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Abstract—We review the principles of Minimum Description
Length and Stochastic Complexity as used in data compression
and statistical modeling. Stochastic complexity is formulated as
the solution to optimum universal coding problems extending
Shannon’s basic source coding theorem. The normalized maxi-
mized likelihood, mixture, and predictive codings are each shown
to achieve the stochastic complexity to within asymptotically
vanishing terms. We assess the performance of the minimum
description length criterion both from the vantage point of
quality of data compression and accuracy of statistical inference.
Context tree modeling, density estimation, and model selection in
Gaussian linear regression serve as examples.

Index Terms—Complexity, compression, estimation, inference,
universal modeling.

I. INTRODUCTION

I N this expository paper we discuss the so-called MDL
(Minimum Description Length) principle for model selec-

tion and statistical inference in general. In broad terms the
central idea of this principle is first to represent an entire class
of probability distributions as models by a single “universal”
representative model such that it would be able to imitate the
behavior of any model in the class. The best model class for
a set of observed data, then, is the one whose representative
permits the shortest coding of the data.

There are a number of ways to construct representatives
of model classes or, what is sufficient, to compute their
codelength. The first and the crudest of them, Wallace and
Boulton [52], Rissanen [38], is to encode the data with
a (parametric) model defined by the maximum-likelihood
estimates, quantized optimally to a finite precision, and then
encode the estimates by a prefix code. For a reader with any
knowledge of information theory there is nothing startling
nor objectionable about such a procedure and the principle
itself. After all, in order to design a good code for data,
the code must capture the statistical characteristics of the
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data, and in order to be able to decode, the decoder must
be given this distribution, which permits the construction of
the code, the “codebook,” and the particular codeword for the
observed data. It is the statisticians for whom the connection
between probability distributions and codelengths tends to
appear strange and on the surface of it nonexisting. And yet,
even a statistician must admit, however grudgingly, that the
principle seems to incorporate in a direct way some of the
most fundamental, albeit elusive, ideas the founding fathers of
statistical inference have been groping for, like the objective of
statistics is to reduce data, Fisher [21], and that “we must not
overfit data by too complex models.” Perhaps, a statistician can
take solace in the fact that by the fundamental Kraft inequality,
stated below, a codelength is just another way to express a
probability distribution, so that the MDL principle becomes
the familiar Maximum Likelihood (ML) principle—albeit a
global one.

Simple and natural as the MDL principle may be, it nev-
ertheless provides a profound change in the way one should
think about statistical problems. About the data themselves, it
is not necessary to make the usual assumption that they form a
sample from an imagined population, which is something that
would be impossible to verify. After all, we are able to design
codes for any data that on the whole can be finitely described.
However, ever since Shannon’s work we know how to design
good codes for data generated by sampling a probability
distribution, and the same codes will work reasonably well
even for data which are not generated that way, provided
that they have the kinds of restrictions predicated by the
distribution, at least to some degree. Indeed, the greater
this degree is the closer the resulting codelength for the
data will be to the optimal for the distribution with which
the code was designed. This seems to imply that we are
just pushing the problem to the selection of the assumed
probability distribution, which is exactly what we do. The
probability distributions serve us as a means by which to
express the regular features in the data; in other words, they
serve asmodels. In fact, that ultimately is what all models
do, including the deterministic “laws” of nature, which spell
out the restrictions to such a high degree that the inevitable
deviations between the data and the behavior dictated by the
laws give rise to almost singular probability distributions.
Prediction is certainly an important motivation for modeling,
and one may ask why not use prediction error as a criterion
for model selection. Fortunately, almost all the usual prediction
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error criteria, be they in terms of probability of errors or some
distance measure such as the absolute or squared errors, can
be expressed in terms of codelength, and there is no conflict
between the two [41], [44].

According to this program, the problems of modeling and
inference, then, are not to estimate any “true” data generating
distribution with which to do inference, but to search for
good probability models for the data, where the goodness
can be measured in terms of codelength. Such a view of
statistics also conforms nicely with the theory of algorithmic
complexity, Solomonoff [47], Kolmogorov [34], and can draw
on its startling finding about the ultimate limitation on all
statistical inference, namely, that there is no “mechanical,” i.e.,
algorithmic, way to find the “best” model of data among all
computable models (let alone the metaphysical “true” model).

Although the MDL principle stands on its own and cannot
be tampered by findings in analysis, it still leaves a role for
probability and coding theories albeit a different one: Analysis
can provide support for the principle or pinpoint abnormal
behavior, and help provide designs for good codes for data
generated by various probability models and classes of them.
It happens that such a code design follows a remarkably
uniform pattern, which starts with Shannon’s basic case of
a fixed known data-generating probability distribution, say

, where denotes a data string to be encoded. In this
case a meaningful optimization problem is to find a code that
has the minimum mean length subject to the restriction that the
codeword lengths satisfy the fundamental Kraft inequality

(1)

If we dispose of the somewhat irrelevant restriction that the
codeword lengths must be natural numbers, the minimiza-
tion problem admits the remarkable solution that suchideal
codeword lengths must coincide with the numbers ,
giving the entropy as the minimized mean length. Hence, the
optimal codelengths mimic the data generating distribution.
Although the MDL principle requires us to find the length
of the shortest codeword for the actually observed sequence,
rather than a mean length, it is also true that no code exists
where the probability of the set of codewords that are shorter
than the optimal less exceeds In
other words, the codewords of the optimal code are practically
the shortest for almost all “typical” strings generated by the
distribution.

As stated above, the focus of interest in the MDL principle
is in various classes of probability distributions as models,
which together with the modeling problems they create are
discussed first. For such classes we consider optimization
problems that generalize the basic Shannon problem above.
If denotes the sought-for universal representative of a
model class under study, where is a parameter
vector, the quantity of interest is the difference

between the codeword length of the representative and that ob-
tained with Shannon’s codes defined by the members

in the class. The first problem calls for a code, defined by,
which minimizes the difference given maximized overand

In the second problem we seek which minimizes the
mean difference. For smooth model classes the solutions to
these two problems turn out to be virtually the same, and the
minimized difference may be interpreted as theparametric
complexity of the model class involved at the given data
sequence of length Again generalizing Shannon’s basic
result the solutions will also be shortest possible for almost
all typical strings generated by almost all models in the class.
In analogy with the algorithmic or Kolmogorov complexity,
the codelength that differs from the ideal by the parametric
complexity is calledstochastic complexity.

Although this paper is tutorial in nature we have decided
not to restrict it to an elementary introduction, only, but also
to survey some of the more advanced techniques inspired by
the theory with the intent to demonstrate how the new ideas
contribute to the analysis of the central problems arising in
modeling. These include the demonstration of the desirable
property of the MDL principle that, if we apply it to data
generated by some unknown model in the considered class,
then the MDL estimates of both the parameters and their
number are consistent; i.e., that the estimates converge and the
limit specifies the data generating model. We also discuss the
close connection between statistical inference and an important
predictive way to do coding, which lends itself to coding data
relative to nonparametric models. We conclude the paper with
applications of the MDL principle to universal coding, linear
regression where the stochastic complexity can be calculated
exactly, and density estimation.

