs for optimum linear MMSE and ML estimation, respectively.

Using an equivalent backward channel model and the “ideal DFE assumption,”
Section 4 then develops the GDFE receiver structure and shows that it is canon-
ical.

Section 5 addresses the problem of choosing of the input covariance matrix
Rga for the GDFE to maximize I{X;Y), which as is well known is solved
by discrete water-pouring. The optimum Rgg is shown to commute with the
channel covariance matrix H*Rpj, H. Vector coding is well defined in this
situation, is also canonical, and uses the same Rz and is a special case of the
GDFE where the feedback section disappears.

Section 6 considers the passage to the limit of large blocks (long packets) for
stationary Gaussian ISI channels and illustrates that the results of this paper




84 Chapter 4

converge to the results in [1] in the limit of infinite-length packets. Further
Section 6 illustrates expanded interpretations of the results in [1] where while
the MMSE-DFE converges to a stationary structure, there could be several
such structures covering only those frequency bands that would also be used
by water-pouring transmit optimization - this clearly shows that conventional
MMSE-DFE structures such as those considered by Price [18], Salz [19] and
others [20] are too generally claimed to be optimum as proposed. However, the
necessary modifications (often not understood nor used) to restore optimality
are illustrated generally by this paper and in the limit in Section 6.

2 THE BLOCK OR “PACKET” GAUSSIAN
ISI CHANNEL

A block (or packet) transmission channel has a finite number of input samples
and output samples. Such a channel model is appropriate when a finite-length
information packet is transmitted, and detection is based on a finite number of
samples of the received signal. Usually, the term packet refers to the situation
where the samples are successively indexed in time within a block.

This section begins with a general block Gaussian ISI channel model. Two
representations of random vectors are then discussed; in particular, modal
representations based on eigendecompositions, and innovations representations
based on Cholesky factorizations. These two types of representations are the
basis of the canonical receivers to be discussed in this paper. This section
progress to discussions of MMSE linear estimation, innovations recursions, and
Gaussian random vectors.

2.1 Channel model

On a block Gaussian ISI channel, the received vector of sequence samples Y
may be expressed by the matrix equation

where X = {X;,1 < j < m} is a complex random input m-vector, ¥ =
{¥%,1 € k <n} is a complex random output n-vector, H is an n x m complex
channel-response matrix, and IV is a complex random Gaussian noise n-vector

independent of X. If n = m, the channel is square. All vectors are written as
column vectors.

All random vectors, whether discrete, continuous or Gaussian, will be charac-
terized solely by their second-order statistics. The mean of all unconditioned

random variables is assumed to be zero, since a nonzero mean costs energy but
carries no information. A random vector such as X is then characterized by
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its covariance matrix
Rex =E[XX"], (4.7)

where the asterisk denotes conjugate transpose. The rank of X is the rank r,
of its covariance matrix Rzg, which is the dimension of the complex vector
space Sx in which X takes its values. If Rz is nonsingular, then X has full
rank and r, = m, otherwise r, < m.

No restrictions are placed on the input covariance matrix Egg or on the noise
covariance matrix Rnn, except that IV is assumed to have full rank, r, = n,
so as to avoid noiseless channels of infinite capacity. Similarly, the channel-
response matrix A is an arbitrary n x m complex matrix. The signal component
of the output, namely the n-tuple

Y(X)=HX, (4.8)

then has covariance matrix HRppH*. The notation %\Cm. ) indicates that
Y(X) is the conditional mean of Y given X (see Section 2.3). The vector
space .m.u,\ of M\Cﬂ ) is the image of the input space Sx under the linear trans-
formation H, and therefore the rank r; of ¥ (X) is not greater than r,, with

equality if and only if the map H acting on Sy is one-to-one. Since X and N
are independent, the outpui covariance matrix is

w@@ = HRgyH* + Run . ‘ Ah.wv

Since N has full rank and H Rggp H* is non-negative definite, Y has full rank,
Ty =n — however, ry; < min{n, 7).

2.2 Random vectors and covariance matrix

factorizations

This section amﬁ_o@m two characteristic representations of random vectors on
which our canonical receiver structures will be based. A few preliminary re-
marks on the geometry of signal spaces may be helpful.

Geometries of vector spaces

There are two kinds of geometry that characterize a random vector such as X,
and two corresponding inner products:

1. First, there is the ordinary Euclidean geometry of the complex vector
space Sy in which X takes values. In Sy . the inner product of two
ordinary (“deterministic”} complex column vectors  and y is the ordinary
Hermitian dot product:

Y= iy, (4.10)
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where, as always in this paper, the asterisk denotes conjugate transpose.
In ordinary Euclidean geometry the squared norm of a vector « is the usual
Euclidean squared norm ||z||2, namely the sum of the squared magnitudes
[;[* of the components o, and two vectors = and y are orthogonal if their
dot product z*y is zero.

2. Second, there is the geometiry of Hilbert spaces of complex random
<m:wEwP in which the inner product of two complex random variables X
and Y is defined by their Hermitian cross-correlation

< XY >= E[XV*]. (4.11)

In Hilbert-space geometry the squared norm of a zero-mean random vari-
able X is its variance E[|X1%], and two random variables X and Y are
orthogonal if they are uncorrelated, E[XY*) =0 '

The set {X;} of components of a random vector X generate a Hilbert
space V(X) consisting of all complex linear combinations

darXi=a'X (2.12)

mm elements of X. The inner product of two elements a* X, b*X € V(X)
is

<a'X, b"X >= Bla’XX"b = a*Rgeb . (4.13)
Thus the geometry of V(X ), which is characterized by the set of inner

products between any two of its vectors, is entirely determined by the co-

variance matrix Rgz, which is the matrix of inner products (Gram matrix)
of elements of X.

Charateristic Representations
Characteristic representations will enable the design of canonical receivers:

Definition 1 (Characteristic representation of a random vec-

tor) A characteristic representation of a random m-tuple X is a
linear combination

X =FV=3"Vif;, (4.14)
i

where {V;} 4s a set of uncorrelated random variables—i.e., the covari-
ance matriz Ryy is diagonal- and F is g square matriz with determi-
nant |F| = 1.

The covariance matrix of X is then

Rex = E[FVV*F*] = FRyp F” . (4.15)
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Thus characteristic representations of the form X = FV are closely related to
covariance matrix factorizations of the form Rgpy = FRypF*, where |Fi=1
and Ryyp is diagonal. Indeed, given such a factorization, define V = F-1 X ;
then V has the diagonal covariance matrix Rypy that occurs in the factorization
and X = FV,

Since F is nonsingular, it is rank-preserving; i.e., the rank of V is equal to the
rank of X, r, = r,, which implies that precisely r, of the random variables
V; are not identically zero. Since every element a*X of V(X) is a linear
combination of these rx nonzero random variables V; via

aX=aFV, (4.16)

it follows that V(X) = V(V) and that these r, nonzero random variables
V; form an orthogonal basis for V(X), whose dimension is thus also equal to
rz. The r; corresponding complex vectors f ; generate the deterministic r,-
dimensional Euclidean space Sy, although they are not necessarily orthogonal
inS X - .

Finally, the unimodular condition |F| = 1 implies that F and its inverse F—!
are volume-preserving transformations, provided that X has full rank. In other
words, F is determinant-preserving:

|Rza| = |F||Ryv||F*] = |Ryo] . (4.17)

However, if X does not have full rank, then F is not necessarily a volume-
preserving transformation from the r.-dimensional subspace Sy that supports
the 7, nongero random variables {V;} to the r.-dimensional subspace Sy that
supports the random vector X. There are two types of characteristic represen-
tations of interest:

Modal representations

A covariance matrix Rgg is square, Hermitian-symmetric, and nonnegative
definite. Such a matrix has a (nonunique, in general) eigendecomposition

Rex = UNU* = (UA)(UA,)" (4.18)

where U is a unitary matrix (UU* = U*U =1, s0 U™} = U* and |U| = 1)
and A2 is a nonnegative real diagonal matrix whose diagonal elements are the
eigenvalues of Rypg. The set of eigenvalues is invariant in any eigendecomposi-
tion. The last expression shows that A, may be regarded as a square root of
NNH.H .

Correspondingly, if the modal variables M are defined by

M=UX=UX, (4.19)

then Bpym = U*RgzU = A and X = UM, where [U| = 1. Thus any
eigendecomposition of Rz leads to a characteristic representation of X, called
a modal representation.
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Since the columns u; of a unitary matrix U are orthonormal, a modal repre-
sentation
X =UM=Y Mu;, {4.20)
k]

has the desirable _.z.ovm:w that the r, vectors u; corresponding to the ry
nonzero modal variables M; form an orthonormal basis for Sx; ie., both
kinds of orthogonality occur in a modal decomposition.

Consequently, a unitary transformation is length-preserving; that is,
WUm|? = m*U*Um = m*m = [m|? . (4.21)

A fortiori, U is volume-preserving regardless of whether X has full .Hmbw.

Example 4.1 (Modal Representation Example) Let X be a
random vector [X1, Xp]* with covariance matrix

Rzg = W & " (4.22)

s.%mwm @ and b are real and 0 < |b| < a. Then, |Rzx| = a® — b2, the
eigenvalues of Ry are a + b and a — b, its eigenvectors are uwmﬁ 1)*

mz.sa i,WIm_IH:J and its rank 7, is 2 unless |b| = @, when r, = 1. An
eigendecomposition of Rgy is thus

_ [/ 212 a+b 0 2-1/2 5-1f3
Rex = _Hwiﬂ\w 9-1/2 g ﬁ 0 leu_ —,‘lmlw\w Mlu\wg ﬁhmwv

and a modal representation of X is

Xy _ f2l2 —om2) rag

X ~ [o-1/2 MIH\N a _HEMQ H Akwhv
S?.&,m M; = &CD + X3) has variance a + b, My = &CS ~ X1) has
variance a—b and My and Ms are uncorrelated. If b — a, then X; = X,
and M, = v/2X,, M, = 0, whereas if b = —a, then X, = —X; and
M =0, gm = V2X;. Note that if & = 0 then Rggz = U(aD)U* for
any m.x 2 unitary matrix U, so there is a family of eigendecompositions
of which the one given above is only one member.

