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Abstract—We review the principles of Minimum Description data, and in order to be able to decode, the decoder must
Length and Stochastic Complexity as used in data compression pe given this distribution, which permits the construction of

and statistical modeling. Stochastic complexity is formulated as the code, the “codebook,” and the particular codeword for the
the solution to optimum universal coding problems extending : ’

Shannon’s basic source coding theorem. The normalized maxi- observed data. It. .is thg s’Fatis'ticians for whom the connection
mized likelihood, mixture, and predictive codings are each shown between probability distributions and codelengths tends to
to achieve the stochastic complexity to within asymptotically appear strange and on the surface of it nonexisting. And yet,
vanishing terms. We assess the performance of the minimum eyen a statistician must admit, however grudgingly, that the

description length criterion both from the vantage point of i ¢inie seems to incorporate in a direct way some of the
quality of data compression and accuracy of statistical inference.

Context tree modeling, density estimation, and model selection in Most fundamental, albeit elusive, ideas the founding fathers of

Gaussian linear regression serve as examples. statistical inference have been groping for, like the objective of
Index Terms—Complexity, compression, estimation, inference, StatIS.tICS Is to reduce data, Fisher E,Zl]' and that W? mgst not
universal modeling. overfit data by too complex models.” Perhaps, a statistician can

take solace in the fact that by the fundamental Kraft inequality,
stated below, a codelength is just another way to express a
l. INTRODUCTION probabil_it_y distrib_ution, SO tr_]at the MDL prin_ciple becqmes
) ) ) the familiar Maximum Likelihood (ML) principle—albeit a
N this expository paper we discuss the so-called MDbIobaI one.
. (Minimum .D(_escri.ption Length) principle for model selec- Simple and natural as the MDL principle may be, it nev-
tion and statistical inference in general. In broad terms theiheless provides a profound change in the way one should

central idea of this principle is first to represent an entire clag§ink ahout statistical problems. About the data themselves, it

of probability distributions as models by a single “universalyy necessary to make the usual assumption that they form a

repres_entative model Sl_Jch that it would be able to imitate tgﬁmple from an imagined population, which is something that
behavior of any model in the class. The best model class {914 be impossible to verify. After all, we are able to design
a set of observed data, then, is the one whose representaliy§es for any data that on the whole can be finitely described.

permits the shortest coding of the data. However, ever since Shannon’s work we know how to design

There are a number of ways to _cpnstruct representatw_ God codes for data generated by sampling a probability
of model classes or, what is sufficient, to compute thel

! istribution, and the same codes will work reasonably well
codelength. The first and the crudest of them, Wallace a gsen for data which are not generated that way, provided
Boulton [52], Rissanen [38], is to encode the data wi

: : . L at they have the kinds of restrictions predicated by the
a (parametric) model defined by the maximum-likelihoo istribution, at least to some degree. Indeed, the greater
estimates, quantized optimally to a finite precision, and th ' '

de th timates b f de. F d ith s degree is the closer the resulting codelength for the
encode the estimates by a prelix code. For a reader With i, il pe to the optimal for the distribution with which

knowledge of information theory there is nothing startling?e code was designed. This seems to imply that we are
!?[g;f()bffglrogiblgn ac?r?jl:r igcgez p;oc;edtcj)rct)ed ag:d;hiofr:jnz;' Ut pushing the problem to the selection of the assumed
Ithe éode mus’t Ic:a ture the stalt?sticalgcharacteristics of robability distribution, which is exactly what we do. The
P pl%bability distributions serve us as a means by which to
) ) ) ] express the regular features in the data; in other words, they
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error criteria, be they in terms of probability of errors or somi the class. The first problem calls for a code, definedy
distance measure such as the absolute or squared errors,vdainh minimizes the difference given maximized ovweand
be expressed in terms of codelength, and there is no conficin the second problem we seélx) which minimizes the
between the two [41], [44]. mean difference. For smooth model classes the solutions to
According to this program, the problems of modeling anthese two problems turn out to be virtually the same, and the
inference, then, are not to estimate any “true” data generatimgnimized difference may be interpreted as tha@ametric
distribution with which to do inference, but to search focomplexity of the model class involved at the given data
good probability models for the data, where the goodnesequence of lengtlh. Again generalizing Shannon’s basic
can be measured in terms of codelength. Such a view rekult the solutions will also be shortest possible for almost
statistics also conforms nicely with the theory of algorithmiall typical strings generated by almost all models in the class.
complexity, Solomonoff [47], Kolmogorov [34], and can drawin analogy with the algorithmic or Kolmogorov complexity,
on its startling finding about the ultimate limitation on althe codelength that differs from the ideal by the parametric
statistical inference, namely, that there is no “mechanical,” i.€gmplexity is calledstochastic complexity
algorithmic, way to find the “best” model of data among all Although this paper is tutorial in nature we have decided
computable models (let alone the metaphysical “true” modefjot to restrict it to an elementary introduction, only, but also
Although the MDL principle stands on its own and canndb survey some of the more advanced techniques inspired by
be tampered by findings in analysis, it still leaves a role fahe theory with the intent to demonstrate how the new ideas
probability and coding theories albeit a different one: Analysiontribute to the analysis of the central problems arising in
can provide support for the principle or pinpoint abnormahodeling. These include the demonstration of the desirable
behavior, and help provide designs for good codes for dgieoperty of the MDL principle that, if we apply it to data
generated by various probability models and classes of thegenerated by some unknown model in the considered class,
It happens that such a code design follows a remarkalthen the MDL estimates of both the parameters and their
uniform pattern, which starts with Shannon’s basic case néimber are consistent; i.e., that the estimates converge and the
a fixed known data-generating probability distribution, salymit specifies the data generating model. We also discuss the
P(z), wherez denotes a data string to be encoded. In thidose connection between statistical inference and an important
case a meaningful optimization problem is to find a code thptedictive way to do coding, which lends itself to coding data
has the minimum mean length subject to the restriction that tredative to nonparametric models. We conclude the paper with
codeword lengthé(z) satisfy the fundamental Kraft inequalityapplications of the MDL principle to universal coding, linear
—t(a) regression where the stochastic complexity can be calculated
22 =~ <1 (1) exactly, and density estimation.

If we dispose of the somewhat irrelevant restriction that the
codeword lengths must be natural numbers, the minimiza-
tion problem admits the remarkable solution that siddmal
codeword lengths must coincide with the numbefsg P(z), At two extremes of statistical modeling are issues of para-
giving the entropy as the minimized mean length. Hence, theetric inference in a given, perhaps small, finite-dimensional
optimal codelengths mimic the data generating distributiofamily or model class{ P(z|6): § € © C R} and issues
Although the MDL principle requires us to find the lengttof nonparametric inference in infinite-dimensional function
of the shortest codeword for the actually observed sequenciasses (e.g., of density or regression curves). The MDL
rather than a mean length, it is also true that no code exigtsnciple has implications for each motivated by the aim of
where the probability of the set of codewords that are shori@moviding a good statistical summary of data. The principle
than the optimal less, —logP(z) — ¢, exceeds27°. In is especially useful in the middle ground, where a variety
other words, the codewords of the optimal code are practically plausible familiesAM; = {Pi(z]0): 6 € ©, C R%*}

the shortest for almost all “typical” strings generated by thler £ € K are available, and one seeks to automate the
distribution. selection of an estimaté based on data = (z1, -, %,).

As stated above, the focus of interest in the MDL principl# is clear that both extremes of fixed small finite-dimensional
is in various classes of probability distributions as modelsr infinite-dimensional families have their limitations. Whereas
which together with the modeling problems they create ane statistics these limitations and their resolutions via penalized
discussed first. For such classes we consider optimizatidsk criteria are often cast in terms of the bias and variance
problems that generalize the basic Shannon problem abawvadeoff, or the approximation and estimation tradeoff, we will
If Q(z) denotes the sought-for universal representative ofsaek here what we regard as a more intrinsic characterization
model class{P(z|6)} under study, wherd is a parameter of the quality of the summarization.