II. M ODELING PRELUDE

At two extremes of statistical modeling are issues of para-
metric inference in a given, perhaps small, finite-dimensional
family or model class and issues
of nonparametric inference in infinite-dimensional function
classes (e.g., of density or regression curves). The MDL
principle has implications for each motivated by the aim of
providing a good statistical summary of data. The principle
is especially useful in the middle ground, where a variety
of plausible families
for are available, and one seeks to automate the
selection of an estimate based on data
It is clear that both extremes of fixed small finite-dimensional
or infinite-dimensional families have their limitations. Whereas
in statistics these limitations and their resolutions via penalized
risk criteria are often cast in terms of the bias and variance
tradeoff, or the approximation and estimation tradeoff, we will
seek here what we regard as a more intrinsic characterization
of the quality of the summarization.

In the case that there is a sequence of classes
available for modeling the data, the MDL principle advocates a
choice that optimizes a codelength Here

is a codelength for description of data using the
model class in accordance with optimal coding criteria
discussed below, and is a codelength for the description
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of the class For each model class, the codelength criterion
involves in an intrinsic way a tradeoff between likelihood

and a parametric complexity associated with the
class that models data of the given lengthTo optimize
this tradeoff, we are led to the maximum-likelihood estimator

and a parametric complexity that is the minimum
additional coding cost necessary for
to be the length of a uniquely decodable code for
The MDL estimator achieves minimum total codelength

Rather than being interested in the bits of exact coding
of the data, our interest in modeling is to provide qual-
ity summarization of the data through the estimated model.
An ultimate or idealized summarization is captured by Kol-
mogorov’s minimum sufficient statistic for description. Recall
that the Kolmogorov complexity of a data sequenceis the
length of the shortest computer program that outputs
on a given universal computer. This complexity is a universal
assignment for all strings up to a constant (in the sense that
for any given pair of universal computers there is a constant
of translation between computers such that for all sequences,
no matter how long, the complexity assigned by the two
computers differs by no more than). Maximally complex
sequences are those for which equals to
within a constant. These are sequences which defy interesting
summarization or compression.

To get at the idea of optimal summarization, Kolmogorov
refined his notion of complexity (see [11, pp. 176, 182]). For
each , there typically are a number of programs that are
minimal in the sense of achieving within a given constantthe
complexity Among these minimal programs are those
which describe the data in two parts. First, some property(a
subset ), satisfied by the sequence , is optimally
described using bits, and then card bits are used
to give the index of When this description of of
length card is minimal, card cannot
be improved by using the length of any other encoding of
in , and hence the card bits are maximally complex
(uninteresting bits), conditionally given The interesting part
arises in a property that does not exactly represent, but rather
summarizes the sequence. The best summary is provided by
a program for a property satisfied by that has minimum

subject to card agreeing with
(to within the specified constant). Such may be called
a Kolmogorov minimal sufficient statisticfor the description
of

Our notion of summarization intended for statistical mod-
eling differs from Kolmogorov’s in two ways. We do not
restrict the first part of the code to be the description of a
set containing the sequence, but rather we allow it to be the
description of a statistical model (where the counterpart to a set

becomes the uniform distribution on), and corresponding
to a statistical model we replace card by the length
of Shannon’s code for using the model. Secondly, at the
expense of ultimate idealism, we do not require that the
descriptions of distributions be Kolmogorov optimal (which
would be computationally unrealizable), but rather we make
our codelength assignments on the basis of principles that

capture near optimality for most sequences. Neither do we
seek the optimum among all computable distributions but only
relative to a given list of models.

III. OPTIMAL CODING METHODS

A. Shannon Coding

Let refer to data to be described and modeled, where
is a given countable set. Typically we have the set

of length sequences for from some
discrete alphabet such as English or ASCII characters or a
discretization of real-valued variables.

Description of is accomplished by means of a
mapping into finite-length binary sequences, calledcodewords,
where the map, called a (binary)code, is required to be one-
to-one, and concatenations of codewords are also required to
be in one-to-one correspondence with sequences of symbols

, themselves sequences, from That is the requirement of
unique decodability. It is accomplished in particular by arrang-
ing the codewords to satisfy the property that no codeword
is a prefix for a codeword of another This yields a
correspondence between codes and labeled binary trees, where
the codeword for is the sequence of zeros and ones that
gives the path from the root to the leaf labeled Given
a code tree let denote the length of the codeword (or
path) that describes According to the theory of Shannon,
Kraft, and McMillan, see, e.g., [11], there exists a uniquely
decodable code with lengths for if and only
if the Kraft inequality (1) holds. Indeed, to each code there
corresponds a subprobability mass function
For a complete tree, in which every internal node has both
descendants and all leaves are codewords, an interpretation
is that a random walk starting at the root ends up at
with probability and hence
Shannon gave an explicit construction of a code with length
equal to , rounded up to an integer, as follows:
Order the strings by decreasing value of and define
the codeword of as the first bits of the cumulative
probability

Shannon also posed the following optimization problem. If
we are given a probability mass function on , then what
codelengths achieve the minimum expected value ?
From the correspondence between codes and subprobability
mass functions it is seen that the solution is to take

if we ignore the integer codelength constraint.
Indeed, with any other choice the excess codelength

has positive expected value, given by the relative entropy or
Kullback–Leibler distance

which equals zero only if Thus given , the Shannon
codelength is optimum, and
is the expected codelength difference (redundancy) when
is used in the absense of knowledge of This property,
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together with the simple probability inequality that
exceeds except in a set of probability not greater

than for all , leads us to call
the optimal orideal codelength.

B. Coding with a Model Class

The subject of universal data compression deals with de-
scribing data when the source distributionis unknown. A
most useful coding theory, as an extension of Shannon’s theory
with given, can be developed if the distributions are,
instead of being completely unknown, restricted to a class of
parametric distributions ,
refered to above as a model class. The results also turn out to
provide the codelengths required for the MDL criterion.

Suppose we are given a parametric family of probabil-
ity mass functions , which have
corresponding Shannon codelengths There is a
collection of data compressors, indexed byWith hindsight,
after observation of , the shortest of these is ,
where is the maximum-likelihood estimate (MLE)
achieving This is our target level
of performance. Though its value can be computed, it is not
available to us as a valid codelength, for without advance
knowledge of we do not know which Shannon tree to
decode. If we code data using a distribution , the excess
codelength, sometimes called regret, over the target value is

(2)

which has the worst case value
Shtarkov [46] posed the problem of choosing to mini-
mize the worst case regret, and he found the unique solution
to be given by the maximized likelihood, normalized thus

(3)

This distribution plays an important role in the MDL theory,
and we refer to it as the normalized maximum-likelihood
(NML) distribution. Notice that depends on the
model class and the size of the sample space
The corresponding codelength is

(4)

which gives the minimax regret

(5)

The proof of the optimality of is simply to note that
for all , and for any other

subprobability mass function we have for
at least one , where is strictly worse.