Innovations representations

Alternatively, a covariance matrix Rz has a unique factorization of the form
Req = LDIL* = (LD,)(LD,)" | (4.25)

;&mﬂ L is a lower triangular matrix that is monic (i-e., which has ones on
the diagonal, so |Lf = 1) and D? is diagonal. This factorization is called the
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Cholesky factorization of Rz, and the diagonal elements of D2 (which must
be real and nonnegative, with r, of them nonzero} are called the Cholesky
factors of Rgpg. The matrix LD, is another square root of Rax.

Correspondingly, the innovations variables W are
W=L7X, _ (4.26)

and Rypw = L *RgaLl™ = D? and X = LW, where |L} = 1. {Here L—*
denotes (L71)* = (L*)}~!.) Thus, the Cholesky factorization of Rgg leads to a
unique characteristic representation of X, called the innovations represen-
tation.

Since L is lower triangular, the innovations representation

X=LW-= M_S\u.hu. s AA.M.NV

7

has the desirable property that, for any &, the first ¥ components of X depend
only on the first k components of W (and, since L™! is also lower triangular,
vice versa). From a dynamical point of view, an innovations representation
thus has a kind of causality property, which is important when the sequential
ordering of the components of X is important. Also, in matrix terms, this
property implies that a Cholesky factorization has a nesting property that
leads to recursive implementations. Again, the r; columns I; corresponding to
the r; nonzero innovations variables W; span Sy, although they are not in
general orthogonal.

The Cholesky factorization of Ry and corresponding innovations representa-
tion of X depend very much on the ordering of the components of X. If X' is a
permutation of X, then the innovations representation of X' and its Cholesky
factors will be different (although because of the invariance of the effective de-
terminant, the product of the nonzero Cholesky factors will be unchanged). In
particular, if X' is the reversal of X, then the Cholesky factorization of Rg gz
can be permuted to give an upper-diagonal-lower factorization of Rgay of the
form
. Rgz = (L'y (D)L, {4.28)

where (L')* is upper triangular, and a corresponding reverse innovations rep-
resentation of X is then obtained:

X = (LYW’ (4.29)

Example 4.2 (Innovations Representation Example) Again
let X be a random vector [X1, Xa]* with covariance matrix

Rope = ﬁ w_ , (4.30)

LY
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with @, b real and 0 < |b] < @. Then the unique Cholesky decomposi-
tion of Rpg is

|1 0]]a 0 1b/a
Raz = T\a L _Ho ADNIWNV\L T 1 g ’ (4.31)
and an innovations representation of X is
Xi|_J10][w
(%)= [oaS] (2] @

where W1 = X has variance a, W, = X, — {¢/a)X; has variance
{(a® - b)/a, and W, and W; are uncorrelated. If b = a, then X; = Xz
and Wy = X1, W3 = 0, whereas if b = —a, then X; = —X; and again
W1 = X1, Wa = 0. Note that when X does not have full rank, this
map between the one-dimensional spaces Sy and Sy is not volume-

{length-) preserving. But note that even when b = 0, the Cholesky
decomposition is unique.

2.3 MMSE linear estimation

Suppose that the Hilbert space V(X) generated by the elements of X is a

subspace of a larger Hilbert space V(X)*, and that the complex scalar ¥ is
a awbmoa variable in V(X)*. Then by the projection theorem, the closest
variable to Y in V(X)) is the projection of ¥ onto V(X), denoted by Yjz.

By the orthogonality principle, the projection Yz is the unique element of
V(X)) such that the estimation error
E=Y-Yg (4.33)

is orthogonal to (uncorrelated with) all elements of V{(X), or equivalentiy to
all elements X; of X. Since Yy is some linear combination of elements of X ,
Yz = a* X, this implies that for all &

SXLE>=< XY > - < Xa" X >=< X;,Y >~ < X3, X >a=0.
Equation (4.34) for all { may be written as a matrix equation “sy
AuﬁhVHAkaVlA.N“Nvauq.aﬂlmeaanov (4.35)
where rgy =< X,Y > is the column vector with components < X;,Y >=

E[X;Y*], and Rzz is the covariance matrix < X, X >= E[XX"]. When
Rgz is nonsingular, this determines a unique solution for a:

a=Rghrey . (4.36)
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¥(X) =¥,

Figure 4.2 Orthogonality of MMSE linear sstimate and error.

More generally, @ may be uniquely determined by using an orthogonal basis
for V(X} with r, elements, as discussed in Section 2.2.

To say that Y|z is the closest variable to Y in V(X)) is to say that the variance of
the difference variable E =Y — Y|z is a minimum over all linear combinations
of elements of X. Therefore ¥|g is called the minimum-mean-squared-error
(MMSE) linear estimate of ¥ given X, and is alternatively denoted by

V(X) =Yg . (4.37)

From the above development, any random variable ¥ may be written uniquely
as

Y=Y(X)+E, (4.38)
where ¥'(X) is in V(X) and E is orthogonal to all variables in V(X). This
is illustrated by the right triangle of Figure 4.2. By the Pythagorean theorem
for Hilbert spaces, the variance of ¥ is the sum of the variances of Y{X) and
E. The estimation error variable F is zero if and only if Y € V(X). Since the
mean of E is zero and E is orthogonal to X, ¥(X) is the conditional mean of
Y given X.
The above development generalizes straightforwardly to a set Y = {¥j} of
random variables Y;. The MMSE linear estimate of ¥ given X is the vector

Y(X)=Yg (4.39)

of MMSE linear estimates ¥;(X)} = !X, so ¥(X) = A*X for some matrix
A. The components E; of the estimation error vector

E=Y -Y(X) (4.40)

are each orthogonal to all components of X, and thus E satisfies the matrix
equation

<X,E>=<X,Y>—-<X,X>A=Rgy-RegA=0, {4.41)
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which yields the solution A = mmwme@ when Rgg is nonsingular. 2

The orthogonality illustrated in Figure 4.2 continues to hold, since Y(X)isa
vector of elements of V(X), while E is is vector of elements that are orthogonal
to V(X). However, the “Pythagorean theorem” now becomes

Ryy = A*"Rzaz A + Ree ; (4.42)

Le., the covariance matrix of the diagonal is the sum of the covariance matrices
of the two sides of the right triangle.

The covariance matrix Ree of the minimum mean square linear estimation
- . + &t » -
error E is minimum in every sense. Let Y (X) = B*X be an arbitrary linear

estimate of ¥ given X, and let E' =Y — w\_ﬁ.ﬂq ) be the corresponding error
vector. Then since Y = A*X + E, it follows that E’ has the orthogonal
decomposition

E'={A"-BYX+E=CX+E, (4.43)
where C* X is in V(X)) and F is orthogonal to V{X). Consequently
Reer =C*RpaC + Hee , A&.Ahv

where both C* RgzC and Ree are nonnegative definite covariance matrices. It
follows that Bee is “less than” Re.e: in every sense; its determinant is less, its
trace is less, its eigenvalues are less, its Cholesky factors are less, and so forth.
For any vector @, the variance of the linear combination a*E' is not less than
that of a* E, since

Ela*E'(E')Y*a] = a*Rere'a > a* Reea (4.45)

by the nonnegative definiteness of C* Ry C. Indeed, the nonnegative definite-
ness of a Hermitian-symmetric square matrix A is sometimes denoted by A > 0;
in this notation, one may write

.wm.m\ — mmm > 0 , Or ﬁh.%mv
Re'er > Ree - (4.47)

It follows that for any optimality criterion based on error variances, the vector
MMSE linear estimate is optimum among all linear estimators.

2.4 Innovations representations via recursive
MMSE prediction

The innovations representation of a2 random vector X may be developed by
sequential MMSE linear prediction. Let X (j — 1) denote the “past” relative to

2The inverse may be replaced by any one of many generalized inverses when Rpg is
singular, see [21].
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a component X; of X; ie,
X(j - 1) = {Xalk < 5. (4.48)

The MMSE linear prediction of X; given X(j — 1) is then the projection
Xt X (j—1)» and the 7% innovations variable W; may then be defined as the
prediction error

Wi = X; = X;lx 0 - (4.49)

By the orthogonality principle, W} is orthogonal to the past space V(X (j—1));
however, V(X(j ~ 1)) and W, together span V(X(5)). It follows that
V(W {5} = V(X (5)), and thus that the elements of W are orthogonal (uncor-
related). An innovations variable is zero if and only if it is in the past space
V(X(j -~ 1)). Since X X (j—1) may be expressed as a linear combination of
the elements either of X (j - 1) or of W (j — 1), the prediction error equations
may be expressed in matrix form as either

W=L"X, (4.50)

ar
X=ILwW, (4.51)

where L and L™! are both lower triangular and monic. Then
Ryz = LRaywlL” , {4.52)

is the Cholesky factorization of Rpg since such a factorization is unigue.

2.5 Gaussian random vectors

Heretofore random vectors X have not been assumed to be Gaussian, How-
ever, Gaussian random vectors have particularly nice properties. In particular,
information-theoretic quantities are simple functions of the second-order sta-
tistics (covariance matrices) of Gaussian random vectors. Therefore in a model
in which only second-order statistics are given, it is often helpful to analyze the
case in which all variables are Gaussian; this usually simplifies the analysis and
yields structures and bounds that are useful for the general case.

The probability distribution of a zero-mean complex Gaussian random vector X
is completely determined by its covariance matrix Rpg. If Rey is nonsingular,
then
* el
pz(X) =77"|Rgz| e~ X Bz X (4.53)
The separability property of this distribution implies that uncorrelated
Gaussian random variables are independent.