Il. MODELING PRELUDE

vector, the quantity of interest is the difference In the case that there is a sequeneh,, k € K, of classes
1 P(z]6) available for modeling the data, the MDL principle advocates a
log —log =log ——= choicek that optimizes a codelengthg 1/Q; (z)+1(k). Here

log1/@Q;(z) is a codelength for description of data using the
between the codeword length of the representative and that oiddel classM;, in accordance with optimal coding criteria
tained with Shannon’s codes defined by the memB¥igd) discussed below, anl{%) is a codelength for the description
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of the classk. For each model class, the codelength criteriocapture near optimality for most sequences. Neither do we
involves in an intrinsic way a tradeoff between likelihoodeek the optimum among all computable distributions but only
log1/P.(z|6) and a parametric complexity associated with theelative to a given list of models.

class My that models data of the given length To optimize

this tradeoff, we are led to the maximum-likelihood estimator [II. OPTIMAL CODING METHODS

6 = #(z) and a parametric complexity that is the minimum

additional coding cost,, » necessary folog 1/Pk(£|é)+cn7k A. Shannon Coding

to be the length of a uniquely decodable code foe X' Letz € X refer to data to be described and modeled, where

The MDL estimatork achieves minimum total codelength& is a given countable set. Typically we have the Zet: S”
log 1/ P (z]0) + Cn i T .l(k)' . . . of lengthn sequences = (z1, -+, z,) for z; € S from some

Rather than be|_ng mterr—_zsted n t_he p'ts of exa_ct COd'?ﬁscrete alphabef such as English or ASCII characters or a
of the data, our interest in modeling is to provide quadliscretization of real-valued variables.

ity summarization of the data through the estimated mode Description ofz € X is accomplished by means of a

An uItlm:,;\te c.>r_|deal|zed-;umman;apon IS capt.urgd by Kol apping into finite-length binary sequences, catledewords
mogorov’s minimum sufficient statistic for description. Reca here the map, called a (binargbde is required to be one-

that the Kolmogorov complexity of a data sequencés the to-one, and concatenations of codewords are also required to

length K () of the shortest computer program that outputs bF in one-to-one correspondence with sequences of symbols

on a given universal computer. This compIeX|ty IS a unlvers%' themselves sequences, froth That is the requirement of

assignment for all strings up to a constant (in the sense thaEnique decodability. It is accomplished in particular by arrang-

for any given pair of universal computers there is a con&tan;n the codewords to satisfy the property that no codeword
of translation between computers such that for all sequencgga prefix for a codeword of another € X This yields a
no matter how long, the complexity assigned by the tw i

i diff b h Maximall | (90rrespondence between codes and labeled binary trees, where
computers ditters by no more at). Maximally complex the codeword forz is the sequence of zeros and ones that
sequences are those for whiéh(z) equalslog card(X) to

S : - ives the path from the root to the leaf labeled Given
within a constant. These are sequences which defy interest %ode tree let(z) denote the length of the codeword (or
summarization or compression. h

. X L ath) that describes. According to the theory of Shannon,
To get at the idea of optimal summarization, Kolmogoroﬁ ) - g Y

' . ) . raft, and McMillan, see, e.g., [11], there exists a uniquely
refined his notion of complexity (see [11, pp. 176, 182]). Fodecodable code with length&(z) for = € X if and only

ee}chg,ltherr]e typicallyf arﬁ. a.”“m'?flf of programs ttar;i?tt A the Kraft inequality (1) holds. Indeed, to each code there
minimal in the sense of achieving within a given constattite corresponds a subprobability mass functigfz) = 24,

cc;]mpr)llt(ajxityf'(b(g)hArdnong these minimgl programs are thos%or a complete tree, in which every internal node has both
w I;C escrl) et € fgtg Il:? tV\r’]O parts. First, s::me pro_pﬂrl(ly descendants and all leaves are codewords, an interpretation
sy se_tA Ci.)’ satisfied by the sequengec A, is optimally ¢ yhat a random walk starting at the root ends upzat
described usind((A) bits, and therog card(A) bits are used .. probability Q(z) = 2 ‘@, and hences, 2 (@ — 1

to give the index ofx € A'. Wh_en_ this description ok of -~ g50n0n gave an explicit construction of a code with length
length K (A4) + logcard(4) is minimal, log card(4) cannot oqa) to10g 1/¢)(x), rounded up to an integer, as follows:

_be improved by using the Iength of any other encoding of Order the stringse by decreasing value af)(z) and define
n A and *_‘e”C‘? théog cgr_d(A) b'ts_ are ma>§|mally f:omplex the codeword ofz as the first/(x) bits of the cumulative
(uninteresting bits), conditionally gives. Theinteresting part é)robability S < 2 Q)

r o <zi\L ).

arises in_a propert that does not exactly represent, but rath Shannon also posed the following optimization problem. If
summarizes the sequence. The best summary is provided e given a probability mass functiétz) on X, then what

a program for a propertd™ satisfied byx that has minimum ., 4ejengths achieve the minimum expected valije/(z) ?
K(A") subject toK (A")+logcard(A”) agreeing withK (z)  prom the correspondence between codes and subprobability

(to within the specified constant). Such® may be called ,,qq fnctiong) it is seen that the solution is to takér) =

;I;c.)lmogorov minimal sufficient statistior the description log1/P(z) if we ignore the integer codelength constraint.

. L L Indeed, with any other choice the excess codelength
Our notion of summarization intended for statistical mod-

eling differs from Kolmogorov's in two ways. We do not , ) — £p(z) = log 1/Q(z) — log 1/P(z) = log P(z)
restrict the first part of the code to be the description of a - - - Q(z)

set containing the sequence, but rather we allow it to be thgs positive expected value, given by the relative entropy or
description of a statistical model (where the counterpart to a $&}jijpack—Leibler distance

A becomes the uniform distribution of)), and corresponding Pl)

to a statistical model we repladegcard(4) by the length Ep(l(z) —tp(z)) = Eplog ——= = D(P||Q)

of Shannon’s code for using the model. Secondly, at the Q(z)

expense of ultimate idealism, we do not require that thehich equals zero only i) = P. Thus givenP, the Shannon
descriptions of distributions be Kolmogorov optimal (whicltodelength?p(z) = log1l/P(z) is optimum, andD(P||Q)
would be computationally unrealizable), but rather we maks the expected codelength difference (redundancy) wi@en
our codelength assignments on the basis of principles tlimtused in the absense of knowledge Bf This property,
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together with the simple probability inequality thétz) — logl/maximized likelihooderm by the additional coding cost
£p(z) exceeds—c except in a set of probability not greater L L A
than 2= for all ¢> 0, leads us to caltp(x) = log 1/P(z) on =log C(M,n) = log Xy p(z/0(z)).

the optimal orideal codelength. Because this additional cost rises due to the unknown param-
eter, we call it theparametric complexity Also in support
B. Coding with a Model Class of this terminology we note that other coding schemes, such

The subject of universal data compression deals with &3 two-part codes as in [43] (which first describe parameter
scribing data when the source distributidhis unknown. A estimates to an optimal precision and then the data conditional

most useful coding theory, as an extension of Shannon’s the&f) the parameter estimates), achieve a similar complexity term
with P given, can be developed if the distributio are, e?<pres.sed in terms of the Igngth of the descrlptlc_)n of optlmally
instead of being completely unknown, restricted to a class @ifcretized parameter estimates. We emphasize that in the
parametric distributions\t;, = {Py(z|6): 6 € ©) C R}, case o_f th_e C(_)de with respect to th_e NML distribution, the
refered to above as a model class. The results also turn oufgmalization insures Kraft's inequality, and hence encoding
provide the codelengths required for the MDL criterion. ~ ©f 2, can be done directly without the need for separate
Suppose we are given a parametric family of probabifncoding ofé.
ity mass functionsmM = {P(z|¢): 6 € ©}, which have _
corresponding Shannon codelengths 1/P(z|d). There is a C. Codes Optimal for Average Regret
collection of data compressors, indexedhyith hindsight,  While we are interested in the regret defined in (2), we
after observation ofr, the shortest of these g 1/P(z|f), do not presume to be interested only in its worst case value.
wheret = 6(z) is the maximum-likelihood estimate (MLE) Thus we consider expected regrets with respect to distributions
achieving P(z|¢) = maxg P(z|f). This is our target level in A and with respect to mixtures of these distributions,
of performance. Though its value can be computed, it is nahd we discuss the behavior of the corresponding minimax
available to us as a valid codelength, for without advan@,nd maximin values. A mixture that achieves an (asymptotic)
knowledge off(z) we do not know which Shannon tree taminimax and maximin solution forms an alternative MDL
decode. If we code data using a distributi@z), the excess coding procedure that will be related to the NML code. With
codelength, sometimes called regret, over the target value igspect to any distributioR(x|6) = Ps(z) in M, the expected
. value of the regret of) is
) P(z|6)
log1/Q(z) —log1/P(z|6(z)) = log o 2 P(z]f(z))
z) Ra(Fu, Q) = Bp,log — 50 =

which has the worst case valuaax£logP(g|é(g))/Q(g). _ . : .
Shtarkov [46] posed the problem of choosifz) to mini- where in the right side we left the dummy variableover

mize the worst case regret, and he found the unique soluti\re{HiCh th? expectation is taken. Avgiragiljg Fhe _expected_ regret
to be given by the maximized likelihood, normalized thus urther with respect to any probability distributian on © is
’ the same as averaging with respect to the mixture (marginal)