This optimal codelength associated with
the NML distribution is what we call thestochastic complex-
ity of data relative to the model class It exceeds the

maximized likelihoodterm by the additional coding cost

Because this additional cost rises due to the unknown param-
eter, we call it theparametric complexity. Also in support
of this terminology we note that other coding schemes, such
as two-part codes as in [43] (which first describe parameter
estimates to an optimal precision and then the data conditional
on the parameter estimates), achieve a similar complexity term
expressed in terms of the length of the description of optimally
discretized parameter estimates. We emphasize that in the
case of the code with respect to the NML distribution, the
normalization insures Kraft’s inequality, and hence encoding
of , can be done directly without the need for separate
encoding of

C. Codes Optimal for Average Regret

While we are interested in the regret defined in (2), we
do not presume to be interested only in its worst case value.
Thus we consider expected regrets with respect to distributions
in and with respect to mixtures of these distributions,
and we discuss the behavior of the corresponding minimax
and maximin values. A mixture that achieves an (asymptotic)
minimax and maximin solution forms an alternative MDL
coding procedure that will be related to the NML code. With
respect to any distribution in , the expected
value of the regret of is

where in the right side we left the dummy variableover
which the expectation is taken. Averaging the expected regret
further with respect to any probability distribution on is
the same as averaging with respect to the mixture (marginal)

and the resulting average regret is ,
which equals

Thus is the unique choice to minimize the average
regret with respect to the distribution In decision-theoretic
terminology, the Bayes optimal code is of length

The expected regret has a minimax value

which agrees with the maximin value

(6)
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where the maximization is enlarged fromto distributions on
, as is standard to allow equality of the minimax and maximin

values. The maximization over yields least favorable priors
for which the corresponding procedure, coding based on

, is both maximin and minimax.
Related quantities studied in universal data compression are

based on the expected codelength difference (redundancy)

which uses the unknown in the target value
rather than the MLE. The average redundancy with respect to
a distribution on is equal to Shannon’s mutual information

when the Bayes optimal code is used. Consequently,
the maximin average redundancy is which is
recognized as the Shannon information capacity of the class

(Davisson [12]). The minimax value
and the maximin value of

the redundancy (i.e., the capacity) are equal (see Davisson
et al. [14] and Haussler [28]). In subsequent sections we
will have more to say about the Kullback–Leibler divergence

, including interpretations in coding and
prediction, its asymptotics, and useful finite sample bounds.

Both of the target values and are
unrealizable as codelengths (because of lack of knowledge of

in one case and because of failure of Kraft’s inequality in the
other) and an extra descriptional price is to be paid to encode

In this section we retain as the idealized
target value for several reasons, not the least of which is that
(unlike the other choice) it can be evaluated from the data
alone and so can be a basis for the MDL criterion. By use of
the same quantity in pointwise, worst case, and average value
analyses we achieve a better understanding of its properties.
We identify that the parametric complexity (and
its asymptotic expression) arises in characterization of the
minimax regret, the minimax expected regret, and in pointwise
bounds that hold for most sequences and most distributions in
the model class.

Note that the minimax value of the expected regret, through
its maximin characterization in (6), may be expressed as

(7)

Thus optimization over to yield a minimax and max-
imin procedure is equivalent to choosing a mixture
closest to the normalized maximum likelihood in the
sense of Kullback–Leibler divergence (see also [56]). More-
over, this divergence represents the gap between
the minimax value of the regret and the minimax value of
the expected regret. When the gap is small, optimization
of the worst case value of the regret is not too different
from optimization of the worst expected value over distri-
butions in the class. In particular, if for some the aver-
age regret and the NML regret

agree asymptotically, then
and, consequently, is asymptotically least favorable and

the asymptotic minimax regret and minimax expected regret
coincide. Such asymptotic agreement of (average) regret for
the NML and mixture distributions is addressed next.

D. Asymptotic Equivalence of Optimal Solutions
in Average and Worst Cases

The solutions to the two related minimax problems in the
preceding subsection, namely, the NML distribution
and the mixture with respect to a distribution

both have merits as defining the codelength for the MDL prin-
ciple, and deserve to be studied more closely. The mixtures,
in particular, for a fixed-weight distribution have the
advantage, in addition to average regret optimality, that they
extend to a distribution on infinite sequences when is
defined consistently for all , and hence they define a random
process. To do the same for the NML distribution, a construct
of the type

may be used.
We can study the asymptotic codelength of these distribu-

tions for smooth parametric families
on possessing an empirical Fisher information matrix

of second derivatives of Let
be the corresponding Fisher information. We are interested
both in the mean codelength and the pointwise codelength.
We begin with the mixtures, for which the main technique is
Laplace’s approximation. Let the prior density assumed
to be continuous and positive. For smooth independent and
identically distributed (i.i.d.) models, the expected regret is
given by

where the remainder tends to zero uniformly in compact sets
in the interior of (see Clarke and Barron, [9, p. 454],
where references are given for suitable conditions on the
family to ensure the regularity of the MLE). This expected
regret expression leads naturally to the choice of equal
to the Jeffreys prior proportional to to achieve
an approximately constant expected regret when is
integrable on The Jeffreys prior is

where This gives, uniformly in sets
interior to the parameter space, a value for the expected regret
of

(8)

and, consequently, this is also the asymptotic value of the
average regret with
As discussed above, if the minimax regret has the same
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asymptotics as this average regret, then the minimax re-
gret and minimax expected regret agree asymptotically and

tends to zero. This asymptotic equivalence
has been identified in the special case of the class of all discrete
memoryless (i.i.d.) sources on a given finite alphabet in Xie
and Barron [56]. Here we show it holds more generally.

The key property of Jeffreys prior [33] for statistics and
information theory is that it is the locally invariant measure
that makes small Kullback–Leibler balls have equal prior
probability (see Hartigan [24, pp. 48–49]).

We next study the NML distribution and its asymptotic
pointwise codelength. In Rissanen [43] conditions are given
(without i.i.d. requirement) such that the code based on the
NML distribution

achieves regret that satisfies asymptotically

That gives the asymptotics of what we have called the para-
metric complexity. The stochastic complexity is the associated
codelength based on the NML distribution, which satisfies

(9)

where the remainder does not depend onand tends to zero
as The derivation in [43] directly examines the
normalization factor in the NML code using a uniform central
limit theorem assumption for the parameter estimates and does
not involve Laplace’s approximation.

The regret of this NML code is seen to agree with the
average regret (8) of the mixture with Jeffreys’ prior, in the
sense that the difference tends to zero, which means that

tends to zero as , providing the
desired asymptotic equivalence of the Jeffreys mixture and
normalized maximum likelihood.

Though and merge in the Kullback–Leibler
sense, the ratio need not converge to one for every data
sequence. Indeed, Laplace’s approximation can be applied to
obtain the pointwise codelength for the mixtures

(10)

where for the remainder to be small it is necessary thatbe
such that is in the interior of Here again a choice
for as Jeffreys’ prior yields the same parametric cost as
in (9), except for the remainder terms

These should have the desired stochastic behavior of
converging to zero in probability for each with interior
to By arranging for modifications to the mixture to better
encode sequences with near the boundary, or with not
close to , it is possible to obtain codelengths under suitable
conditions such that uniformly in they do not exceed the

minimax regret asymptotically. See Xie and Barron [56] and
Takeuchi and Barron [50].