More generally, as shown in Section 2.2, given Rgyg, a Gaussian vector X may
be expressed as a linear combination X = FV of r; nonzero uncorrelated and

- o
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thus independent Gaussian random variables V;. ¥ F is unitary, then this map
from Sy, to § X 1s volume-preserving.

Iy wsm X are jointly Gaussian, then it is straightforward to show that the
MMSE linear estimate Y (X) is actually the unconstrained MMSE estimate of
Y given X, since ¥ may be written as

Y=Y(X)+E, (4.54)

where E is a Gaussian random vector that is independent of X

As shown in (2], the differential entropy of a complex Gaussian vector X of
rank r; with nonsingular covariance matrix Rag is

R(X} = r; log, we| Rz (/™ . {4.55)

More generally, since the differential entropy is invariant under volume-
preserving transformations, and a modal representation X = UM is volume-
preserving regardless of whether X has full rank, the differential entropy A{X)
is equal to A(M), where M is a set of independent complex Gaussian variables
M; with variances yw equal to the eigenvalues of Rza. Thus

h{X) = h(M) = 3" 10g, meX? (4.56)
JeJ

where the sum is only over the set J = {71 A% > 0} of r; indices corresponding
to the r, nonzero eigenvalues of Bzz. In other words,

h(M) = r, log, wel{ Rmm |/ | (4.57)

where || Rmm| is the effective determinant of the diagonal covariance ma-

trix Ry

Definition 2 (Effective Determinant) The effective determinant
of a matriz is the product of its nonzere eigenvolues,

IBmml|l =[] 2. (4.58)

JEd
Monm that |Bmm||*/™ is the geometric mean of the nonzero eigenvalues of
Tz

.mm:nm. __mdsqaz is the product of the nonzero eigenvalues of Ryg, ||Rmm (| is
Invariant in any modal representation of X. Therefore |Rmp || = I Rzxll,
and the differentia] entropy of X is equal to

h(X) = r; log, me|| Ry || . (4.59)
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Example 4.8 (Two-Dimensional Example continued) Again
let X be a random vector [X}, X3]* with covariance matrix

Rz = ﬁ 2 ‘ (4:60)

with e, brealand 0 < |b] < a. The eigenvalues of Ry are (a+b, a—b},
and the rank r; is 2 unless 5| = a. The effective determinant of Rzg
is thus equal to

_ [1Raz|=a’ -8 if|b| <a
IRag| < { Hael 2ol =¥ 1 <o (461)

Note that the effective determinant is equal to the product of the
Cholesky factors of Rpe when X has full rank, but not when r; = 1,
Note also that there is a discontinuity in the differential entropy A(X)
as |b| =+ «. This discontinuity often occurs when Rzz is optimized
as in Section 6. These discontinuities leads to “symbol-rate” and
“center-frequency” optimization for each used frequency band in the
stationary case.

The differential entropy of any random vector X with covariance matrix Rpq
is upperbounded by the differential entropy of a Gaussian vector with the same
covariance matrix:

R(X) < 1 log, meljRzz |}/ | (4.62)

with equality if and only if X is Gaussian. The maximum entropy inference
principle therefore suggests that if only the second-order statistics of X are
known, then X should be presumed to be Gaussian. The effective determinant
(Raell determines the differential entropy h(X) of this presumed Gaussian
density.

Since the mutual information between the input X andoutput Y = HX + N
of a Gaussian ISI channel may be written as

I(X;Y)=H(Y)- H(Y/X), (4.63)

and the conditional differential entropy H (Y/X) is equal to h(IN), it follows
that the mutual information is maximized for a given Ryy when Y is Gaussian,
which in turn occurs when X is Gaussian.

These information-theoretic relations can be used to develop many determinan-
tal inequalities, as shown by Cover and Thomas [2]. For example, Hadamard’s
inequality, which will be needed below, states that if R is a covariance matrix
{a square Hermitian-symmetric nonnegative-definite matrix), then

|RI < [T & (4.64)
i
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with equality if and only if R is diagonal. For, suppose that X is a Gaussian
random vector with covariance matrix R; then Hadamard’s inequality follows
from the information-theoretic inequality

R(X) =3 AX1Xy, 0 X 1) € D0 R(XG) (4.65)
J Fi

where equality holds if and only if the components X j of X are independent.

3 EQUIVALENT CHANNEL MODELS,
LINEAR ESTIMATION, AND MUTUAL
INFORMATION

In this section, given a linear Gaussian channel model ¥ = H X + N, equivalent
forward and backward channel models that eliminate singularities and have
many other nice properties are developed. Using these equivalent models, a
number of relations are obtained between ML estimation, MMSE estimation,
and mutual information (when X is Gaussian). In Section 4, the equivalent
backward channel model will be used to develop the canonical GDFE receiver
structure.

3.1 Forward and Umowﬂmda channel models

Given two random vectors X and Y, either may be expressed uniquely as
the sum of its MMSE linear estimate given the other and an orthogonal error
vector:

Y=Y(X)+F=A"X +F, (4.66)
X=XY)+G=BY +G, (4.67)
where A and B are matrices to be determined, and F and G are orthogonal to

V(X) and V(Y'), respectively. The estimation error vector F is the innovations
vector of ¥ given X, while G is the innovations vector of X given Y.

Suppose that the forward channel model
Y=HX+N (4.68)

is given, where IV is independent of X, so IV is orthogonal to V{(X). Then
since the decomposition ¥ = A*X + F is unique, # X must be the MMSE
linear estimate Y{X} of Y given X, and N must be the estimation error or
innovations of Y given X.

The alternative representation above is then called the backward channel model,
which may be written with the notation

X=XY)+E=CY +E, (4.69)
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Y=HX+N R,=HR,H +R,, X=CY+E R,=CR C+R,

(EHC)Y

) 4

HR=HCY

L H

Y=py

Figure 4.3 Pythagorean relations for forward and backward channel models.

where C'Y denotes the MMSE linear estimate X(Y) of X given Y, and E =
X — X(Y) is the estimation error or innovations vector of X given Y. Thus,
B=Cand G=E.
Figure 4.3 shows how the two Pythagorean representations of the forward and
backward channel models may be combined, in two different ways. Thus in the
forward channel

Y(X)=HX =HCY + HE (4.70)

is the sum of the orthogonal vectors HCY € V(Y) and HE € V(Y)*, and
N=(-HC)Y - HE. (4.71)

is also the sum of two orthogonal vectors. Similarly, in the backward channel
there are orthogonal decompositions

X(Y)=CY =CHX +CN (4.72)
E=(I-CH)X ~CN, (4.73)
where CHX, (I - CH)X € V(X) and CN € V(X)1. All right triangles are

geometrically similar; the “angle” between the two spaces V{X) and V(¥) is
determined by the cross-correlation matrix Bpy =< X, Y >.
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3.2 Canonical forward and backward channel

models

The principles of Section 2 and of optimum estimation theory are now used to
reduce the general channel models of the previous section to canonical forms in
which extraneous dimensions are eliminated, and which have other nice prop-
erties.

Definition 3 (Canonical Channel Model) 4 channel model ¥ =
HX + N is canonical if H is square, Rpg and Rpn are nonsingular,
end furthermore Rnn = H, which implies that H is a positive definite
Hermitian-symmetric matriz.

Our first observation is that any part of the input X that lies in the right null
space (kernel) of H may be disregarded. In general, the matrix H defines a
linear transformation H: C™ — £™ from the input space C™ of all possible
complex m-vectors to the output space C™. The right null space of H is the
kernel K C C™ of this transformation.

Any & € C™ may be written uniquely as
=g T TigL, A#ﬂﬁv

where 2| g is the projection of x onto K and x| g1 = & — |k is the projection
of = onto the orthogonal space K+ to K. The signal component of the channel
output then depends only on g1, since

Hx = E‘H_Nb » . Tm.ﬂmu

independent of x|k, since Hzjg = 0. Thus, the input is effectively Typt,
and i does not affect the channel output. The projection x5 will be called
the undetectable part of the input z, and z ;g1 will be called the effective
input.

If the input is a random vector X with covariance matrix Rx2 and signal space
Sx € (™, then X may similarly be decomposed uniquely into

X=Xig+X', , (4.76)

where Xk is an undetectable input random vector defined on the space K N

Sx, while X =X (x4 is an effective input random vector defined on the
effective input space Sy = K ins % - The probability density of the effective
input X' and its covariance matrix Ry are induced from those of X by this
definition,

The output signal then depends only on X':
HX =HX' . (4.77)
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The linear transformation H: Sx+ — .wu.\ is one-to-one over these spaces

(but is not necessarily one-to-one on the larger spaces C™ — C7), and the
signal space ,wuv is the image of Sx+ under the transformation H. It follows
that Sy and ,wu.\ both have the same dimension, which will be called the
effective rank of the channel and denoted as ry. This rank often is less than
the input or output dimensionality of the criginal channel matrix H, so that
ry = ryr < min{n,t;) and r; < rp; < m. Strict inequalities in fact often
apply for optimized covariance Hpg as shown in later sections. Thus, both
X' and Y(X) = HX = HX' have a dimensionality associated with the
with V(X'), that is rank r; = r,. Clearly only the ry-dimensional effective
input X' =X |k + can convey information through the channel, and any power
applied to the (n — r;)-dimensional undetectable part X g is wasted.