Q'(z) = 720 Q*(2) = [ Plalo)au(®)
CIEE%P@W@)' ®) and the resulting average regret g log P(z|6)/Q(z),

which equals
This distribution plays an important role in the MDL theory,

and we refer to it as the normalized maximume-likelihood Equ log P(z]6) + D(Q"||Q).
(NML) distribution. Notice that” = C(M, n) depends on the Q*(z)
model classM and the size: of the sample spac = S™.  Thus@ = Qv is the unique choice to minimize the average
The corresponding codelength is regret with respect to the distribution. In decision-theoretic

log 1/Q*(z) = 10g1/P(£|é) +log C(M, n) 4) terminology, the Bayes optimal code is of length
which gives the minimax regret log1/Q%(z) = log 1// P(z]0) dw(6).

min mazx log P(g|é(g)) ~log C(M,n). (5) The ti(pected regret has a minimaxAvaIue
© o= Q) Ro(M) = miumax Er, log P(alf(2))/Q()

The proof of the optimality ofQ* is simply to note that ) ) o
log P(z]6)/Q* (z) = log C(M, n) for all z, and for any other Which agrees with the maximin value

subprobability mass functiof(z) we haveQ(z) < Q*(zx) for P(z]f(2))
. j ' i R, (M) = maxmin Eg« log ————~
at least oner, wherelog P(z|6(x))/Q(z) is strictly worse. R,( AX UL Eqw 108 0(@)
This optimal codelengttog 1/P(z|#) + ¢, associated with A
the NML distribution is what we call thetochastic complex- = max Egw log P(zlo(z)) (6)
ity of data relative to the model clas§1. It exceeds the w Qv (z)
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where the maximization is enlarged franto distributions on the asymptotic minimax regret and minimax expected regret
0, as is standard to allow equality of the minimax and maximieoincide. Such asymptotic agreement of (average) regret for
values. The maximization oves yields least favorable priors the NML and mixture distributions is addressed next.

w for which the corresponding procedure, coding based on

Q™ (z), is both maximin and minimax. D. Asymptotic Equivalence of Optimal Solutions
Related quantities studied in universal data compression gfeAverage and Worst Cases

based on the expected codelength difference (redundancy) The solutions to the two related minimax problems in the

P(z|6) preceding subsection, namely, the NML distributioff (x)
D(P]|Q) = Es log Q(z) and the mixture™ () with respect to a distributiom(4)
which uses the unknowd in the target valudog1/P(z|6) Q*(z) = /p(@g) dw()
rather than the MLE. The average redundancy with respect to

a distribution ond is equal to Shannon’s mutual informationyoth have merits as defining the codelength for the MDL prin-
I(6; z) when the Bayes optimal code is used. Consequentiyple, and deserve to be studied more closely. The mixtures,
the maximin average redundancyiisax,, I(6;z), which is iy particular, for a fixed-weight distributions(6) have the
recognized as the Shannon information capacity of the clagyantage, in addition to average regret optimality, that they
{P(z|#): ¢ € ©} (Davisson [12]). The minimax value extend to a distribution on infinite sequences wiid|) is
ming maxs Eg log P(z|6)/Q(z) and the maximin value of defined consistently for ath, and hence they define a random

the redundancy (i.e., the capacity) are equal (see Davis§@cess. To do the same for the NML distribution, a construct
et al. [14] and Haussler [28]). In subsequent sections Wg the type

will have more to say about the Kullback-Leibler divergence
Eylog P(]6)/Q(x), including interpretations in coding and Q" (wp41]2") = Q" («™H) /D, Q" (", u)
prediction, its asymptotics, and useful finite sample bounds.

Both of the target valuelsg 1/P(z|d) andlog 1/P(z|6) are may be used.

unrealizable as codelengths (because of lack of knowledge _oWe can study the asymptotic codelength of these distribu-

@ in one case and because of failure of Kraft's inequality in tHiens for f‘mOOth pgrametrlc f""_’T‘"'e{SFT@W)i beo < R} .
other) and an extra descriptional price is to be paid to encodRE = S possessing an empirical Fisher information matrix
z. In this section we retaifog1/P(z|#) as the idealized 1(9) of second der_lvatlv_es Oo\tl./n) log 1./P(£|9)' Let.I(G)
target value for several reasons, not the least of which is tlpft the corresponding Fisher information. We are interested

(unlike the other choice) it can be evaluated from the d 'P th in the mean codelength and the pointwise codelength.

alone and so can be a basis for the MDL criterion. By use e begin with the mixtures, for which the main technique is

the same quantity in pointwise, worst case, and average valrt?@lace S gpproxmatlon. L.E?b(e) the prior densﬂy assumed
be continuous and positive. For smooth independent and

analyses we achieve a better understanding of its propertltgs. : o L :
We identify that the parametric complexityg C(M, n) (and |c!ent|cglly distributed (i.i.d.) models, the expected regret is
its asymptotic expression) arises in characterization of tHeven by
minimax regret, the minimax expected regret, and in pointwi@P log 1/Q%(z) — log 1/P( |§)]
L . 7P (z|0) 108 Z 2z L

bounds that hold for most sequences and most distributions in n 12
the model class. = (d/2)log 5, Tlog [L(O)"= /w(f) + o(1)

Note that the minimax value of the expected regret, through

its maximin characterization in (6), may be expressed as where the remainder tends to zero uniformly in compact sets
in the interior of © (see Clarke and Barron, [9, p. 454],
P(z|0(x)) where references are given for suitable conditions on the

Rp(M) = mj}XEQ“' log Qv (z) family to ensure the regularity of the MLE). This expected

— log C(M, n) — min D(Q¥(2)||Q"(z)). (7) regret expression leads naturally to the choicev(f) equal
50! ) w Q" @le"@)- () to the Jeffreys prior proportional t¢I(6)|*/? to achieve
Thus optimization overw to yield a minimax and max- an approximately constant expected regret whit)|'/* is
imin procedure is equivalent to choosing a mixtup&(z) Integrable onO. The Jefireys prior is
closest to the normalized maximum likelihodgl(z) in the 0) — |1(6)|1/2
sense of Kullback—LeibIe_r divergence (see also [56]). More- wa(6) = O es
over, this divergencd(Q"|[|Q*) represents the gap betweemwhere c; = [ |I(8)|*/2d6. This gives, uniformly in sets

the minimax value of the regret and the minimax value gfiterior to the parameter space, a value for the expected regret
the expected regret. When the gap is small, optimizatien

of the worst case value of the regret is not too different n

from optimization of the worst expected value over distri- (d/2)log o +10g/|](9)|1/2 df + o(1) (8)
butions in the class. In particular, if for some the aver- "

age regretbg« log (P(z]6(z))/Q"(z)) and the NML regret and, consequently, this is also the asymptotic value of the
log C(M, n) agree asymptotically, theP(Q" (z)||Q*(z)) — average regreF. log (P(z|6(x))/Q"(z)) with w = w;.

0 and, consequentlyy is asymptotically least favorable andAs discussed above, if the minimax regret has the same
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asymptotics as this average regret, then the minimax mainimax regret asymptotically. See Xie and Barron [56] and

gret and minimax expected regret agree asymptotically amdkeuchi and Barron [50].