E. Strong Optimality of Stochastic Complexity

We have seen that the solutions to the two minimax op-
timization problems behave in a similar manner, and the
expressions (9) and (10) for the asymptotic codelength have
the built-in terms we would like to see. First, there is the
target value that would be achievable only
with advance knowledge of the maximum-likelihood estimate

Secondly, the remaining terms, dominated by the
ubiquitous penalty on the number of parameters,
express the codelength price of our lack of advance knowledge
of the best Still, since the solutions are based on minimax
criteria (for the regret or expected regret), a nagging suspicion
remains that there might be another codelength which cannot
be beaten except for some very rare sequences or a very
small subset of the models. Reassuringly enough, it was
shown in Rissanen [41] that the common behavior described
above, in fact, is optimal for most models in the sense of
the following theorem, which generalizes Shannon’s noiseless
coding theorem, by showing a positive lower bound on the
redundancy of order for most

Assume that there exist estimates which satisfy the
central limit theorem at each interior point of, such that

converges in distribution (or, more generally,
such that is in probability). Assume
that the boundary of has zero volume. If is any
probability distribution for , then (Rissanen [56]) for each
positive number and for all , except in a set whose
volume goes to zero as

Later Merhav and Feder [37] gave similar conclusions
bounding the measure of the set of models for which the
redundancy is a specified amount less than a target value.
They use the minimax redundancy for the target value without
recourse to parametric regularity assumptions, and they use
any asymptotically least favorable (asymptotically capacity
achieving) prior as the measure. Under the parametric as-
sumptions, Rissanen [42], with later refinements by Bar-
ron and Hengartner [6], shows that the set of parameter
values with has
volume equal to zero, and [6] shows how this conclusion
may be used to strengthen classical statistical results on the
negligibility of superefficient parameter estimation. Barron [2]
obtained strong pointwise lower bounds that hold for almost
every sequence and almost every Related almost sure
results appear in Dawid [17].

Here we show that the technique in [2] yields asymptotic
pointwise regret lower bounds for general codes that coincide
(to within a small amount) with the asymptotic minimax regret
including the constant terms.

Assume for the moment thatis distributed according to
and coded using We recall the basic Markov-type inequality
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and the implication that the codelength difference
is greater than except in a

set of probability less than for all We apply the
inequality with replaced by the mixture distribution

to yield a conclusion for the codelength difference

We find that for any choice of code distribution , the
probability that is less than , so applying

Markov’s inequality to the prior probability

we find that it is not larger than The conclusion we will
use is that the probability that is less than

is less than , except for a set of
with
The Laplace approximation reveals under suitable condi-

tions that

where the remainder tends to zero in probability for
each in the interior of the parameter space. Taketo be the
Jeffreys prior density, which, because of its local invariance
property for small information-theoretic balls, is natural to
quantify the measure of exceptional sets ofThe conclusion
in this case becomes for any competing code distribution
the code regret is lower-bounded by

where tends to zero in -probability, for all in the
interior of the parameter set, except forin a set of Jeffreys
probability less than This shows that asymptotically, the
minimax regret cannot be beaten by much for mostwith
distribution for most

Serendipitously, the basic inequality remains true with
a uniformity over all inside the probability. That is,

remains not greater than ,
provided that the the sequences of distributions for

remain compatible as is increased (Barron
[2, p. 28], Tulcea [51]). Consequently, setting

we see that uniformly in the excess codelength
remains bigger than where has mean

not larger than and it is stochastically dominated
by an exponential random variable Using
the Jeffreys mixture as the standard, it follows that for any
competing compatible sequences of code distributions
we have that for all the codelength is at least

, which shows that the following strong

pointwise lower bound holds -almost surely, and hence
also -almost surely for -almost every

provided the remainder in the Laplace approximation tends
to zero -almost surely, for almost every To quantify the
behavior of we note that and hence

except in a set of with Jeffreys
probability less than

In summary, these results provide a grand generalization
of Shannon’s noiseless coding theorem in setting the limit
to the available codelength and also demonstrating coding
techniques which achieve the limit. For such reasons and due
to the accurate evaluation of the codelength in (9) it was called
in [43] the stochastic complexityof the data string, given the
model class involved.

F. Simplification via Sufficiency

Both the NML and mixture codes have a decomposition,
based on likelihood factorization for sufficient statistics, that
permits insightful simplification of the computations in some
cases. In this section we change the notation for the mem-
bers of the parametric family to or rather than

so as to maintain a clearer distinction from conditional
distributions, given estimators, or other functions of the data.
In particular, in this section, refers to the conditional
distribution given the maximum-likelihood estimator rather
than the likelihood evaluated at the MLE.

For a sufficient statistic the probability of
sequences factors as where
is the conditional probability function for given
(independent of by sufficiency) and

is the probability function for the statistic As a conse-
quence of the factorization, the maximum-likelihood estimate

may be regarded as a function of the sufficient
statistic. Consequently, the maximized likelihood is

at , and the normalizing constant
simplifies to

since

Thus there is a close connection between the NML distribution
for , namely, and the NML distribution
for

at The stochastic complexity, then, splits as
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into the complexity of plus the Shannon codelength for
given In much the same manner, the Bayes mixtures factor
as

where and Bayes optimal codelengths
split as

Of particular interest is the case (which holds true in exponen-
tial families) that the maximum-likelihood estimator is itself a
sufficient statistic In this case, the NML distribution
for is

and the NML distribution for becomes

where which is obtained simply as a density
on the range of the parameter estimator by plugging into the
distribution of the estimator the same value for the estimate as
for the parameter, with normalization constant
For example, in the Bernoulli model the NML distribution
of the relative frequency of ones is

with

which by Stirling’s formula can be shown to be close to the
Jeffreys Beta distribution for internal to . In
the Gaussian model studied in Section V, the NML distribution
for the sufficient statistic subject to certain constraints on the
parameters is shown to be exactly Jeffreys’ distribution.

IV. I NFERENCE

A. Predictive Coding and Estimation

A given joint distribution on -tuples can
be written in the predictive or sequential form

(11)

The converse is also true; that is, a joint distribution
can be constructed by specifying the predictive distributions

For a given joint distribution , the factorization in (11)
implies a predictive implementation of coding based on
that encodes one by one in that order. The
codelength of is After the transmission of

, it will be known both to the sender and the receiver, and
can be transmitted using the predictive distribution ,

which results in a codelength At time the
first data points are known to the
sender and the receiver, and can be used to transmit

, which results in the codelength In other
words,

(12)

which means that the total codelength for encodingusing
is the same as encoding the symbols one by ony using

the predictive or conditional distribution
If we now postulate that the underlying source distribution is

, the expected redundancy ofwith respect to , which
is different from the expected regret considered in Section III,
is the Kullback–Leibler divergence betweenand

This identity links the fundamental quantity,expected re-
dundancy, from coding theory with statistical estimation, be-
cause the right-hand side is precisely the accumulated pre-
diction error of the Kullback–Leibler risk of the sequence

This risk is equivalent to
the mean squared error (MSE) when both and are
Gaussian distributions with the same covariance structure.
In general, when and are bounded away from zero,
the Kullback–Leibler risk has a close connection with more
traditional statistical estimation measures such as the square
of the norm (MSE) and the Hellinger norm.