Since Rz has rank ry, the effective input X' may be represented as
X'=UM', (4.78)

where U is an n x n “unitary” matrix and is therefore an volume-preserving
transformation, regardless of whether X' has full rank (ry = r;» = m) or not
(rg <tz €£m),and M ' is a set of random variables with covariance matrix
Rmim:. It may be desirable for the elements of M’ to be uncorrelated, in
which case (4.78) becomes the modal representation of Section 2.2. The rank

and effective determinant of Ry - are then the same as those of Rg z:

Tm' =¥z =Ty, AﬁANGV
| Rzl - (4.80}

| B rme |l

The identically zero components of M and the associated columns of I/ may
be eliminated to obtain an equivalent one-to-cne volume-preserving transfor-
mation from M € C" to X' € Sy :

X' =U'M. (4.81)

Then M has full rank r;;, and the determinant of Rpmm is equal to the effective
determinant of Rypromr:

M =T =g = q.ﬁ.w ﬁ#.mwu

|Rmm| = [Bmmd| = |[Re 2| - (4.83)

Although the matrix U' is not square in general, the map U’ remains a one-
to-one volume-preserving transformation from ™ to Sy . It is clear that

estimation of M is equivalent to estimation of X'. Because M is full rank,
then any characteristic representation of Section 2.2 in the form

M=FV (4.84)
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will have a volume preserving F of rank T3 = m = r,. A convenient form
of the GDFE for H corresponding to stationary scalar channels will use the
innovations decomposition in Section 4 while vector cading in Section 5 will
use the modal decomposition.

The forward channel model may now be written as
Y=HUM+N=GM+N, {4.85)

where M is a complex random rg-vector with a covariance matrix Rmm that
is positive definite and thus invertible, and IV is a Gaussian noise vector inde-
pendent of M with nonsingular covariance matrix Ran.

Finally, a series of information-lossless linear transformations may be applied
to the channel output ¥ to obtain the final form of a canonical model. First,
let S be any square root of Rpn;ie, let § be an invertible square matrix such

that Rpp = 58*. Then the invertible noise-whitening matrix S~ applied to
Y yields the equivalent model

Y =85y =5T'GM + S 'N=G'M+N', (4.86)

where N' = SN is a Gaussian noise vector with an identity covariance
matrix,

Rnn: =S RppS~*=1T, (4.87)
and G’ = S'G = STLHU'. The principle of the sufficiency of matched
filtering may be applied: in the presence of white Gaussian noise, the outputs
of a bank of matched filters matched to the responses of each input M; (the

columns of G') form a set of sufficient statistics for the detection of M. In
matrix notation, this set of outputs is the r,, = ry-dimensional vector

NHAQ.VJ\.HAQHV§Q\§+AQ_V*2~Hmu§+21“ (4.88)
where the r,, x r,, full-rank positive-definite matrix R ¢ is
.m.w — AQJ*Q‘ — Aqau*m*.m.ln.m‘lumq‘ - ﬁqsvxmnmm\wﬂmq\ ﬁﬁwmv

a Hermitian-symmetric matrix, M is a set of Ty = T uncorrelated random
variables with nonsingular covariance matrix Bmm, and N’ is an independent
Gaussian noise vector with covariance matrix

Bnine =(G') Rpn G' = (G')*G' = Ry . {4.90)

Thus the noise covariance matrix is equal to the equivalent channel-response
matrix Ry. This yields our desired canonical forward channel model. This
construction is summarized in Figure 4.4.

In summary:
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channel- N Rpn

response rank n

X = HX ¥ Y z
KlV_M“ o H + st S EU -
n T,
R noise m
- et onsng
m m cank ry,
original channel
equivalent forward channel

Figure 4.4 Construction of canonical forward channel model.

Theorem 4.1 {Equivalency of the Canonical Forward Chan-
nel Model) Let Y = HX + N, where HX has rank v, = ry and
N is @ full-rank (r, = n) Gaussien random vector independent n.q X.
Without loss of optimality, an equivalent forward channel model is the
ical model

comonical Z=R;M+N'"", {4.91)
where the channel-response matriz Ry is @ square T, Xy, full-rank co-
variance matriz, the input M is a full-rank ry-vector with nonsingular
covariance metriz Rmm, and the noise N'' is a full-rank Gaussien
ry-vector independent of M whose covariance matriz Rpim i5 equal
to Ry. There is a one-to-one volume-preserving map from M to the
effective part X' of the input X, and

Tzt =T = 75 S 1y | Rzox || = [Rmm| - (4.92)
The oulput Z is a sufficient statistic for detection of M or of X',

and consequently the mutual information between input and output is
the same in both models:

I(M;Z) = I{X";Y) = I(X;Y) bits/block. (4.93)

Since all r; x ry matrices are nonsingular, it is possible to solve m.xw_wnx_w for
the corresponding backward channel model. The MMSE linear estimate of M
given Z is M(Z) = RyZ, where the matrix R, is determined by

Since

.NwNSs = mﬁNg;_ = m%mﬂ;sw . ﬁhwuu
Rzy = E(ZZ"]| = R{RmmR; + Ry = Rt Rmm(Rysm + By) ,{4.96)

N
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Ry is determined by the following fundamental formula:

.mvlu = ﬁs + R; . (4.97)

This moHEE.m shows that Ry is Hermitian-symmetric, R} = Ry. Also, it shows
that as aw.m input covariance By becomes large, Ry tends to the inverse of
By, meaning the noise/errors E and N'' can be ignored.

Hrm nn.émﬁmbom matrix Rz z is most easily determined from the following rela-
tionships between the four matrices Ry, Ry, Rmm and Rz 5:
M.wNN = mhmaamwlu = .mwwl»?.w:.m.m . memv

Since the covariance matrix ERee of the estimation error vector E = M — Ry Z
satisfies

Bmm = ByRz2 Ry + Ree = EmmBsRy + Ree (4.99)

it ».o_mog.a that in the equivalent backward channel mode} the noise covariance
matrix is again equal to the backward channel-response matrix:

Ree = Rmm — Rmm&BsRy = Rmm(R;' - B;)Ry = R, . (4.100)

In summary:

Theorem 4.2 (Equivalency of the Backward Canonical
go.amc Under the same conditions as in Theorem 4.1, there is an
equivalent canonical backward channel model

M=RZ+E, (4.101)

where Ry is a square nonsingular Hermitian-symmetric channel-
response matrix

Ry = (Ryym + Ry)™", (4.102)

Z is a random “backward input” ry-vector with nonsinguler covariance
matriz

Bzr = m»mssmelw = .mwlumss.mw.m s AA.HGM.V

and M is a Es.&.oﬁ ErTOT T, = Ty -vector uncorrelated with M whose
covariance matrit Ree is equal to the channel-response matriz Rj.

Example 4.4 (Parallel Channels: Example) Let the forward
n.ww:nm_ correspond to the previous “parallel channels” model of Sec-
tion 1.1 and so any of the subchannels (with normalization of gain to
o_..bmv mm.mb ideal one-dimensional complex Gaussian channel ¥ = X+N
with signal and noise variances S, and Sr., respectively. The corre-
sponding equivalent canonical forward channel model for any such
subchannel is

Z=5Y =S7'X + SN = RyM + N, (4.104)
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where By = S;!, M = X with Ry = S,, and N'' = S7IN
with Sprnw = S;1 = Ry. The corresponding equivalent canonical
backward channel model is

X=M=RZ+E, (4.105)
where

By = (Rmm + By) ™! = (871 +877)7" = 8250 /(82 + 5n) ; (4.106)

Rzz = RiRmmB; ' = (5: + 5.)/5% ; (4.107)
.mmm = mWo = .Wa.wa\ﬁ.m‘u + .m:v . Ahuomv

If any of the one-dimensional channels (or subchannel} had S, = 0,
then the reduction procedure from X to M would have resulted in
this channel being eliminated from the sef in the cancnical forward
and backward realizations, which would then consist of r,,, subchan-
nels corresponding to those with nonzero input energy. A subchannel
with i; = 0 would also suggest that the corresponding S; ; be set to
zero and eliminated - that is that dimension is in the kernel KNSy
of H and so is eliminated. Thus the models in (4.105) and (4.106)
correspond to only the used subchannels from the parallel set.

Thus the eguivalent canonical backward channel model is similar to the for-
ward model in that it is square, nonsingular, and has noise covariance equal
to the channel matrix. It differs in that the elements of Z are not in general
uncorrelated, and the “noise” E is not in general Gaussian; furthermore, E is
merely uncorrelated with Z rather than independent of Z. This is not surpris-
ing, since nothing in the derivation of the backward model depends on Rmm
being diagonal, N'' being Gaussian, or N'' being independent of (rather than
merely uncorrelated with) M.

By rederiving the forward model from the backward model, or by direct sub-
stitution, one may obtain the symmetrical relations

R;' =Rz} + R (4.109)
Rmm = m,m«umﬂ = R;'RzzR; . (4.110)

Many other matrix relations follow easily. In particular:
RiRy=1-RsRzy =1~ Ry Py ; (4.111)
RyRy=I-Rz5R;=1-RiRpim (4.112)
Ry'R;' =I+R;'Rzy =1+ RpmR;; {4.113)
RIR,' =TI+ R;'Rpym =T + RZLR;" . (4.114)
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Example 4.5 (Parallel Channels continued) For the ideal one-
dimensional channel (or any of the used subchannels in the parallel
set), these relations become

“1p- Sn
RIR =14 ok (4.116)

From these equations, one may obtain the determinantal relations

| — RgRy| = |I — RyRy| = |Ry|/|Rzz|

= |By|/|Bmim] 5 (4.117)
|RsRs|™ = |RyRy|™' = {I + R, *RzL (4.118)
= I+ RpmB;

=|I+R;'Rmml| = I + Rzz Ry Y . (4.119)

Using these relations, one may verify that all the right triangles shown in Figure
4.4 are in fact similar, if the squared length of each side is identified with the
determinant of its covariance matrix; the ratio of the squared lengths of the
long side to the hypotenuse is always |B;Rsf, and the ratio of the squared
lengths of the short side to the hypotenuse is always [T — Ry R;|. (Note again
that here the “Pythagorean theorem” involves the sums of covariance matrices,
not of their determinants.)

The forward and backward equivalent canonical channel models are two
completely equivalent ways of specifying the joint probability distribution
P \N?:;Nv, The forward model corresponds to specifying first M, then Z
given M i.e., to specifying Py, ,5(m, 2) as the product ﬁgnsvﬁs\zﬁu_sv.
The backward medel corresponds to specifying first Z, then M given Z; i.e.,
to specifying Py, 7 (m, z) as the product ENANVEE\Nﬁg_NV.