D(Q™ (z)||Q*(z)) tends to zero. This asymptotic equivalence

has been identified in the special case of the class of all discrgteStrong Optimality of Stochastic Complexity

memoryless (i.i.d.) sources on a given finite alphabet in Xie

and Barron [56]. Here we show it holds more generally.
The key property of Jeffreys prior [33] for statistics an

information theory is that it is the locally invariant measur

that mfs\_kes small K_ulIback—Le|bIer balls have equal prloé\rget valuelogl/P(§|é) that would be achievable only
probability (see Hartigan [24, bp- 48._49])' . . with advance knowledge of the maximum-likelihood estimate
We next study the NML distribution and its asymptotmé _ é(a:). Secondly, the remaining terms, dominated by the
po_intwise_ .codelength. In Rissanen [43] conditions are givgﬁiquitaus(dﬂ) 10g7,1 penalty on the numk,Jer of parameters,
(I\\llvl\l/frljogi;tl;li.tijtifr?uIremem) such that the code based on t Qpress the codelength price of our lack of advance knowledge
of the bests. Still, since the solutions are based on minimax

We have seen that the solutions to the two minimax op-
imization problems behave in a similar manner, and the
xpressions (9) and (10) for the asymptotic codelength have

the built-in terms we would like to see. First, there is the

Q*(z) = P(£|é(£))/CM " criteria (for the regret or expected regret), a nagging suspicion
_ o _ remains that there might be another codelength which cannot
achieves regret that satisfies asymptotically be beaten except for some very rare sequences or a very

n 12 small subset of the models. Reassuringly enough, it was
log C(M, n) = (d/2)log o +10g/ [1(6)]""df +o(1).  shown in Rissanen [41] that the common behavior described
above, in fact, is optimal for most models in the sense of

That gives the asymptotics of what we have called the paigg following theorem, which generalizes Shannon’s noiseless
metric complexity. The stochastic complexity is the assouat%gding theorem, by showing a positive lower bound on the
codelength based on the NML distribution, which satisfies redundancy of ordefk/2) log n for mosté.

) MO T i on Assume that there exist estimat&s:™) which satisfy the
log 1 = logl/P(z|6 d/2)log —
0g1/Q(z) = log 1/ P(z|6) + (d/2)log 27 central limit theorem at each interior point 6f, such that
+ log/ 11(6)[/2 df + o(1) (9) Vvn(#(z™) — ) converges in distribution (or, more generally,
such that/n(6(z") — ) is O(1) in probability). Assume

where the remainder does not dependzoand tends to zero that the boundary oP has zero volume. (") is any
asn — oo. The derivation in [43] directly examines theprot_):_;\blhty distribution forz™, then (R|ssaner_1 [56]) for each
normalization factor in the NML code using a uniform centraf©Sitive number: and for all§ ¢ ©, except in a set whose
limit theorem assumption for the parameter estimates and d§@&/me goes to zero as — oo
not involve Laplace’s approximation. CPn)6) _k—e,

The regret of this NML code is seen to agree with the Ep, log Q™) z B log 7.
average regret (8) of the mixture with Jeffreys’ prior, in the o .
sense that the difference tends to zero, which means that@ter Merhav and Feder [37] gave similar conclusions
D(Q™ (2)||Q*(z)) tends to zero as — oo, providing the bounding the measure of the set of models for which the

desired asymptotic equivalence of the Jeffreys mixture affdundancy is a specified amount less than a target value.
normalized maximum likelihood. They use the minimax redundancy for the target value without
ThoughQ®’ (z) andQ*(z)) merge in the Kullback—Leibler récourse to parametric regularity assumptions, and they use
sense, the ratio need not converge to one for every d&f asymptotically least favorable (asymptotically capacity
sequence. Indeed, Laplace’s approximation can be applied®fdlieving) prior as the measure. Under the parametric as-

obtain the pointwise codelength for the mixtures sumptions, Rissanen [42], with later refinements by Bar-
ron and Hengartner [6], shows that the set of parameter
log 1/Q%(z) = log 1/P(z|f) + 2 log - values withlim, Ep, log P(x"]|0)/Q(z™)/ logn < (k/2) has
2 T volume equal to zero, and [6] shows how this conclusion
+log |I(9)|A1/2 () (10) May be used to strengthen classical statistical results on the
w() . negligibility of superefficient parameter estimation. Barron [2]

obtained strong pointwise lower bounds that hold for almost

whehret;o:éthe r_en_1a|3:jer_ t? pe S”f]g” 'L'S necessary @hb? every z sequence and almost evefy Related almost sure
such thatf(z) is in the interior of ©®. Here again a choice results appear in Dawid [17].

for w(@) as Jeffreys’ prior yields the same parametric cost 8SHare we show that the technique in [2] yields asymptotic

in (9), except for the remainder terr@log (L)1) + pointwise regret lower bounds for general codes that coincide

en(2). T_hese shoulql have th_e_ desired stoch_c’:\snc_behgwor( within a small amount) with the asymptotic minimax regret
converging to zero in probability for eadR with 6 interior including the constant terms

to ©. By arranging for modifications to the mixture to better Assume for the moment thatis distributed according t&

encode sequences .W'm near the boundary, or witt ”‘?t iand coded usin@. We recall the basic Markov-type inequality
close tol, it is possible to obtain codelengths under suitable

conditions such that uniformly in: they do not exceed the P{Q(z)/P(z) > 2°} < 27°
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and the implication that the codelength differencpointwise lower bound hold$’*7-almost surely, and hence
log1/Q(z) — log1/P(z) is greater than—c except in a also Py-almost surely forw-almost everyd

set of probability less thag—< for all ¢ > 0. We apply the .~ d n
inequality with P replaced by the mixture distribution log1/Q(z) > log 1/P(z|0) + 5 log o
P¥(z) = / Py(z) dw(6) +10g/ [L(6)[*/> d6 — T + o(1)

provided the remainder in the Laplace approximation tends
to zero Py-almost surely, for almost ever. To quantify the
dn(z) = log1/Q(z) —log 1/P¥(z). behavior of I we note thatP“{T >2c} < 272¢ and hence
Py{T>2c} < 27° except in a setB of & with Jeffreys
We find that for any choice of code distributigd(z), the probability less tharz—.
P probability thatd,, < —2c is less thare=¢, so applying ~ |n summary, these results provide a grand generalization
Markov's inequality to the prior probability of Shannon’s noiseless coding theorem in setting the limit
W{6: Py{d, < —2¢} >27¢) to thg availab!e code_length a.nd. also demonstrating coding
techniques which achieve the limit. For such reasons and due
we find that it is not larger tha®—<. The conclusion we will to the accurate evaluation of the codelength in (9) it was called
use is that theP; probability thatlog1/Q(z) is less than in [43] the stochastic complexitgf the data string, given the
logl/P*“(z) — 2c is less than27°, except for a setB of model class involved.
6 with w(B) < 27°.
The Laplace approximation reveals under suitable congt- Simplification via Sufficiency

to yield a conclusion for the codelength difference

tions that
d Both the NML and mixture codes have a decomposition,
log1/P¥(x) = log 1/P(£|é) + = log " based on likelihood factorization for sufficient statistics, that
12 2 2 permits insightful simplification of the computations in some
+ log [1(6)[**/w(6) + o(1) cases. In this section we change the notation for the mem-

where the remaindes(1) tends to zero inPs probability for Pers of the parametric family tg(z) or pe(z) rather than

eachd in the interior of the parameter space. Takéo be the p(z|#) so as to maintain a clearer distinction from conditional
Jeffreys prior density, which, because of its local mvananégstrlbutlons given estimators, or other functions of the data.
property for small information-theoretic balls, is natural ¢dn particular, in this sectlorm(a:|9) refers to the conditional

quantify the measure of exceptional set¥ofrhe conclusion distribution given the maximume-likelihood estimator rather

in this case becomes for any competing code distribugon than the likelihood evaluated at the MLE. .
the code regret is lower-bounded by For a sufficient statisticS = S(z) the probability of