When is the mixture over a
regular parametric family

of parameters with the mixing distribution or prior, the th
summand in the accumulated risk is the risk of the Bayesian
predictive distribution

where is the posterior distribution of given In
coding again, in order to build a code for predictively, the
predictive distribution allows us to revise the code
in light of what we have learned from data prior to time
For example, frequently appearing symbols should be assigned
short codewords and less frequent ones long codewords. This
predictive form lends itself naturally to the on-line adaptation
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of coding or estimation to the underlying source. Moreover,
it has an intimate connection with the prequential approach to
statistical inference as advocated by Dawid, [15], [16].

Let be built on the plug-in predictive distribution based
on an estimator , which often is a suitably modified
maximum-likelihood estimator to avoid singular probabilities

Then the th summand in the accumulated risk is

which is approximately if is an efficient sequence
of estimators. Summing up gives

and this is exactly the leading term in the parametric complex-
ity at sample size Hence, whether we consider estimation or
predictive coding or, for that matter, any form of coding, we
meet this same optimal leading term in the regular
parametric case, and it plays a fundamental role in both.

To bolster the connection given here between the indi-
vidual risk of efficient estimators of order and the
optimal cumulative risk or redundancy of order ,
we mention here that classic results on negligibility of the set
of parameter values for which an estimator is superefficient
(LeCam [35] assuming bounded loss) are extended in Barron
and Hengartner [6] to the Kullback–Leibler loss using results
of Rissanen [42] on the negligibility of the set of parame-
ter values with coding redundancy asymptotically less than

Frequently, we wish to fit models where the number of
parameters is not fixed, such as the class of all histograms.
For such the th term in the accumulated risk

where denotes the maximium-likelihood estimate
of the number of parameters in , behaves under
suitable smoothness conditions as for some
Then the accumulated risk itself behaves as

and may be called thenonparametric complexity per
sampleat sample size

B. Consistency of the MDL Order Estimates

A test for any model selection and estimation procedure is
to apply it to the selection of a model class and then analyze
the result under the presumption that the data are generated by
a model in one of the classes. It is to the credit of the MDL
principle that the model-selection criteria derived from it are
consistent although there are obviously other ways to devise
directly consistent model-selection criteria, see, for example,
Hannan [22] and Merhav and Ziv [36].

Consider first a family of parametric model classes, one for
each in a countable set

If we use the mixture model for each to represent the
class, we need to minimize

where

and

Denote the data-generating class by The MDL principle
identifies with probability tending to . That is, the
MDL prinple leads to consistent-order selection criteria, on
average, provided that are singular relative to on the
space of infinite sequences. This is true, for example, if the

are distinct stationary and ergodic distributions, or they
are mixtures of such distributions, provided that the priors
induced on the space of distributions are mutually singular.
For instance, we may have parametric families of i.i.d., or
Markov, distributions, where the parameter spaces are of
different dimensions and absolutely continuous prior densities
are assigned to each dimension.

The proof is simple, [2], [5]. Let be the mixture of
except for

where

Because all the models in the summation are singular relative
to must be mutually singular with It follows
that the log-likelihood ratio or redundancy

tends almost surely to infinity, Doob [20]. We find that with
probability one, for large

The second inequality holds, because the sum

is larger than the maximum of the summands. Thus the
minimizing distribution is the distribution from the correct
model class as tends to infinity and under probability

, provided that are singular relative to on the
infinite-sequence space, that is,
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Moreover, for all large This implies that
for all large and hence that as

for -almost all
In many situations, such as nested exponential families,

the above result holds for all The proof is
more involved, but gives more insight. Roughly speaking,
the mixture version of the MDL is an approximate penalized
likelihood criterion just as the two-stage MDL, which asymp-
totically behaves as the Bayesian Information Criterion (BIC)
of Schwartz [49].

For large, in probability or almost surely

From classical parametric estimation theory for regular fami-
lies, such as nested exponential families, we have the following
asymptotic expansion:

if
if

This gives the consistency of the mixture MDL for all
Since other forms of the MDL share the same asymptotic

expression with the mixture, they also identify the correct
model with probability tending to as the sample size gets
large. Consistency results for the predictive MDL principle
can be found in [15], [17], and [32] for regression models,
[23], and [31] for time-series models, and [53] for stochastic
regression models. For exponential families, [27] gives a
consistency result for BIC. Predictive, two-stage, and mixture
forms of the MDL principle are studied and compared in
[48] in terms of misfit probabilities and in two prediction
frameworks for the regression model. It is worth noting that
searching through all the subsets to find codelengthscan
be a nontrivial task on its own.

We note that for consistency any satisfying Kraft’s
inequality is acceptable. However, for good finite sample be-
havior, as well as asymptotic behavior of risk and redundancy,
one should pay closer attention to the issue of choice of
description length of the models. The index of resolvability
provides a means to gauge, in advance of observing the data,
what sort of accuracy of estimation and data compression is to
be expected for various hypothetical distributions, and thereby
yields guidance in the choice of the model descriptions.

C. Resolvability

Perhaps more relevant than consistency of a selected model,
which as formulated above would presume that the data are
actually generated by a model in one of the candidate classes,
is the demonstration that the MDL criterion is expected to give
a suitable tradeoff between accuracy and complexity relative to
the sample size, whether or not the models considered provide
an exact representation of a data generating distribution. The
index of resolvability from Barron and Cover [5] provides a
tool for this analysis.

Consider first the case that the description length entails
multiple stages, yielding a minimum description length of the
form

where is the codelength for the class index in ,
the term is the codelength for parameter values of
precision in a quantized parameter space , and, fi-
nally, is the codelength for the data given the
described class index and parameter values. (Typically, the
precision is taken to be of order so as to optimize the
tradeoff between the terms in the description length, yielding

as a key component of .) Minimizing the
description length in such a multistage code yields both a
model selection by MDL and a parameter estimate(close
to the maximum-likelihood estimate) in the selected family.

As in [5], it can be conceptually simpler to think of the pair
and as together specifying a model index, saySelection

and estimation of provides an estimate Then the above
minimization is a special case of the following minimum
description length formulation, where :

The correspondingindex of resolvabilityof a distribution
by the list of models with sample size is defined by

which expresses, in the form of the minimum expected de-
scription length per sample, the intrinsic tradeoff between
Kullback–Leibler approximation error and the complexity rel-
ative to the sample size.