In the forward channel, the conditional probability o, \EAN_SS is specified by
an independent Gaussian noise variable N’ via Py ny(z|m) = Py (2—Rym).
¥ M and therefore Z and E are Gaussian, then a similar separation formula
holds in the backward channel.

3.3 ML and MMSE estimation
ML Estimation

Given an output y, a maximum-likelihood (ML) estimator chooses the input
z € C™ that maximizes the likelihcod Py, /xle) = Pyly — Hz). Since
Hz = Hz', where x’ is the effective part of the input, all that an ML esti-
mator can actually do is estimate the effective input =’ € Sx+ C C™, or the
corresponding 7., = ry-vector m such that ¢ = U'm.
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Figure 4.5 Similar right triangles.
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Theorem 4.3 (The ML Estimator and Zero-Forcing Equal-
izer) The ML estimates of X' or M from Y or Z are

M(Z)=R;'Z; (4.120)
X'(2)=U'M(Z)=U'R;'Z . (4.121)

Proof: Since Z = Ry M+ N " is a sufficient statistic for estimation of
X’ or M from ¥, there is a one-to-one map between Sz or Sy = O™
and §; = C™. Since Py, (z — Rym) is maximized for the m such
that z = Rym when N'' is Gaussian, then the theorem follows.
QED.

In other words, the block ML estimator simply computes the unique
{effective) input that would give the observed matched-filter output
vector Z in the absence of noise. For this reason the ML estimator is
sometimes called a zero-forcing equalizer.

The ML estimation error is
E=M-M(Z)=M-R;'(RyM + N")=R;'N" (4.122)

a Gaussian random vector with covariance matrix m..wum::a:mwu = N.ﬂf

ML Detection

It is important to distinguish an ML estimator from an ML detector, the latter
of which is optimum for discrete uniform input distributions on M. The ML
estimator is only “optimum” when the input distribution for M is continuous
uniform, which never occurs in practice. However, for some choices of receiver,
an ML estimator followed by an ML detector designed only on knowledge of
coding applied to M (and therefore not using any knowledge of the channel) to
be optimum. The vector coding methods of Section 5 illustrate this property.

MMSE Estimation and MMSE Egqualization

As observed in Section 2.3, for any optimality criterion based on error vari-
ances, the vector MMSE linear estimate is optimum among all linear estima-
tors. Therefore, without more precisely specifying the optimality criterion, the
linear MMSE estimator of X given ¥ (or the MMSE equalizer) may be de-
fined as the vector MMSE linear estimate X (Y') = CY. The linear estimation

error vector E = X — X(Y') is then minimized in every sense among linear
estimators.

Theorem 4.4 (MMSE Estimator and MMSE Equalizer) The
MMSE estimator is given by

M(Z) =R,Z ; (4.123)
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X'(Z) = U'M(Z) : (4.124)
=URZ . {4.125)

In other words, the block MMSE estimator simply computes the unigue
(effective) input that minimizes the error vector covariance and does
not ignore noise. For this reason the MMSE estimator is sometimes
called o linear MMSE equalizer.

Proof: Follows directly from the equivalent backward channel model.
QED.

The linear MMSE estimation error E = M — M(Z) has covariance matrix
Ree = Ry, which is “less than” m.ﬂH since

R;'— Ry =Ry (4.126)

is & positive definite matrix (sometimes written Rzy > 0, or Ry’ > Ry).
However, as the signal-to-noise ratio becomes large, R; approaches .m.ﬂw.
The estimation error for X’ is simply

Bz =X -X'(2)=U'M~-U'NM(Z)=UE. (4.127)

Because U’ is a volume-preserving transformation, the effective determinant of
the covariance matrix of Eg. is equal to [Ree| = |Rs!-

Example 4.6 (Parallel Channels continued} For the ideal one-
dimensional channel (or one of several subchannels in a parallel set)
Y = X + N with Rgp = S; and Rppn = Sy, or the equivalent
channel Z = S;1M + N with Rppm = S; and Rpoper = S5, the
ML estimate of M = X is $,Z =Y, which has error variance S,,. The
MMSE estimate of M = X is (525, /(8: + 5.))Z = (8. /(82 + Sn))Y,
which has error variance Ree = S35,/(S: + Sn) < S,. For deleted
subchannels, no estimate occurs.

MAP Detection and Estimation

If the input X is Gaussian, then F is Gaussian and the linear MMSE estimator
is the unconstrained MMSE estimator. Furthermore, since it maximizes the a
posteriori probability density Dy, ,,(mfz) = Pg(v—Eym), it may alternatively
be called the maximum a posteriori (MAP) estimator. It is important to dis-
tinguish the MAP detector from the MAP estimator, just as it is important to
distinguish the ML detector from the ML estimator. The detector is optimum
when the input distribution is, as always the case in practice, discrete. The
estimator is only defined for continuous distributions, and particularly for the
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this case, a continuous Gaussian distribution. Nonetheless, a MMSE estimator
on a channel with a discrete input distribution for M, followed by a detector
that has a structure based only on M and not on the channel can be canonical,
with specific structures Hlustrating this property in‘Sections 4 and 5.

Estimator and Detector Bias

The bias of an estimator ¢X of a random vector X is the difference between
X and the expected value E[cX|X]. The ML estimator is unbiased, since

M(Z)=M+R;'N" | (4.128)

so E[M|M] = M. Indeed, it is clear that the ML estimator is the unique
unbiased linear estimator of M given Z, since if M = CZ, then E[M|M] =
CRyM, which is equal to M everywhere if and only if ¢ = R;%.

The linear MMSE estimator is biased:
E(M|M] = RyRyM = (I - RyRptey )M = M — RyRjbn M . (4.129)

The bias is Ry Ryyyyn M, which tends to zero as the signal-to-noise ratio becomes
large. -

3.4 Mutual information

If the input X is Gaussian, then the mutual information J(X;Y) = I (M; Z)
between input and output may be expressed in either of two ways:

I(M; Z) = h(Z) - h(ZIM) = h(Z) - h(N"") = log | R/ |Ry| ;(4.130)
I(M;Z) = h(M) - H(M|Z) = h(M) - h(E) = log |Rmm/|Rs}(4.131)

These relations recall the determinantal relations derived earlier,

|Bsl/|Rzz| = |Rs|/|Rmm| = |I - R;Ry| = |I - RyRy] , (4.132)
from which it follows that
I(M;Z) = —log|I ~ RyRy| = —log|I — RyRy| . (4.133)

The determinant |Rmm| is equal to the effective determinant [| Rz 2 | of the
effective input X' in its r,-dimensional space S %+ The determinant [R,| is
equal to the effective determinant || Re e« || of the errcr of the MMSE estimator
U'M of X' Therefore there is an interesting connection between MMSE
estimation and mutual information, as follows:

Theorem 4.5 (Sufficiency of Canonical Transmission with
the Forward and Backward Channe! Models) Given a chan-
nel model Y = HX + N where N is full rank and Gaussian, let
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| Rz« |} be the effective determinant of the effective input X', and
let ||RBee/ || be the effective determinant of the linear MMSE estimate
of X' given Y. Then the mutual information I(X;Y) when X is
Gaussian is given by

I(X;Y) =logilRzz||/l|Rese|l - (4.134}
The above theorem implies the potential existence of canonical transmission
systems that use only the forward or backward canonical models, thus ignoring
all eliminated dimensions and inputs. As noted earlier, the mutual information
I{X;Y) when X is Gaussian is an upper bound to the mutual information
when X is an arbitrary random vector with the same second-order statistics.

Example 4.7 (Parallel Channels (cont.)) On the ideal one-
dimensional Gaussian channel, the input variance is Rggp = S; and
the MMSE error variance is Ree = S:S5n/{Sz + Sa), so I{X;¥) =
log Rz /Ree = log(S: + S,)/ 5.

Matriz SNRs

Mutual information results suggest some matrix SNR definitions that allow
generalization of many of the results in [1].

Definition 4 (MMSE-SNR Matrix) Define the square matric
SNRapre by .
SN Rgore = Rmm R, (4.135)
then
IM;Z2)=1(X;Y) = log|S N RgprE| - (4.136)
(Alternatively, the same result is obtained using the conjugate trans-
pose SNR* = SNR = R, 'Rmm..)

SN Rgpre is the matrix generalization of SNRyuuse.prg for the infinite-length
MMSE-DFE, The SNR is well-understood through the ratio of the transmit-
ted message energy {covariance) Rynm to the minimized square-error power
(covariance) Ree = Rp. Similarly, recalling that the ML error variance is m.uf
define

SNRyy = RmmRB; , (4.137)
(or alternatively SNRy; = SNRyp = RyRmm). Then, since mm; =
Ry + Ry, it follows that

SNRgprg = I+ SNRyy . APHWWV

Equation (4.138) is the matrix equivalent of the expression SNRyMMSE.DFE =
SNRmmse-DFEU + 1 in (1.
In summary:
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Theorem 4.6 Given canonical forward end backward channel mod-
els Z = RyM + N'" and M = R,Z + E, define SNRaprg =
RmmRB;" = R;'Ryz, and define SNRyy, = RmmBRy = RyRzz.
Then the mutual information I(M; Z) when M is Gaussian is given
by

I(M; Z) = log|SN Repre| =log|l + SNRyy| . (4.139)

Bias Results

Since the ML estimator is the unique unbiased linear estimator, this result may
also be interpreted as a relation between mutual information, linear MMSE
estimation, and unbiased linear estimation.