. sequencex factors asfs(z) = p(z|s)pe(s) where p(z|s)
log1/Q(z) — log1/P(z|6) is the conditional probability function far given S(z) = s
> glog 22 +10g/ |I(9)|1/2 48— 2+ o1) (independent of? by sufficiency) and
T > fl@)
where o(1) tends to zero inP,-probability, for all 6 in the z:5(z)=s
interior of the parameter set, except tin a setB of Jeffreys is the probability function for the statisti§. As a conse-
probability less thar2=<. This shows that asymptotically, thequence of the factorization, the maximume-likelihood estimate

minimax regret cannot be beaten by much for meswith # = 6(s) may be regarded as a function of the sufficient

distribution P, for most 4. statistic. Consequently, the maximized likelihoodfjgz) =
Serendipitously, the basic inequality remains true with(z|s)p;(s) at s = S(z), and the normalizing constant
a uniformity over all » inside the probability. That is, simplifies to
P{sup, Q(z)/P(z) > 2°} remains not greater thad—°, )
provided that the the sequences of distributions for= C=C(Mn) Zfe(*‘) Zpe()
1,%2, -, T, femain compatible as is increased (Barron
[2, p. 28], Tulcea [51]). Consequently, setting since
T =suplog™ Q(z)/P(z) Z p(z|s) = 1.
" @i s(z)=s

we see that uniformly im the excess codelengtbg 1/Q(z) —

log1/P(z) remains bigger thar-T whereT > 0 has mean Thus there is a close connection between the NML distribution
EpT not larger tharlog ¢ and it is stochastically dominatedfor s, namely,p*(s) = pé(s)(s)/O, and the NML distribution

by an exponential random variable{T > ¢} < 27¢. Using for z

the Jeffreys mixture as the standard, it follows that for any F(z) = pla]s)p*(s)

competing compatible sequences of code distributi@s) ) ) )

we have that for allx the codelengtiog 1/Q(z) is at least ats = S(z). The stochastic complexity, then, splits as
log1l/P* (z) — T, which shows that the following strong log1/f*(z) =log1l/p(z|s) +log1/p™(s)
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into the complexity ofs plus the Shannon codelength for z;, which results in the codelengthlog, Q(x:|z*~1). In other
given s. In much the same manner, the Bayes mixtures factaords,
as n

£0(2) = plals)pu(s) —log, Q(z™) = 2:; —log, Q(z¢|z' ") (12)

wherep,,(s) = [ ps(s) dw(#) and Bayes optimal codelengthgwhich means that the total codelength for encodirigusing
split as Q(-) is the same as encoding the symbols one by ony using
i o i the predictive or conditional distributio@(-|z'=1).
log1/fu(z) =log1/p(z]s) +log 1/pu(s). If we now postulate that the underlying source distribution is
Of particular interest is the case (which holds true in exponepy;n) the expected redundancy@fwith respect taP, which
tial families) that the maximum-likelihood estimator is itself s different from the expected regret considered in Section Il1,

sufficient statistics = 6(z). In this case, the NML distribution s the Kullback—Leibler divergence betweghand Q
for z is

I*(@) = plalf)p" () D(PE")[|Q(") = Eplog, §§§§
and the NML distribution f?rS =40 b?comes HP(xt|xt—l)
p'(s) = pg(8)/C = 9(0)/C. _Bplog,
where g(6) = pys(6) which is obtained simply as a density [[e@d=Y)
on the range of the parameter estimator by plugging into the t
distribution of the estimator the same value for the estimate as . ~ P(xy]at™1)
for the parameter, with normalization constéht= 3, p; (6). - ;El’(w”) log, Q2|2 1)

For example, in the Bernoujy) model the NML distribution
of the relative frequency of ongs= y/n is

(5 ) wmra = i,

NIE

Ep(mt—l)EP(mtlmt—l)

o+
Il

1

 Plagz*)
with -log, e
=3 <Z> (u/m)* (1 = y/m)" ™ =3 Eren D) Q1)

This identity links the fundamental quantitgxpected re-

S : 8undancy from coding theory with statistical estimation, be-
Jr:effgays Bgte(l/2,(jl|/2) ddl_stgputg)n fprp{'/qter:nal\llm(_oé.l)'.én . cause the right-hand side is precisely the accumulated pre-
the Gaussian model studied in Section V, the IStIbUtORiction error of the Kullback—Leibler risk of the sequence

for the sufficient statistic subject to certain constraints on thﬁz(xtlxkl)' t = 1,.--,n}. This risk is equivalent to

parameters is shown to be exactly Jeffreys’ distribution. the mean squared error (MSE) when bath and Q are
Gaussian distributions with the same covariance structure.

which by Stirling’s formula can be shown to be close to th

IV. INFERENCE In general, whenP and () are bounded away from zero,
the Kullback-Leibler risk has a close connection with more
A. Predictive Coding and Estimation traditional statistical estimation measures such as the square

of the L? norm (MSE) and the Hellinger norm.
When @ is the mixtureQ(z™) = [ Ps(z™) dw(f) over a
regular parametric family

A given joint distribution@(z) = Q(2") on n-tuples can
be written in the predictive or sequential form

Q@") =] Q=) (11) {Po(a™): 6 € © C RY}
' of d parameters with the mixing distribution or priar, thetth

The converse is also true; that is, a joint distributi@fz™) summand in the accumulated risk is the risk of the Bayesian
can be constructed by specifying the predictive distributiomgedictive distribution

{QC|="H)}.

For a given joint distributiony, the factorization in (11) Qs = /P0($t|$t_l)Pw(9|xt_l)d9
implies a predictive implementation of coding based @n
that encodescy, z2,---,z, one by one in that order. Thewhere P,, is the posterior distribution o8 given z'~!. In

codelength ofz; is —log, Q(z1). After the transmission of coding again, in order to build a code fof predictively, the

x1, it will be known both to the sender and the receiver, amgredictive distribution(-|z*~*) allows us to revise the code

z2 can be transmitted using the predictive distributigfi|=1), in light of what we have learned from data prior to time
which results in a codelength log, Q(z2|x1). At time ¢ the For example, frequently appearing symbols should be assigned
first#— 1 data pointst’~* = (z1,---,x,_ 1) are known to the short codewords and less frequent ones long codewords. This
sender and the receiver, agq-|z*~*) can be used to transmit predictive form lends itself naturally to the on-line adaptation
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of coding or estimation to the underlying source. Moreover, Consider first a family of parametric model classes, one for
it has an intimate connection with the prequential approache@achk in a countable sef
statistical inference as advocated by Dawid, [15], [16]. _ ) "

Let @ be built on the plug-in predictive distribution based My, ={P(z]f): 6 € O C K™}
on an estimato®(z"), which often is a suitably modified If we use the mixture model for eacht, to represent the
maximum-likelihood estimator to avoid singular probabilitieglass, we need to minimize

Q|2 ™) = Py (me]a'™1). log 1/Qx(z) + 1(k)
Then thetth summand in the accumulated risk is where
Ep, (o) D(Pa(@e|a* )| Pyyery(@elz* ) Qnlz) = /@ wi(0) i (216) df
which is approximatelyl/(2t) if §(z!) is an efficient sequence and ik
of estimators. Summing up gives > 2 <L
keK
Z d/(2t) ~ C—llogn Denote the data-generating class.bt,. The MDL principle
=1 2 identifies M., with Q;,, probability tending tol. That is, the

MDL prinple leads to consistent-order selection criteria, on

and this is exactly the leading term in the parametric Compleé\'/erage provided thad,, are singular relative t6);, on the
ity Zt. s?mplejllzel. Hefncet,hwthethgr we COF}SIdeI’ ?stm&gtlon 0épace of infinite sequences. This is true, for example, if the
pre :Ctk"\./e coding c;.r’ cirl 3. ma; er, <2’:1n1y ‘orr'n ?h co m?’ we@k are distinct stationary and ergodic distributions, or they
meet this same optimal leading tefay2) log n in the regular ;o 4 ires of such distributions, provided that the priors

parametric case, and it plgys a_fundamental role in bOth'_ induced on the space of distributions are mutually singular.
To bolster the connection given here between the mcL—

idual risk of efficient estimat f orded/2 d th or instance, we may have parametric families of i.i.d., or

v tya lrls OI f. 'C'e.nk es |m§ ords 0 orf /d” ;nl ) € Markov, distributions, where the parameter spaces are of
optimal cumulative risk or redundancy of ord@t/2)logn,  irerent dimensions and absolutely continuous prior densities
we mention here that classic results on negligibility of the s L

f i | f hich mator i Hici te assigned to each dimension.
of parameter values for which an estimator is superefficient, . proof is simple, [2], [5]. Let)* be the mixture oy