It is easy to see that upper-bounds the expected
redundancy per sample, which is

It is also shown in Barron and Cover [5] that if the
models are i.i.d. and the data are indeed i.i.d. with
respect to , then the cumulative distribution corresponding
to converges (weakly) to in probability, provided

Moreover, if are modified to
satisfy a somewhat more stringent summability requirement

for some positive , then the rate of conver-
gence of to is bounded by the index of resolvability,
in the sense that

(13)

in probability, where

is the squared Hellinger norm between distributions with
densities and These bounds are used in [5] and [7] to
derive convergence rates in nonparametric settings with the
use of sequences of parametric models of size selected by
MDL.
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For description length based on a mixture model
analogous performance bounds are available

from a related quantity. In particular, the index of resolvability
of a distribution using the mixture of models
with prior and any parameter set (usually chosen as a
neighborhood around ) and sample size is defined by

which when optimized over parameter setsyields Kull-
back–Leibler balls

and index of resolvability

As shown in [3] (see also [4], [6], [29], and [57]), this quantity
provides for the mixture code an upper bound to the expected
redundancy per sample and thereby it also provides and
upper bound to the Cesaro average of the Kullback–Leibler
risk of the Bayes predictive estimators already discussed in
Section IV-A.

Various parametric and nonparametric examples of deter-
mination of risk bounds of MDL estimators are possible as
demonstrated in the cited literature; here we shall be content
to give, in the next subsection, a general determination of the
minimax rates in nonparametric settings.

D. Optimal Rate Minimax Estimation and Mixture Coding

In Section III we used Laplace’s approximation method to
obtain the behavior of the mixture distributions as solutions to
the minimax mean redundancy problem for parametric models.
In this subsection, we base our approach on a mixture code
(or distribution) over a finite net to provide a unified approach
to the upper and lower bounds on the optimal estimation
rate in the minimax density estimation paradigm. However,
the corresponding NML results in this nonparametric density
estimation problem are yet to be developed, and NML’s
connection to the mixture distributions in this context is yet
to be explored.

Fano’s inequality from Information Theory has always been
used to derive the lower bounds [8], [18], [25], [26], [58].
MDL-based density estimators now provide refinement to
the lower bound and a matching upper bound as shown
in Yang and Barron [57], revealing a Kolmogorov capacity
characterization of the minimax values of risk and redundancy.

Consider a class of i.i.d. densities, for which the dis-
tances between pairs of densities forsatisfy

for and in This equivalence is satisfied by
many, if not all, smooth function classes. The advantage of

is that it satisfies the triangle inequality while does not.
However, brings in clean information-theoretic identities
and inequalities. Taking advantage of the equivalence of
and , we can switch between and when appropriate
to obtain a clear picture on optimal rate minimax estimation.
Metric-entropy nets into which the estimation problem will
be transferred turn out to be useful. Because such nets are

finite, information-theoretic results such as Fano’s inequality
are easy to apply.

We are interested in the minimax estimation rates

and

where the minimum is over estimators based on an i.i.d.
sample of size drawn from , the divergence is evaluated
by averaging with respect to , independent of the sample,
and is taking the expected value of as a function of
the sample from Morever, we are interested in the minimax
nonparametric complexity (redundancy)

which, in accordance with Section IV-A, is the same as the
minimax cumulative Kullback–Leibler risk. Here

and the minimum is taken over all joint probability densities
on (which provide codes for in ). For a recent

treatment of asymptotics and metric entropy characterization
of the latter quantity see Haussler and Opper [30]. Here,
following Yang and Barron [57], we focus on the relation-
ship of the minimax risk to the nonparametric complexity
and the Kolmogorov metric entropy as revealed through the
resolvability and an improved application of Fano’s inequality.

Let be the Kolmogorov metric entropy of the -
net of in terms of or That is, we need

number of balls to cover the class and
no fewer. We use the code corresponding to the uniform
mixture distribution of the centers in the -cover.
We examine the redundancy of the mixture with respect to
the -net

which from (13) is also the accumulated Kullback–Leibler
prediction error of

This is a crucial quantity in both upper and lower bounds
on the minimax estimation error. It also bounds from above
the risk of the mixture-induced density estimator

where

is the Cesaro average of the predictive density estimator
induced by the mixture density on the -net.

Moreover, there is a bound on in terms of an
index of resolvability. Let be the closest member to
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in Then , and

(14)

It follows that

(15)

The same order upper bound holds for a minimum complexity
estimator as shown in Barron and Cover [5], in which one
minimizes a two-stage codelength overin

By adjusting the choice of these upper bounds yield the
minimax rate for the redundancy and consequently for the
cumulative Kullback–Leibler risk of predictive estimation.

If the function class is sufficiently large (in the sense
that , achieving is of the same order as, as

tends to zero), then the bounds here also yield the minimax
rate for the estimation of in the traditional noncumulative
formulation.

Indeed, by a now standard Information Theory technique
introduced to the statistics community by Hasminskii [25] (see
also [8], [18], [26], [57], and [58]) the estimation error in terms
of a metric can be bounded from below by Fano’s inequality
via the probability of testing error on the finite-net. Here we
choose the net as a maximal packing set in which we
have the largest number of densities inthat can be separated
by in the Hellinger metric (consequently, it is also a cover
in the sense that every in is within of a density in the
net). For any given estimator of , by consideration of the
estimator which replaces by the closest density in the
net and use of the triangle inequality for Hellinger distance,
one has that

Then by application of Fano’s inequality there is a positive
constant such that for any estimator

where is the mutual information between and
when takes a uniform distribution on the -net and the
conditional distribution of , given a particular value
in the net, is Now as we recall this
mutual information has been well studied, and ever since the
development of Fano’s inequality in the 1950’s the precise
nature of the capacity (the maximum value of the information
over choices of input distribution) has played a central role in
applications of Fano’s inequality in Information Theory [11].
However, prior to reference [57], the mutual information in
these statistical bounds had been bounded from above by the
Kullback–Leibler diameter

To yield satisfactory rate bounds, from what would otherwise
be a crude bound on mutual information, required first restrict-
ing to a subset of of special structure in which the
diameter is of the same order as the separation and the
same order as its log-cardinality (typically, via a hypercube
construction), plus a hope that the minimax rate on the subset
would be as large as on the original family , and the
existence of such a special structure was a condition of the
theory, so that application of that theory requires the invention
of a hypercube-like construction in each case. However, the
requirement of such construction can be easily bypassed.

Indeed, since is the mimimum Bayes average redun-
dancy with respect to a prior, it is not larger than the maximum
redundancy of any given procedure. That is,

Hence for any joint distribution on

For to be chosen later, take as the
uniform mixture over the net to get

It follows from the resolvability bound (14) that

Hence

It is clear that the acts as the critical index of
resolvability since it appears in both upper and lower bounds
on the (or ) error in density estimation. It determines
the minimax rate when as follows. Set to achieve

, thereby achieving the minimum order for
, and then choose somewhat smaller, but of

the same order, such that

Then we have

Since the upper and lower bounds are of the same order we
conclude that we have characterized the asymptotic rate of the
minimax value.

Indeed, we find there is asymptotic agreement among sev-
eral fundamental quantities: the nonparametric complexity
(redundancy) per symbol
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the Shannon capacity

the Kolmogorov capacity , the critical radius , the
minimax Cesaro average prediction risk

the minimax Kullback–Leibler risk, and the minimax squared
Hellinger risk based on a sample of size

These metric entropy characterizations of minimax rate in a
nonparametric class determine not only the minimax rate
but also the rate achievable for most functions in the class, in
the sense that for any sequence of estimators (or for any code
distribution) the subclass of functions estimated at a better rate
have a cover of asymptotically negligible size in comparison
to This is shown in Barron and Hengartner [6], extending
the arguments of Rissanen [42] and in [45], and can also be
shown by the methods of Merhav and Feder [37].