Since the MMSE estimator is Ry Z and the unbiased ML estimator is mwMHN ,
an MMSE estimate may be converted to an unbiased ML estimate by multi-
plication by mzmwﬂhwmzmmcﬂmu or by QZMNOUWWMZ.@W&W. The bias of the
MMSE estimate is equal to

RyRyymM = SNRGL.. M . {4.140)

Example 4.8 (Example 2 (cont.)) On the ideal one di-
mensional Gaussian channel, SNRoprg = Rpz/Ree = (5: +
5:)/5, and SNRyy = Ragz/Rnan = $:/S. = SNRaprr —
1. The biased MMSE estimate (S;/(S; + S,))¥ may be con-
verted to the unique unbiased linear estimate ¥ by multiplication
by SNRumse.ore/SNRumL = (S; + Sn)/S:.

Notice that SNRgpre and SN Ry, are diagonalized by the same unitary
transformations U and therefore commute; for if

SNRyy = U Ux, (4.141)
then
SNRgprg =1+ SNBRwL =U(I + Al )Ux = UALpogU+ . (4.142)

"This implies that the eigenvalues of SN Rqprg are equal componentwise to 1
plus the eigenvalues of SN Ry, :

Mimse; =1+ X, (4.143)

regardless of whether the matrices Ry, Remm, Ry and Rzz commute. Thus
each of the individual modes in the block channel has a relationship between
MMSE SNR and unbiased SNR that parallels the relationship established in
(1], namely SNRyumse-pre = SNRumse.oreu + L.
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4 THE GENERALIZED DFE RECEIVER
STRUCTURE

This section introduces and develops the canonical GDFE receiver structure
for a general block Gaussian ISI channel ¥ = HX + IV with arbitrary H, Ry
and (full-rank) Rpy. This structure is an apparently novel structure that is a
finite-length generalization of the usual infinite-length MMSE decision-feedback
equalization {MMSE-DFE).

The starting point is an equivalent canonical backward channel model
M=RZ+E. (4.144)

Since R is a nonsingular covariance matrix, it has a unique Cholesky factor-
ization
R, = LyD?L; (4.145)

where Ly is a monic lower triangular matrix and D? is a nonsingular positive- )

definite diagonal matrix.
Premultiplication by the lower triangular matrix hMH yields the equivalent
channel model

M =L'M=DIL;Z+L;"E<2Z'+E', (4.146)

where Z' = Uwth may be viewed as the result of passing Z through an
upper-triangular “feedforward filter” DZL:, and the noise E' = L7VE has a
diagonal covariance matrix

.NN@.N_ = h&lu.mmmhwi = .UW m ﬁﬁ.wﬁqv

Le., its components are uncorrelated.
The usual assumptions of decision-feedback equalization are now invoked:

®  symbol-by-symbol decisions may be made on the components M; of M;

B in the detection of Mj;, it may be assumed that all previous decisions are
correct (the “ideal DFE assumption”).

Now since L;! is lower triangular, M; is a linear combination of Z!, Ej and
previous components M (j — 1) = [M,,.., M;_;]. The MMSE symbol estimate
of M; given Z] and M(j - 1) is therefore equal to Z; minus the linear combi-
nation of the past components My, -y M;_1] that is specified by the jt* row
of L' (the “feedback filter” at time j). The error in this estimate is E]. The
signal-to-noise ratio for the 7** symbol is thus

SNR; = E[|M;*)/BEj|*) = )2, ,/d} ; , (4.148)

where A} . is the j** diagonal element of the diagonal matrix Rynm, and & ;
is the 7** Cholesky factor of Rj.
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Theorem 4.7 (GDFE is Canonical) If Ryym is diagonal, or
equivalently, the mmput vector M has uncorreloted elements, then the
GDFE is canonical.

Proof: The product of the symbol SNRs is | SN Rgprg/|, since
1ISNR; = |Rmml/iDf| = {Rmml/|Rs| = |SNRgore| . (4.149)
This expression is the key to showing that this receiver structure is

canonical. To complete the proof, assume that X and thus all random
vectors are Gaussian. Then

I(M;Z) =log|SNRaprs| . (4.150)

Furthermore, from the chain rule of information theory,
I(M;Z) = [T 1My Z;iM (G - 1)) (4.151)

i
The mutual information in the jth symbol transmission may be ex-
pressed as
(M ZiM(j - 1)) = R(M;IM(j — 1)) - h(M;|Z;, M (5 ~ 1))
= h(M;) ~ Emhv (4.152)
ym 153)
4,
= log —== %.h {

=logSNR; , (4.154)

since M; is independent of M(j — 1) when M is Qm:mmm.,\&_ and E is
the estimation error (innovations) for M; given [Z], M{j — 1)]. Thus

I(M; Z) = [ log SNR, . (4.155)
i

Now use a long code of rate arbitrarily close to log SNR; on each
subchannel that has an arbitrarily low error probability. Decode the
subchannels in order so that the “past” decisions Mj,...,M;_1 are
available when decoding M; (which justifies the ideal DFE assump-
tion). Then one can send at an aggregate rate arbitrarily close to
I(M; Z) = log |SN Rgprg/| per block with arbitrarily low Eowmvm:.w
of errcr. Hence this block MMSE-DFE receiver structure is canoni-
cal. QED.

In practice, as in vector coding systems, one can code “across subchannels”
to avoid excessive decoding delay and buffering. The ideal DFE assumption
then fails, but this problem may be elegantly handled by a kind of ”transmitter
precoding” similar to the precoding techniques that have been developed for
single-channel transmission systems.

Decision-Feedback Equalization for Packet Transmission 113

4.1 The Packet GDFE - stationary special
case

The GDFE is general but does not converge to the usual MMSE-DFE for
infinite-length packets on a stationary channel without the additional trans-
mitter alterations in this subsection. In general, these alterations add addi-
tional complexity for no improvement in performance, other than they allow a
recursive implementation of the transmit filter via Cholesky factorization.
The input vector M can be decomposed according to its innovation represen-
tation as in Secticn 2.2 as

M=LW, (4.156)

where Rmm = LRywwL* and Lis lower-triangular and nonsingular, and where
Ry is diagonal. The elements of W are the innovations of M. For the Packet
GDFE, the elements of W are considered the coded input sequence and should
be the values estimated by the GDFE receiver. The alteration necessary to the
receiver is simply to :%_mnm the feedback section by the rows of L = L.~ th
instead of the rows of hl . This new matrix feedback section is still Hoéww
triangular and previous amnapomm on elements of W can be used to aid future
decisions just as the elements of M were used in the diagonal- Rymm, case.

In the transmitter, the input becomes
X=UM=U'LV (4.157)
and || Rz || = |Rmm| = |Rov| so that I(X;Y) = I(M; 2) = I(X; Y).

Lemma 4.1 (Packet GDFE is Canonical) The packet GDFE,
which estimates W directly in the feedback section and uses the addi-
tional transmit fiter of L is canonical.

Proof: The proof is identical to the proof for the GDFE with diagonal
M with W replacing M. QED.

The transmit signal decomposition has an interesting interpretation:

®  Thelower-triangular filter L relates the innovations or underlying transmit-
ted signal to the filtered channel output for whatever transmit covariance
Ry is used, When Rgpg is stationary, the rows of I will converge for
long packet length to the filters that relate the innovations to the channel
input. Different parts of L may converge to different filters, corresponding
to the different frequency bands used.

8 The filter U’ is not triangular and is necessary when dimensions have

been reduced from the original channel H. This filter combines different
sets of L into a single transmit signal - the transmit signal thus contains
potentially nonoverlapping frequency bands in the the stationary case and
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Figure 4.6 Packet GDFE.

U’ is an orthogonal matrix that is volume preserving and corresponds to
essentially modulation of the various baseband signals generated by the
triangular L into the different frequency bands.

Figure 4.6 illustrates the various parts of the GDFE, including the special
packet case. When I/’ corresponds to a modal decomposition, L = I and
M =V, and the input cannot be realized by triangular filtering.

5 TRANSMITTER OPTIMIZATION AND
VECTOR CODING

To this point the input covariance matrix Rgpg has been assumed to be given,
In this section Rz will be chosen subject to a power constraint to maximize
the mutual information I{X;Y) assuming Gaussian input statistics, or equiv-
alently to maximize the determinant SN Rgorg|-

An optimized Rgpy has a natural diagonal representation that suggests the
well-known method of vector coding, which yields an alternative canonical re-
ceiver structure for the optimum Rggz. When Rggp is optimized, or equiva-
lently Rmamn is optimized, then VC and the GDFE have the same canonical
performance.

5.1 Input covariance optimization

The channel model is the general linear Gaussian channel ¥ = HX + N as
before, with H and Bnq, given, and Rpqg to be optimized subject to a constraint
on the average input energy E[X X *], which is the trace of Rzz- i.e., the sum
2, Bax(47) of the variances Rzz (5 7) of the components X; of X.
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As discussed earlier, a general input vector X may be decomposed into an
undetectable part X jx in the right null space K of H and an effective input
Xk in the orthogonal subspace KL. It is clear that no energy should be
wasted on X|x and therefore an optimized X’ should be constrained to lie in
K. The dimension ry = rp,, of KL is equal to the dimension of the range
space of H, since H is a one-to-one map from K+ to its range space.

It is convenient to choose an orthonormal basis for K+ consisting of 7+ ortho-
normal vectors U = {u;,1 € j < r;+}. Then any z € K+ may be written
as a linear combination of the basis vectors, £ = Um, and furthermore be-
cause of orthonormality, ||z||? = |[mj|2. Then an average energy constraint on
X translates directly into an equivalent average energy constraint on the ran-
dom rp-vector M. The VC design then chdoses Ry in the channel model
Y = HUM + N to maximize I(X;Y) = I(M;Y) subject to an average
energy constraint on M.

Again noise whitening and matched filtering may be used without loss of opti-
mality to reduce to obtain an equivalent canonical channel model

Z=R;M+N'". (4.158)

where Ry = U*H*Rp, HU is a square full-rank covariance matrix that is
both the channel-response matrix and the covariance matrix of N''. Again
I{M; Z} = I{X;Y"). This equivalent canonical forward channel model is simi-
lar to that derived in Section 3, except that Rmm is yet to be determined and
is not necessarily diagonal.