(LeCam [35] assuming bounded loss) are extended in Barr(g)?cept for ko

and Hengartner [6] to the Kullback—Leibler loss using results

of Rissanen [42] on the negligibility of the set of parame- Q*(z) =t Z 27 M Q)
ter values with coding redundancy asymptotically less than kstko
(1 —€)(d/2)logn. here
Frequently, we wish to fit models where the number o
parameters is not fixed, such as the class of all histograms. a= Z 271 <1,
For such theith term in the accumulated risk k#ko
Epae—sy D(P(@e| 2| Pyalae]2'~1)) Because all the models in the summation are singular relative

to ., @ must be mutually singular witld);,, . It follows
whered = d(z*~!) denotes the maximium-likelihood estimatdhat the log-likelihood ratio or redundancy

of the number of parameters th= 6(z' 1), behaves under log Qx, (X™)/Q*(X™) =log 1/Q*(X™) — log 1/Qp, (X™)
suitable smoothness conditions #s* for some 0 <« < 1.

Then the accumulated risk itself behaves as tends almost surely to infinity, Doob [20]. We find that with
L Qr, probability one, forn large
St I(ko) +1og 1/Qx, (X") < log1/Q"(X™)
t

< min {1/Qx(X™) + (k) }.
and n~* may be called thenonparametric complexity per krtko
sampleat sample sizex. The second inequality holds, because the sum

Q*(Xn) — Z 2_l(k)Qk(Xn)
kstko

i larger than the maximum of the summands. Thus the
nimizing distribution is the distributiofy;,, from the correct

B. Consistency of the MDL Order Estimates

A test for any model selection and estimation procedure
to apply it to the selection of a model class and then analy
the result under the presumption that the data are generate P Y

. . . del clas ., asn tends to infinity and under probabilit
a model in one of the classes. It is to the credit of the MD My, asn y P y

L . _ . . ., provided that(}, are singular relative td@);, on the
principle that the model-selection criteria derived from it ar ko P @ 9 ®ny
. . Infinite-sequence space, that is,
consistent although there are obviously other ways to devise
directly consistent model-selection criteria, see, for example, Oy (b = ko) = /wko(g)p(f€ = kol6) d6 — 1.

Hannan [22] and Merhav and Ziv [36]. B
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Moreover,QkO(l} = ko for all largen) = 1. This implies that ~ Consider first the case that the description length entails

Pg(I% = ko for all largen) = 1 and hence that as — o multiple stages, yielding a minimum description length of the
R form
Pk =kol) — 1 A A A
. | 16 ¢ M log1/Py(z|0) + Ly (0) + £(k)
or wy,-almost allf € My, . o i {loe 1/Pu(z10) + Li(6) + £k
In many situations, such as nested exponential families, %}%916%36{0@, /Fi(z]6) + Li(0) + k) }

the apove result holds for ab € M,,. The proof is where ¢(k) is the codelength for the class indéxin K,

more involved, but gives more insight. Roughly speakin .
the mixture version of the MDL is an approximate penalize(:t](;]e term Ly (6) is the codelength for parameter values of

- L . . precision ¢ in a quantized parameter spa€® s, and, fi-
likelihood criterion just as the two-stage MDL, which asymp ally, log 1/ P(z|8) is the codelength for the data given the

totically behaves as the Bayesian Information Criterion (Bl escribed class index and parameter values. (Typically, the

of Fsc)ih:grt'éemi?]].probability or almost surely precisioné is taken to be of ordet/./n so as to optimize the

' tradeoff between the terms in the description length, yielding
(dr/2)logn as a key component df;(#).) Minimizing the
description length in such a multistage code yields both a

From classical parametric estimation theory for regular fanfi?0del selectiork; by MDL and a parameter estimae(close

lies, such as nested exponential families, we have the followiffythe maximum-likelihood estimate) in the selected family.
asymptotic expansion: As in [5], it can be conceptually simpler to think of the pair

k and#d as together specifying a model index, saySelection

R ds.
log 1/Qn(X™) =log 1/P(X"|6) + ?’“ logn + O(1).

log 1/P(X"™|6;) — log 1/P(X"|ék0) and estimation ok, 6 provides an estimaté. Then the above
=X if &> ko minimization is a special case of the following minimum
|1 — 1 |21+ 0(1)), i k< ko. description length formulation, wheis,,, 2~ (™) < 1:

This gives the consistency of the mixture MDL for 8ll,.  B(2) = log1/Fys(z) + L(ri2) = min {log 1/ Py (x) + L(m)}.

Since other forms of the MDL share the same asymptotic . . o
expression with the mixture, they also identify the correci® cor_respondlngndex O_f resolvablllt_yof a d'Str_'bUt'onP
model with probability tending td as the sample size getsby the list of models, with sample size: is defined by
large. Consistency results for the predictive MDL principle Ry (P) = min {D(P(z™)|| P (™)) /0 + L(m)/n}
can be found in [15], [17], and [32] for regression models, ™
[23], and [31] for time-series models, and [53] for stochastighich expresses, in the form of the minimum expected de-
regression models. For exponential families, [27] gives stription length per sample, the intrinsic tradeoff between
consistency result for BIC. Predictive, two-stage, and mixtuiullback—Leibler approximation error and the complexity rel-
forms of the MDL principle are studied and compared iative to the sample size.

[48] in terms of misfit probabilities and in two prediction It is easy to see thaf?,(P) upper-bounds the expected
frameworks for the regression model. It is worth noting thatdundancy per sample, which is

searching through all the subsets to find codelengfthscan n .

be a nontrivial task on its own. (1/n)Ep(B(X") —log 1/P(X™)).

We note that for consistency anj(k) satisfying Kraft's 1 is also shown in Barron and Cover [5] that if the
inequality is acceptable. However, for good finite sample bgjogels p,, are iid. and the data are indeed iid. with
havior, as well as asymptotic behavior of risk and redundanqyspect top, then the cumulative distribution corresponding
one should pay closer attention to the issue of choice gf P, converges (weakly) taP in probability, provided
description length of the models. The index of resolvabili%fmD(PHPm) = 0. Moreover, if L(m) are modified to

provides a means to gauge, in advance of observing the dai@isfy a somewhat more stringent summability requirement
what sort of accuracy of estimation and data compression isst0 9=aL(m) for some positiver < 1, then the rate of conver-

be expected for various hypothetical distributions, and thereBgnCe of P;, to P is bounded by the index of resolvability
yields guidance in the choice of the model descriptions. i, the sense that

C. Resolvability H*(P, Ps) < O(R,(P)) (13)

Perhaps more relevant than consistency of a selected mogfelprobability, where
which as formulated above would presume that the data are
actually generated by a model in one of the candidate classes, H*(P,Q) = /(\/p(x) —Vaq(x))? do
is the demonstration that the MDL criterion is expected to give
a suitable tradeoff between accuracy and complexity relativeito the squared Hellinger norm between distributions with
the sample size, whether or not the models considered provansitiesp and g. These bounds are used in [5] and [7] to
an exact representation of a data generating distribution. Tderive convergence rates in nonparametric settings with the
index of resolvability from Barron and Cover [5] provides aise of sequences of parametric models of size selected by
tool for this analysis. MDL.
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For description length based on a mixture mo@&(x) = finite, information-theoretic results such as Fano’s inequality
/ P(z|6) dw(#) analogous performance bounds are availabéee easy to apply.
from a related quantity. In particular, the index of resolvability We are interested in the minimax estimation rates
of a distribution P(z) using the mixture of modeld’(z|6) ) o, o 2
with prior w and any parameter set (usually chosen as a min }Té%( EsH*(f. 1)

neighborhood around?) and sample size is defined by and /
R, a(P) = max (1/n) D(P(2)||P(2]6)) + (1/n)log1/w(A) min max EfD(f(2)]|f(x))
f C

which when optimized over parameter setsyields Kull-

back—_Leibler balls where the minimum is over estimatogsbased on an i.i.d.

sample of sizex drawn from £, the divergenceD is evaluated

Ao =1{6: (1/n)D(P(2)||P(z]9)) < €} by averaginge with respect tof, independent of the sample,
_ 3 and £ is taking the expected value dP as a function of
and index of resolvability the sample frony. Morever, we are interested in the minimax

nonparametric complexity (redundancy)

min max ErD(f(=")[|Q(="))

R, (P)= mein {2+ (1/n)log 1/w(A)}.