In the case of a Lipschitz or Sobolev class of functions on
a bounded set, with the order of smoothness, and several
other function classes discussed in [57], the metric entropy is
of order for the metric and this remains the
order of the metric entropy of the subclass of densities that are
bounded and are bounded away from zero using or
for the distance. This leads to the optimal density estimation
rate in terms of or of , which remains the
optimal rate also in mean integrated squared error even if the
densities are not bounded away from zero.

V. APPLICATIONS

We discuss three applications of the MDL principle, the first
on coding, the second on linear Gaussian regression, and the
third on density estimation. As often is the case in nontrivial
applications of the principle the model classes suggested
by the nature of the applications turn out to be too large
giving an infinite parametric or nonparametric complexity. A
problem then arises regarding how to carve out a relevant
subclass and how to construct a representative for it, the ideal
being the stochastic complexity by the formula (9). However,
computational issues often force us to use suitable mixtures
or even combinations of the two perhaps together with the
predictive method.

A. Universal Coding

Despite the close connection between the MDL principle
and coding, the theory of universal coding and the code designs
were developed without cognizance of the principle. This is
perhaps because most universal codes, such as the widely used
codes based on Lempel–Ziv incremental parsing, are predictive
by nature, which means that there is no codebook that needs
to be encoded, and hence the connection between the code
redundancy and the number of bits needed to transmit the
codebook was not made explicit until the emergence of a
universal code based on context models, Rissanen [40]. We
discuss briefly this latter type of universal codes.

Fig. 1. Context tree for string00100.

An obvious way to design a universal code for data modeled
by a finite-state machine is to estimate the parameters from
the data, including their number and the associated structure,
and then use the result to encode the data. A particularly
convenient way to do it is by an Arithmetic Code, see, e.g.,
Rissanen and Langdon [39], which is capable of encoding
the individual symbols, even if they are binary, without the
need to block them as required in the conventional Huffman
codes. However, a direct execution of this program would
require several passes through the data, which would result in
an awkward code. In [40], an algorithm, called Context, was
described which collects in a growing tree recursively, symbol
for symbol, all the symbol occurrence counts in virtually all
possible configurations of the immediately preceding symbols,
called contexts, that the data string has. Hence, for instance,
in the string the symbol value of the fifth symbol

occurs in the empty context four times. Out of these
the preceding symbol is twice, or, as we say, it occurs in
the context two times, and further out of these occurrences
the symbol preceding the-context is once. In other words,
the substring occurs once. Since extending the context
to the left reduces the set of symbol occurrences it will be
convenient to read the contexts from right to left. And this
same phenomenon allows us to organize the nested sets of
contexts in a binary tree, which can be grown recursively
while also collecting the symbol occurrence counts. In such
a representation, each node corresponds to a context, the root,
in particular, to the empty context. We first spell out the
relatively simple tree-growing algorithm, and show the tree
obtained from the string in Fig. 1. We then describe
how the special “encoding” nodes are chosen by use of the
predictive version of the MDL principle described in Section
IV, and, finally, we discuss to what extent the so-obtained
universal model and data compression system achieve the ideal
as defined in (9).

For the binary alphabet the tree-growing algorithm con-
structs a tree for data string with
two counts at each node indicating the numbers of
occurrences of the two symbols and at the context
identified with the node, as follows.

1) Initialize as the -node tree with counts .
2) Having the tree , read the next symbol

“Climb” the tree along the path into the past
starting at the root and taking the branch
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specified by , and so on. At each node visited update
the count by . Climb until a node is reached whose
count after the update.

3) If the node is an internal node return to step 2). But if
the node is a leaf, add two son nodes and initialize their
counts to and return to step 2).

Because of the initialization the counts exceed the real
occurrence counts by unity, and they satisfy the important
condition

(16)

where and are the son nodes of, whenever the sons’
counts and are greater than.

Suppose we have constructed the treeand intend to
encode the symbol The values of the past symbols

when read in reverse, define a path from
the root through consecutive nodes, each having the two counts
with which the symbol could be encoded. Which node along
this path should we choose? A quite convenient way is to apply
the MDL principle and to search for the earliest nodealong
this path where the sum of the sons’ stochastic complexity
of the substrings of , defined by their symbol occurrences,
is larger than that of Indeed, the stochastic complexity of
the symbol occurrences at each node defines an ideal code
length for the same symbols, and the node comparison is fair,
because by the condition (16) each symbol occurring at the
father node also occurs at one of the son nodes. The symbol
occurrences at each node or contextmay be viewed as having
being generated by a Bernoulli source, and we can apply (9)
to compute the stochastic complexity, written here as , to
a good approximation as follows:

(17)

Instead of computing the stochastic complexities for every
symbol occurrence by this formula it is much simpler to do
it recursively as follows:

(18)

and the counts are the ones when the symboloccurred at
the node This recursive implementation, when cumulated
over all the past symbol occurrences at this node, gives to
within the last term the stochastic complexity in (17). To get
a universal code we encode the symbol with the ideal
codelength at the selected node , which can
be approximated with an arithmetic code as well as desired.

Collectively, all the special “encoding” nodes carve out
from the tree a complete subtree , which defines aTree
Machine(Weinbergeret al. [54]). If the data are generated by
someTree Machinein a class large enough to include the set of
Markov chains as specialTree Machines, then with a somewhat
more elaborated rule for selecting the encoding nodes the
algorithm was shown to find the data-generating machine
almost surely. (The algorithm given above differs slightly from

the one in the cited reference but the results proven still hold.)
Moreover, the ideal codelength for long strings defined by
the resulting universal model, given as ,
differs from the stochastic complexity in (9) for the considered
class of models by or less. It cannot, however, agree
with it completely, because the algorithm models the data as
being generated by a collection of Bernoulli sources. In reality,
the various Bernoulli processes at the states of a, say, Markov
chain, are linked by the state transitions, which means that the
stochastic complexity of a string, relative to Markov chains
is smaller than the one defined by the ideal codelength of the
universal Context algorithm. The same of course is true of the
class ofTree Machines.

We conclude this subsection by mentioning another uni-
versal code (Willemset al. [55]), where noTree Machine
needs to be found. Instead, by an algorithm one can compute
the weighted sum over all complete subtrees ofof the
probabilities assigned to by the leaves of the subtrees.
When the weights are taken as “prior” probabilities we get
a mixture of allTree Machinemodels, each corresponding to
a complete subtree. Again, since the codelengths defined by
the complete subtrees differ from their stochastic complexities,
the codelength of the mixture, which is comparable to that
obtained with algorithm Context, will be larger than the
stochastic complexity of data-generatingTree Machines.