Now it is desired to maximize I(M;Z) = log I + SNRy| = loglf +
.WSS.N&T

Theorem 4.8 (Optimum transmit vectors) The optimum Rmm
must have the same eigenvectors as By: i.e., R must commute
with Ry.

Proof: Let V be a unitary transformation that diagonalizes Ry; i.e.,
VRV = A%, where A2 = diag{A};} is a diagonal matrix whose
diagonal components are the eigenvalues »w.h.. of Ry. Let R% . be
the diagonal elements of V*Rym V. Then the diagonal elements of
I+ VB VV*R;V =T + 2\;@335>w are {1+ mmau»wa. , 80
by Hadamard’s inequality,

I+ BmmBy| = |1+ V" BmmVV*R, V) < [0 + R2 M3,
H

{4.159)
with equality if and only if V*RmmV is diagonal. Since V is a
unitary transformation the trace (sum of the diagonal components)
of V*RmmV is the same as the trace of Rmm; therefore setting
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the off-diagonal components of V*RmmV to zero will not change
the average energy of M, but will necessarily decrease I(M;Y) =
I(M;Z) unless V*RmmVis already diagonal. Thus the optimum
V*RmmV is diagonal. QED.

Given that V*RmmV is a diagonal matrix A%, = diag{)}, ;}, the optimum
variances ywr. may then be determined by discrete water-pouring in the usual
manner, with the result that

1 1
X At
A2, ; =0, otherwise, (4.161)

\%WH..Q. ”.Mml

where K is a constant chosen so that the average energy constraint on [[; pry ;18

met. Thus this water-pouring optimization may cause some of the subchannels
to be unused and thus reduce the effective rank of the channel below r - to
a new value of r, that would then force r;. to be smaller and equal to ry,
through the original definitions of these ranks, which depend on the choice of
Egx, or equivalently, Rmm.

The optimum Rgz is then determined from the optimum AZ, via -

Rax = URmmU* = UVAL VU, {4.162)

A canonical GDFE receiver may then be constructed from this optimum Rgg
and may be used to approach the maximized I{M;Y), namely the channel
capacity of the given linear Gaussian packet channel.

Finally, since
Ryx = URmmU™ ; (4.163)
H*RpnH = UR;U" , (4.164)

it follows readily from the orthonormality of U that if Rpmm and Ry commute,
then Rpy and H* Ryl H commute.

5.2 Commuting channels

The above argument shows that an optimum Rmm commutes with Ry, A
canonical channel model Z = R;M + N will be called commuting if Emm
and Ry commute:

Rynvm By = RgRmm - (4.165)

Equivalently, since (RmmB;)* = Ry Bmin, a canonical channel is commuting
if Renm Ry is Hermitian-symmetric. Since

SNRyL = RmmPB; ; (4.166)

SNRgpre = I + SN Ry, (4.167)

Decision-Feedback Equalization for Packet Transmission 117

a channel is commuting if either SNRyp or SNRummse.ppe is Hermitian-
symmetric. A one-dimensional channel is necessarily commuting,.

The inverses Ry and NMH of commuting covariance matrices commute with
with Rrnm and Ry and with each other. Moreover, from the defining equations
for Ry and Rz z,

Ry = (Bmm + Rs)7h5 (4.168)
Bzz = .mw.mmwssmala = .mwm.lu—mwsamu s {4.169)
it follows that R, and Rzz and their inverses also commute with each other

and with Bmm and Ry. Thus the corresponding backward canonical channel
model is commuting as well.

5.3 Vector coding

If Z = RyM + N is & commuting equivalent forward channel model of rank
Ty, then Ry = VLAZV* and Ry = <>w<£ for some unitary matrix V, so
Z=VAV"M+N; (4.170)
Z'=V'Z=AV'M+V*N=AM'+N', {4.171)
where Z' =V*Z, M’ = V*M, and N' = V*N; ie., the random vectors are

represented in the basis determined by the unitary transformation V. Now
Bm'm = V*BmmV = A2 ; (4.172)
Rpm: = V'RV = A} . (4.173}

The channel therefore naturally decomposes into r, decoupled one-dimensional
subchannels of the form

Nm”yw.u.gu..+2h...qw <j<ry, . (4.174)

where the variance of M} is X}, ; and N/ is an independent Gaussian variable of

variance »w.u.. This is just a standard one-dimensional Gaussian channel model

of the type of Example 2, with Sy ; = A% ;A% ;, S, ; = A% ., and therefore

.
Sz,
m;“. =232 ;. (4.175)
The mutual information over such a channel is
Sz.;
I(M}; Z]) =log AH + ,.wswv =log(1+A%,AZ ;). (4.176)
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The aggregate mutual information of all parallel subchannels is
KM’ Z") = []log(1+ A% ,02, ) = log |1 + X3AZ|
7
=log|I + R¢Rmm| = log|SNRgprg| . (4.177)

It follows that this structure, called vector coding, is canonical for any coms-

muting channel. In particular, it is canonical for any channel for which RBym
or Ryz has been optimized.

Lemma 4.2 {Optimality and Canonijcal Properties of V()
Vector Coding is both optimal and canonical for o commuting channel.

Proof: It follows directly from (4.177) that VC is canonical. VG
is also a ML estimator for which each subchannel can use an ML
detector for the applied code. If the input X is uniform discrete gver
the r;-dimensional subspace, then this ML detector minimizes error
probability. QED.

If the channel is not commuting, however, then it cannot be decomposed into
completely decoupled one-dimensional subchannels in this way; Le., vector cod-
ing is not well defined for noncommuting channels. Thus in certain cases where

Ry is predetermined and cannot be optimized, the GDFE structure may be
the only canonical receiver structure available.

DMT - Discrete Multitone

DMT or Discrete Multitone is a special case of VC when the channel correlation
matrix matrix HRyL, H* is circulant. This circulant property is forced by the
use of a cyclic prefix in each transmitted packet, which is simply a repeat of

needed for a commutative channel and for the optimized input are essentially
the vectors associated with a Discrete Fourier Transform, thus allowing very

efficient optimal and cancnical implementations through the use of Fast Fourier
Transform methods.

6 LIMITING RESULTS WITH
INCREASING PACKET LEN GTH

The results in this paper all converge to generalizations of the known results
in [1] for infinite-length (continuous non-packet) transmission on a stationary
dispersive channel with additive Gaussian noise. This convergence requires that
the individual elements of the vectors X and NV are successive samples from
stationary random processes and that H for any values of m > n has each
successive row moved one position o the right with respect to the previous
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row, but the row elements are otherwise the same. That is, H is “Toeplitz” as
n— 0. :

Perhaps not well established in [1] is the situation in which these Sm:-w:oé.s
results exist, namely that the input process X must have nonsingular covari-
ance as n — co, which requires a resampling or “optimization of symbol and
center frequencies” as a function of the channel, which tacitly may involve mul-
tiple disjoint frequency bands and multiple MMSE-DFE's. ..H_Wm GDFE more
accurately describes these multiple MMSE-DFE's in the limit, each of which
exhibits the properties discussed in [1].

6.1 Channel Models

The D-transform of a discrete time sequence or random process Xy (the sam-

ples of X as m — o0) is X(D) e > » XxD¥. Convolution of sequences E
discrete time corresponds to multiplication of their D-transforms. The matrix
channel with Toeplitz H corresponds to convolution of X (D} with h(D) (the
D-transform of the first row of H). Thus, the dual channel model becomes:

il

Y =HX +N = Y(D)
X =CY + E = X(D)

W(D)X(D) + N(D) (4.178)
(DY (D) + E(D) . (4.179)

Multiplication of a vector by H* corresponds to convolution with h* (D).
Thus, a matched filter cutput is

Z(D) = k*(D~1Y(D) . (4.180)

For stationary sequences, the autocorrelation function ry, ; = E[X: X} ,] has
a D-transform

Reo(D) =) resiD . (4.181)
k
Pythagorean relationships are
Ryy(D) = h(D)Rzz(D)h* (D7) + Ryn(D) (4.182)
Rpe(D} = e(DYRyy (D)e (D7) + Ree(D) . (4.183)
Also,
N Ree(D) = Rez(D) = Ry (D) — ¢(D)Ryy (D) . (4.184)

6.2 Limiting Entropy, Mutual Information,
and SNR

The innovations are stationary when X (D) is stationary and mmﬁnm_.do. &.&5
generalization of entropy. A particularly crucial problem in establishing limiting
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results, and required by a stationary process, is the singularity of the process
X (D). Subsection 6.2 reviews results when X (D) is nonsingular and Subsection
6.2 extends and generalizes these results in a heuristic way to the nonsingular
case.

Nonsingular input sequences
A stationary random sequence z(D) satisfies the Paley-Wiener Criterion:

Su= o= [ Yog Rea(e=#)d8] < oo ,

4.
=/ (4.185)

which means it is also nonsingular. In practice, satisfaction of the PW criterion
means the power spectral density R,z(e~%®) cannot be infinite nor zero at
more than a few discrete frequencies, a requirement often not met if the input
sequence X (D) tries to zero energy in certain regions of the band that water-
filling arguments might dictate should be zerced. For a nonsingular sequence
the vector X will have a nonsingular Rgg for all packet lengths as m — oo, The
types of singular processes of interest in Subsection 6.2 are actually very close
to stationary in that within certain frequency bands (or at the right sampling
rates and center/carrier frequencies), PW is individually satisfied for each of
several disjoint bands.

When X (D) is stationary and therefore nonsingular, the relation

W=L["1X (4.186)

directly oo_.nmmwozmm to the chain rule for entropy ([2]) when X is Gaussian:
H(X) = H(X1}+ H(X2/X1) + . + H X [{X1, X2, . Xn1}) . (4.187)

That is Wi is the MMSE sample corresponding to the estimate of X, given
all previous values of X (D), ’

H(X)=H(W)) + H(W2) + ..H(W,,) . (4.188)

L~11is a linear prediction filter operating on X to produce W. Clearly, since Xi
is stationary, this filter is constant, meaning that L~! tends towards a Toeplitz
matrix when m gets large, and Rqpp tends towards a constant diagonal matrix
with linear minimum mean square error S, along the diagonal.