As shown in [3] (see also [4], [6], [29], and [57]), this quantity
provides for the mixture code an upper bound to the expect\?,
redundancy per sample and thereby it also provides ap
upper bound to the Cesaro average of the Kullback-Leibler
risk of the Bayes predictive estimators already discussed in n
Section IV-A. f=") = H Flwi)
Various parametric and nonparametric examples of deter- =t
mination of risk bounds of MDL estimators are possible asnd the minimum is taken over all joint probability densities
demonstrated in the cited literature; here we shall be contépton XY™ (which provide codes fox™ in X™). For a recent
to give, in the next subsection, a general determination of threatment of asymptotics and metric entropy characterization
minimax rates in nonparametric settings. of the latter quantity see Haussler and Opper [30]. Here,
following Yang and Barron [57], we focus on the relation-
D. Optimal Rate Minimax Estimation and Mixture Coding ship of the minimax risk to the nonparametric complexity
In Section IIl we used Laplace’s approximation method t nd the Kolmogorov metric entropy as revealed through the

obtain the behavior of the mixture distributions as solutions {giolv?/bility abnd ‘1” ir':p:oved applicati(_)n of Fano’s ifnequality.
the minimax mean redundancy problem for parametric models -©t (E")f e the Ko mogforov m\‘jtﬂc err:tropy of the,-
In this subsection, we base our approach on a mixture c N(en) Of M in terms of # or v'D. That is, we need

o _ . . — 9Vien)
(or distribution) over a finite net to provide a unified approach (¢») = 2 '/ number ofe¢, balls to cover the class and

to the upper and lower bounds on the optimal estimatidlf 'ewer. We use the code corresponding to the uniform

rate in the minimax density estimation paradigm. Howeve’?ﬂ,IIXture distribution f., (2™) of the centers in the,,-cover.

the corresponding NML results in this nonparametric densige examine the redundancy of the mixture with respect to
estimation problem are yet to be developed, and NMLG€ ¢n-net
connection to the mixture distributions in this context is yet n( FY n n
o be explored. y R (f) = D(f(=")|[fe, (=)

Fano's inequality from Information Theory has always beeghich from (13) is also the accumulated Kullback-Leibler
used to derive the lower bounds [8], [18], [25], [26], [S8]prediction error off., (z™).
MDL-based density estimators now provide refinement to This is a crucial quantity in both upper and lower bounds
the lower bound and a matching upper bound as shoyR the minimax estimation error. It also bounds from above

in Yang and Barron [57], revealing a Kolmogorov capacityhe risk of the mixture-induced density estimajr ()
characterization of the minimax values of risk and redundancy.

Consider a class\ of i.i.d. densities, for which the dis- EfH*(f, f) < ED(f||f) < ERZL(f)’
tances between pairs of densities fosatisfy D( f(-)||g(+)) =< n
H2%(f,g) for f andg in M. This equivalence is satisfied by,here
many, if not all, smooth function classes. The advantage of
H? is that it satisfies the triangle inequality whil2 does not. fer s N o
However, D brings in clean information-theoretic identities Forlw) = (/n) Z fer (@i = al2")

and inequalities. Taking advantage of the equivalencél &f =0

and D, we can switch betwee® and HZ when appropriate is the Cesaro average of the predictive density estimator
to obtain a clear picture on optimal rate minimax estimatiomduced by the mixture densitf. (z™) on thee,-net.
Metric-entropy nets into which the estimation problem will Moreover, there is a bound of(f) in terms of an

be transferred turn out to be useful. Because such nets gugex of resolvability. Letg (z") be the closest member to

ich, in accordance with Section IV-A, is the same as the
imax cumulative Kullback—Leibler risk. Here

n

n—1
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f(z™) in N(e,). ThenD(f(z")||gs(z™)) < ne?, and To yield satisfactory rate bounds, from what would otherwise
e _ n n be a crude bound on mutual information, required first restrict-
B () =D @) e (@) ing f, f/ to a subset ofAM of special structure in which the
diameter is of the same order as the separatigh and the

_ N n —Vien, n

=Eylog { f(a")/(27V () Z 9(=")) same order as its log-cardinality (typically, via a hypercube
gEN(en) construction), plus a hope that the minimax rate on the subset

< Eflog {f(z™)/27V (g (a™)} would be as large as on the original famit, and the

=V(2) + D(f(=)||gs (™)) eﬁ(istence Or]: such Ig specia; itrucrt]ure was a conrc]iitipn of the

<V(en)+ne. (14) theory, so that application of that theory requires the invention

of a hypercube-like construction in each case. However, the
It follows that requirement of such construction can be easily bypassed.
p Indeed, sincel. is the mimimum Bayes average redun-
2 €n 2 ’ €n
ErH(f. ) < Viea)/n + 6, (15) dancy with respect to a prior, it is not larger than the maximum
The same order upper bound holds for a minimum complexitgdundancy of any given procedure. That is,
estimator as shown in Barron and Cover [5], in which one

. Vien) n n
minimizes a two-stage codelength ovgin N(c,). I, = Hgn(l/z ) Z D(f(@")llQ"))
By adjusting the choice of, these upper bounds yield the FEN(en)
minimax rate for the redundancy and consequently for the < Hgn e )D(f(ﬂﬂn) |Q(="))

cumulative Kullback—Leibler risk of predictive estimation.

If the function classM is sufficiently large (in the sense
that¢, achievingV'(¢) = V(e)/4, is of the same order as as o
¢ tends to zero), then the bounds here also yield the minimnce for any joint distributiort? on ="
;ate for 'the estimation of in the traditional noncumulative L. < max D(f(z™)]|Q(z™)).
ormulation. eM

Indeed, by a now standard Information Theory techniq R " "
introduced to the statistics community by Hasminskii [25] (Sjgo_r cn 10 .be chosen later, talfé“)(x ) = fe.(a") as the
also [8], [18], [26], [57], and [58]) the estimation error in termsl,Jnlform mixture over the neV(¢..) to get
of a metric can be bounded from below by Fano’s inequality I < max D(f(z™)||fz, (™) = R (f).
via the probability of testing error on the finitg-net. Here we Jem
choose the neiV(«,) as a maximal packing set in which weyt fo|lows from the resolvability bound (14) that
have the largest number of densitiestthat can be separated
by €, in the Hellinger metric (consequently, it is also a cover I, < V(&) +né.
in the sense that everyin M is within ¢, of a density in the
net). For any given estimaAtcﬁ of f, by consideration of the
estimatorf which repl_acesf py the c_Iosest den_sity in then max EfHQ(f, f) > e (1 — (V(&,) +né2 +log2)/V(en)).
net and use of the triangle inequality for Hellinger distanceieM

one has that X R It is clear that theV (¢) + ne? acts as the critical index of
max EfH?(f, f) > (€,/2)* max Py(f # f). resolvability since it appears in both upper and lower bounds
fem FCN (en on the H? (or D) error in density estimation. It determines
Then by application of Fano’s inequality there is a positivthe minimax rate whe#Z? < D as follows. Seg, to achieve
constantc such that for any estimator V(é,) = né2, thereby achieving the minimum order for
2 2 2 ) V(e) + ne?, and then choose,, somewhat smaller, but of
e ErH(f, ) 2 cen(1 = (Lo, +1og2)/V(<n)) th(e )same order, such that

IA

mmin max D(/(2")[|Q(a")):

Hence

where I, is the m_utual ir_1forma_tion betwee® and X" V(Ea) +né? +log2 = V(en)/2.

when © takes a uniform distribution on the,-net and the

conditional distribution of X™, given a particular valuef Then we have

in the net, is f(z™) = II, f(x;). Now as we recall this o) 2 )

mutual information has been well studied, and ever since the }@a EgH(f.f) z e, /2.

development of Fano’s inequality in the 1950’s the precise

nature of the capacity (the maximum value of the informatioRince the upper and lower bounds are of the same order we
over choices of input distribution) has played a central role fPnclude that we have characterized the asymptotic rate of the
applications of Fano’s inequality in Information Theory [11]Minimax value.