B. Linear Regression

We consider the basic linear regression problem, where we
have data of type for and
we wish to learn how the values of the regressionvariable

depend on the values of the regressor
variables There may be a large number of the regressor
variables, and the problem of interest is to find out which
subset of them may be regarded to be the most important.
This is clearly a very difficult problem, because not only is it
necessary to search through subsets but we must also be
able to compare the performance of subsets of different sizes.
Traditionally, the selection is done by hypothesis testing or by
a variety of criteria such as AIC, BIC, [1], [49], and cross
validation. They are approximations to prediction errors or to
Bayes model selection criterion but they are not derived from
any principle outside the model selection problem itself. We
shall apply the MDL principle as the criterion, and the problem
remains to find that subset of, say, regressor variables which
permit the shortest encoding of the observed values of the
regression variables , given the values of the subset of the
regressor variables.

For small values of , a complete search of the
subsets for is possible, but for a large value
we have to settle for a locally optimal subset. One rather
convenient way is to sort the variables by the so-called
“greedy” algorithm, which finds first the best single regressor
variable, then the best partner, and so on, one at a time. In
order to simplify the notations we label the regressor variables
so that the most important is , the next most important ,
and so on, so that we need to find the valuesuch that the
subset is the best as determined by the MDL
criterion.
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We fit a linear model of type

(19)

where the prime denotes transposition, and for the computation
of the required codelengths the deviationsare modeled as
samples from an i.i.d. Gaussian process of zero mean and
variance , also as a parameter. In such a model, the
response data , regarded as a column vector , is
also normally distributed with the density function

(20)

where is the matrix defined by the values of
the regressor variables. Write , which is
taken to be positive definite. The development until the very
end will be for a fixed value of , and we drop the subindex

in the matrices above as well as in the parameters. The
maximum-likelihood solution of the parameters is given by

(21)

(22)

We next consider the NML density function (3)

(23)

where is restricted to the set

(24)

In this the lower bound is determined by the precision with
which the data are written. This is because we use the normal
density function (20) to model the data and approximate the
induced probability of a data point, written to a precision ,
by times the density at For an adequate approximation,

should be a fraction of the smallest value ofof interest,
namely, , which, in turn, has to be no larger than Put

The numerator in (23) has a very simple form

(25)

and the problem is to evaluate the integral in the denominator.
In [19], Dom evaluated such an integral in a domain that
also restricts the range of the estimatesto a hypercube.
He did the evaluation in a direct manner using a coordinate
transformation with its Jacobian. As discussed in Subsection
III-D we can do it more simply and, more importantly, for
the given simpler domain by using the facts thatand are
sufficient statistics for the family of normal models given, and
that they are independent by Fisher’s lemma. Hence if we
with rewrite in order to
avoid confusion, then we have first the factorization of the
joint density function for and , which, of course, is

still , as the product of the marginal density ofand
the conditional density of given

(26)

By the sufficiency of the statistic we also have

(27)

which shows that is actually indepen-
dent of Moreover,

(28)

where is normal with mean and covariance
while is obtained from the distribution for with

degrees of freedom.
Integrating the conditional over

such that equals any fixed value yields unity.
Therefore, with

we get from the expression for the density function in (28)

(29)

(30)

(31)

where is the volume of and

(32)

We then have the NML density function itself

(33)

(34)

Equations (34) and (32) give the stochastic complexity in
exact form. However, the evaluation of the gamma function
has to be done from an approximation formula, such as
Stirling’s formula. When this is done the stochastic complexity
reduces to the general formula (9) with a sharper estimate for
the remainder term For this the Fisher information is
needed, which is given by and the
integral of its square root by

(35)

We see in passing that the density function agrees with

(36)
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If we then apply Stirling’s formula to the gamma function in
(32) we get

(37)

where

in agreement with the general formula (9) except that the term
gets sharpened.

This formula can be used as a criterion for selecting
provided the regressor variables are already sorted so that
we only want to find the first most important ones. This
is because we may safely encode eachwith the fixed
codelength , or if no other upper bound exists.
If by contrast the variables are not sorted by importance we
have to add to the criterion the codelength needed to
encode each subset considered.

It is of some interest to compare the stochastic complexity
derived with the mixture density with respect to Jeffreys’ prior

divided by its integral, which, however, cannot be
taken as in (35) but it must be computed over a range of both

and The latter can be taken as above, but the former will
have to be a set such that it includesin its interior. A natural
choice is a -dimensional hyperball or an ellipsoid defined
by the matrix of volume Jeffreys’ prior, then, is given
by in (34). We need to calculate the mixture

(38)

(39)

(40)

The first inequality comes from the fact thatdoes not capture
all of the probability mass of the normal density. The second
approximation is better; only the small probability mass falling
in the initial interval of the inverse gamma distribution
for is excluded. If we apply Stirling’s formula to the gamma
function we get

Rem (41)

whereRem is a term similar to in (37). For fixed
and large the two criteria are essentially equivalent. This

is because then the fixed setwill include virtually all of the

probability mass of the normal density function in the mixure
centered at , and the left-hand side of (41) will exceed the
right-hand side only slightly. However, for small, the set
will have to be taken relatively large to capture most of the
said probability mass, which means that will be a lot
smaller than , and the mixture criterion will not be as
sharp as the one provided by the NML density.

C. Density Estimation

In this section we discuss a simple density estimator based
on histograms. Consider a histogram density function on the
unit interval with equal-length bins, defined by the bin
probabilities satisfying

(42)

where denotes the index of the bin wherefalls.
This extends to sequences by independence. Write

the resulting joint density function as We are
interested in calculating the NML density by use of (9). The
Fisher information is given by , and the
integral of its square root, which is of Dirichlet’s type, is given
by Equation (9) then gives

(43)

where the components of are and
denoting the number of data points from that fall into the
th bin. Just as in the previous subsection one can obtain

sharper estimates for the remainder than , but we will
not need them.

Next, consider the mixture

(44)

where

(45)

and for large values of This number comes
from analysis done in [45], where such a value for the number
of bins was shown to be optimal asymptotically, when the ideal
codelength for a predictive histogram estimator, equivalent to

, is minimized. For small values of the choice of
could be made by the desired smoothness.

This estimator has rather remarkable properties. If the data
are samples from some histogram with the number of bins
less than , then the corresponding weight gets greatly
emphasized, and the mixture behaves like the data-generating
histogram. If again the data are generated by a smooth density
function, then the mixture will also produce a surprisingly
smooth estimate. To illustrate we took a test case and generated
400 data points by sampling a two-bin histogram on the unit
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Fig. 2. Mixture and ten-bin histograms.

Fig. 3. A mixture histogram.

interval, where the first half has the probability mass and
the second , so that at the middle there is an abrupt change.
We took Fig. 2 shows the result, dotted line,
together with a ten-bin histogram, dashed line. The mixture
nails down the two-bin data generating density just about
perfectly, while the ten-bin histogram shows rather severe
swings.

In Fig. 3 we have depicted the mixture density function with
for another data set of size , not generated by

any density function. The length of the steps is seen to be short
in the rapidly changing regions of data density, which gives the
illusion of smoothness and flexibility. Generating a continuous
density function by connecting the dots with a curve would be
easy, but to do so would require prior knowledge not present
in the discrete data.
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