In this case, Cholesky factorization corresponds to

Rzx = LRwwl® = R::(D) = I(D)S,I"(D77) , (4.189)

where (D) is monic {lp = 1), causal (I = 0V k < 0) and minimum-phase (all
roots and poles outside the unit circle), and
u. ™

So=

—38
- |aHomm~uuﬁm )dé

(4.190)

Decision-Feedback Equalization for Packet Transmission 121

implying that R:,(D) satisfies the discrete-time Paley-Wiener criterion {22].
The linear prediction filter is 1//(D), and the innovations sequence is w(D) =
=(D)/U(D).

The entropy for a stationary process is defined as

HX) = Gim 75 o g 2 (4.191)
m—oo M m—co m )
For the Gaussian random process X (D), this value is clearly
H(X) =log{meSy) , (4.192)

and because Ry is a constant diagonal, the prediction error sequence or
innovations W (D) is white. Similarly, if X and Y are jointly stationary and
Gaussian, the limit is found using Toeplitz distribution results [23],

/2
HX/Y) = = \ 10g, Roc(e™)d8 . (4.193)

2= —n/2

Essentially, the conditional entropy is equal to the entropy of the error sequence
associated with estimation of the random variable based on the given random
variable. This stationary Gaussian error sequence itself also has a innovations
representation and the conditional entropy is thus also equal to the entropy of
this innovations sequence. Thus,

H(X/Y) = H(Xx/(Y,[Ex-1, Br-2..])) = HXe /(Y [ X1, Xis--]))
No

= log,(re—) ,

D (4.194)

where the rightmost relation is obtained by recognizing that the MMSE esti-
mation associated with H(Xy/ (Y, [Xi—1, Xx—2-..])) is that of the MMSE-DFE.
Further, D, must also converge to a constant since the matrix wWL is Toeplitz
when Ry is constant, which it must be when the system is stationary and
infinite length. The error sequence for the MMSE-DFE is white because this
sequence is the innovations sequence for the linear prediction of the error se-
quence corresponding to the linear MMSE of X (D) given Y (D).

The value of Dy is determined from the spectral factorization .mm;ﬁbv =
(D) Dyl (D™*) (where {(D) is causal, monic, and minimum-phase, Iy > 0
is real, and I*(D) is anticausal, monic, and maximum-phase - see 1

H u_.\m
D=5 \ log Ry (e=*)d8 , (4.195)
L -
where,
E;!(D) = R3},(D) + R;(D) = B7}(D) + (D)R;L(D)R*(D™*);.  (4.196)
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The factorization of (4.196) is called the “key equation” in 1.

The single-band MMSE-DFE: The mutual information for jointly station-
ary and Gaussian X (D) and ¥(D) also has a limiting definition

I{X;Y) = lim I(X;Y). (4.197)

Moo

The formula I(X;Y) = H(X) - H{X/Y)= H(Y) - H(Y/X) leads to

/2
17 = = [ logy(SNR(8))d8 | (4.198)
2r —-7/2
where
S Sull(e=Ph(e ) + Ron(e)
RO = By = B () B

The MMSE-DFE is biased, but simple scaling can remove the bias and the
relation

I(X,Y) = log,(1 + SNRMMSE-DFE,U) = logg (S0 D) {(4.200)

shows the MMSE-DFE to be canonical for a given fixed choice of input spectrum
given by R.:(D) = I(D)S,I*(D~*). Thus, a maximum likelihood detector is
not necessary because best performance can be attained by applying a good
code with as small a gap from mutual information (on an AWGN) to an in-
tersymbol interference channel that uses a MMSE-DFE and still maintain that
same small gap from mutual information.

The Case of Singular Input

Technically, a singular input sequence is not stationary because it does not
satisfy the Paley-Wiener Criterion. However, it is often possible in practice
to resample a sequence at a lower rate, and possibly with a carrier offset in
bandpass processes, so that an equivalent complex baseband random process
is stationary. Such stationary processes can be added together, again with
carrier offset, to create a nonstationary process (in this case, cyclostationary
with period equal to the greatest common multiple of carrier periods or in the
finite-length case to the packet period).

In effect, each of the frequency bands used now has a stationary process within
it and all the results of Section 6.2 apply individually to each band. The data
rate is of course the sum of the data rates. The SNR is the geometric average
where each band’s SNR is weighted by its ratio of bandwidth to the total used
by all bands. The union of all these disjoint bands is denoted by 2 and a
modification of the PW criterion holds such that

L \ log R (e8] < o0 (4.201)
Mﬂ. [e]
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Figure 4.7 Singular GDFE in the limit.

With the GDFE, this situation is illustrated much more clearly than in 1.
The transmit filter U’ of the canonical channel models combines the various
bands via interpolation and translation. Translation in frequency is a unitary
matrix operation. Recall U’ was m X ry, “unitary” matrix, thus allowing for
interpolation of the input to effectively a higher sampling rate for the combined
signals The matrix L does not converge to a single filter, but rather essentially
becomes triangular with disjoint blocks, each of which internally exhibits the
convergence of the rows to the innovations filter for the corresponding band. U’
then combines these signals into an aggregate (cyclostationary) packet transmit
signal.

This situation is depicted in Figure 4.7.

6.3 Vector Coding to Multitone

The VC case, as in Section &, corresponds to the forward canonical model
Z=RM+N". : (4.202)

for which the GDFE is both canonical and ML if the input M is already, or is
decomposed by, a modal decomposition

M=VM' {4.203)

where both M and M’ have full rank r,,, < m. Singularity is trivially handled
by U’ in the VC case as it corresponds to ignoring subchannels for which
\/.ﬁﬂ. = 0 or for which \/:.rs. =0.
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In the limit as packet length goes to zero, Toeplitz distribution arguments {[24])
lead to the limit

lim log, | SN Ry /™

m—o0

I{X;Y)

.Ha
L_rm_oo ~ M{m HomMﬁ+»3.u.32_d

H &Q:Eﬁé_u
o \s Homu ? + B (e~ v df (4.204)

The vector-coding system becomes equivalent t0 a “multitone” transmission
system as packet length goes to infinity. Thus, the GDFE and VC converge
to the highest performance levels possible, namely a data rate possibility of
I(X;Y} if good known codes for the AWGN are applied. Both must use the
same frequency bands and the channel is always commutative at infinite length.

6.4 Infinite-length Transmit Optimization

The well-known water-filling energy distribution [24] [1] satisfies

Run Am..umv

O+ e

=K. (4.205)
The solution must exhibit 5;(8) > 0. There is a band 9* such that for all
8 € %, 5:(8) > 0. When |Q| = 2n, an innovations representation of the thus
stationary input can be found through the canonical factorization

Rer(D) = {D)SuI* (D) . (4.206)

Then, I{D) is the stationary MMSE-DFE transmit filter that acts on the in-
put data innovations w(D) to produce the proper water-fill spectrum of the
channel input sequence z(D). When S.{8) = 0 over a measurable band, then
separate MMSE-DFE’s should be applied to each of the measurable frequency
bands for which S, > 0 for all but a countable number of discrete points. The
bit rate for each connected subregion of 0%, and the GDFE will converge to
a constant on all dimensions used by water-filling that correspond to a con-
nected subregion. Each band may have a different symbol rate (equal to the
measure of the corresponding connected region of used frequencies) and pos-
sibly a carrier-frequency (corresponding to the center frequency of each such
band). In effect, one independently designs a MMSE-DFE and takes limits for
each of the connected sub-bands of 2*. The limiting case of the GDFE is the
infinite-length canonical transmission structure called the MMSE-DFE in 1}in
each of the optimum bands of Q*, which is used by either the VC GDFE for
which the feedback section is trivially zero or for the packet GDFE for which
feedback sections are nontrivial.
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7 SUMMARY AND CONCLUSION

The concept of cancnical transmission has been refined to characterize systems
that may not be optimum detectors, but for which nevertheless the highest pos-
sible data rates may be transmitted with the careful application of the same
good codes that near capacity on the ideal additive white Gaussian noise chan-
nel. The GDFE structure is a generalization of decision feedback that aliows
for any characteristic representation of an input and derives from canonical
forward and backward channel models that remove unnecessary dimensions
and force nonsingular transmission over only those dimensions that can carry
information. Various forms of the GDFE, corresponding for instance to an in-
novations representation of the input, i.e., the “packet GDFE,” or to a modal
representation of the input, otherwise known as Vector Coding. The VC case
is indeed very special, because it is both canonical and optimal and the feed-
back section of the GDFE trivially disappears, avoiding the need for precoding
methods. The VC case, however, must use only special inputs that commute
with the forward channel characterization matrix Ry while the GDFE exists
in general when this condition is not met. Other characteristic representations
could also be used to form other types of GDFE'’s.

The GDFE is always canonical. The GDFE, however, is not equivalent to
the fixed DFE’s in common use in data transmission, the latter of which are
decidely suboptimum and not canonical unless special conditions hold that are
often not met. For this reason, the GDFE is the preferred method for high-
performance design of transmission on channels with IST and additive Gaussian
noise. Various methods can be used to simplify a GDFE, most notably the
elimination of the feedback section with the Vector-Coding GDFE, which can
be further simplified through the use of fast Fourier Transform methods in the
implementation known as DMT.

Other areas of simplification of the GDFE remain open to study in addition
to the study of specific performance differences on various channels, which can
run from very small to very large. The existence of a packet channel model
Y = HX 4+ N has been postulated and indeed is a research topic in itself as
to appropriate ways to synthesize a channel design such that this relationship
holds exactly or approximately.
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