However, prior to reference [57], the mutual information in Indeed, we find there is asymptotic agreement among sev-
these statistical bounds had been bounded from above by @@l fundamental quantities: the nonparametric complexity
Kullback—Leibler diameter (redundancy) per symbol

n X I}{E}?(D(f”f/) m;n }%%D(f(xn)”g(xn))/”a
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the Shannon capacity

W (O

the Kolmogorov capacity’ (e, )/n, the critical radius:2, the
minimax Cesaro average prediction risk

n—1
min  max (1/H)ZEfD(f||ft)7
t=0

Jo i fua fEM

the minimax Kullback-Leibler risk, and the minimax squared

Hellinger risk based on a sample of size (1,1) (1,1)

These metric entropy characterizations of minimax rate in_a .

. . . Fig. 1. Context tree for strin@0100.
nonparametric clasa/ determine not only the minimax rate

but also the rate achievable for most functions in the class, in

the sense that for any sequence of estimators (or for any cod&n 0bvious way to design a universal code for data modeled
distribution) the subclass of functions estimated at a better r&@  finite-state machine is to estimate the parameters from
have a cover of asymptotically negligible size in comparisdﬁe data, including their number and the associated st_ructure,
to M. This is shown in Barron and Hengartner [6], extendingnd then use the result to encode the data. A particularly
the arguments of Rissanen [42] and in [45], and can also @venient way to do it is by an Arithmetic Code, see, e.g.,
shown by the methods of Merhav and Feder [37]. Rlss_an_en and Langdon [39], _Whlch is capable of encoding
In the case of a Lipschitz or Sobolev class of functions dh€ individual symbols, even if they are binary, without the
a bounded set, witls the order of smoothness, and severdleed to block them as required in the conventional Huffman
other function classes discussed in [57], the metric entropyG@des. However, a direct execution of this program would
of orderV(¢) = ¢1/* for the L, metric and this remains the "équire several passes through the Qata, which would result in
order of the metric entropy of the subclass of densities that & awkward code. In [40], an algorithm, called Context, was
bounded and are bounded away from zero u&ing/D, or L described which collects in a growing tree recur_swe_ly, symbol
for the distance. This leads to the optimal density estimati® Symbol, all the symbol occurrence counts in virtually all
rate in terms ofH2 or D of n=2/2+1) which remains the possible configurations of the immediately preceding symbols,
optimal rate also in mean integrated squared error even if ff@led contexts that the data string has. Hence, for instance,
densities are not bounded away from zero. in the string00100 the symbol valued of the fifth symbol
x5 occurs in the empty context four times. Out of these
the preceding symbol i8 twice, or, as we say, it occurs in
the contextd two times, and further out of these occurrences
We discuss three applications of the MDL principle, the firghe symbol preceding thecontext is1 once. In other words,
on coding, the second on linear Gaussian regression, and € substringl00 occurs once. Since extending the context
third on density estimation. As often is the case in nontrivigh the left reduces the set of symbol occurrences it will be
applications of the principle the model classes suggestgghvenient to read the contexts from right to left. And this
by the nature of the applications turn out to be too larggme phenomenon allows us to organize the nested sets of
giving an infinite parametric or nonparametric complexity. Agntexts in a binary tree, which can be grown recursively
problem then arises regarding how to carve out a relevaghjle also collecting the symbol occurrence counts. In such
subclass and how to construct a representative for it, the idﬁ%presentation, each node corresponds to a context, the root,
being the stochastic complexity by the formula (9). Howevegy particular, to the empty context. We first spell out the
computational issues often force us to use suitable mixtur,%*;ati\,my simple tree-growing algorithm, and show the tree
or even combinations of the two perhaps together with thgtained from the strin@0100 in Fig. 1. We then describe

V. APPLICATIONS

predictive method. how the special “encoding” nodes are chosen by use of the
_ _ predictive version of the MDL principle described in Section
A. Universal Coding IV, and, finally, we discuss to what extent the so-obtained

Despite the close connection between the MDL principkhiversal model and data compression system achieve the ideal
and coding, the theory of universal coding and the code desigs defined in (9).
were developed without cognizance of the principle. This is For the binary alphabet the tree-growing algorithm con-
perhaps because most universal codes, such as the widely $éaigts a treeZ;, for data stringz™ = z1,---, 2, with
codes based on Lempel—-Ziv incremental parsing, are predicti® countsco,c; at each node indicating the numbers of
by nature, which means that there is no codebook that ne@gsurrences of the two symbold and 1 at the context
to be encoded, and hence the connection between the ctstgtified with the node, as follows.
redundancy and the number of bits needed to transmit thel) Initialize 7, as thel-node tree with count§él, 1).
codebook was not made explicit until the emergence of a2) Having the tre€l;_;, read the next symbat; = i.
universal code based on context models, Rissanen [40]. We “Climb” the tree along the path into the past i,
discuss briefly this latter type of universal codes. T;_o,--- Starting at the root and taking the branch
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specified byz;_1, and so on. At each node visited updatéhe one in the cited reference but the results proven still hold.)
the countc; by 1. Climb until a node is reached whoseMoreover, the ideal codelength for long strings defined by
countc; = 2 after the update. the resulting universal model, given dgz™) = %, L(s*),

3) If the node is an internal node return to step 2). But differs from the stochastic complexity in (9) for the considered
the node is a leaf, add two son nodes and initialize thailass of models by(logn) or less. It cannot, however, agree
counts to(1, 1) and return to step 2). with it completely, because the algorithm models the data as

Because of the initialization the counts exceed the re2@ing generated by a collection of Bernoulli sources. In reality,

occurrence counts by unity, and they satisfy the importatite various Bernoulli processes at the states of a, say, Markov

condition chain, are linked by the state transitions, which means that the
stochastic complexity of a string, relative to Markov chains

ci(s) = ci(s0) + ci(s1),  i=0,1 (16) is smaller than the one defined by the ideal codelength of the

, universal Context algorithm. The same of course is true of the

where s0 and s1 are the son nodes &f whenever the sons class of Tree Machines

CogntSci(s()) andhci(sl) aretgreftgrtaharz. d intend to Ve conclude this subsection by mentioning another uni-
ugpotshe we ;\f con_?hrucel € ffEtﬁan Irt] en bOI versal code (Willemset al. [55]), where noTree Machine
encode he Symbok;i.. The values ol the past SymbolS,qqqs 1o pe found. Instead, by an algorithm one can compute

-+, T2, 3r1, 2, When read in reverse, define a path frorg, weighted sum over all complete subtreesidfof the
the root through consecutive nodes, each having the two co:@f

. . . Sbabilities assigned ta' by the leaves of the subtrees.
W'.th which the symbol could be gncoded. \_Nh'Ch no_de alo hen the weights are taken as “prior” probabilities we get
this path Sh_OU|_d we choose? A quite conven!ent wayis to appe{ymixture of allTree Machinemodels, each corresponding to
:Ee MD; prlﬂmplet;nd to se?rtcﬁ for the, e?r“?t r:qdealongl] a complete subtree. Again, since the codelengths defined by

'S path where etsum.o € sons: stochastic comp exﬁ;{e complete subtrees differ from their stochastic complexities,
of the substrings of:?, defined by their symbol occurrences

) . X . he codelength of the mixture, which is comparable to that

s rger et b Indeed s st commlext e win lgoriim ot wil e lager thn th
. v CQfSthastic complexity of data-generatifigee Machines

length for the same symbols, and the node comparison is fair,

because by the condition (16) each symbol occurring at tBe Linear Regression

father node also occurs at one of the son nodes. The symb

occurrences at each node or contertay be viewed as having

being generated by a Bernoulli source, and we can apply

to compute the stochastic complexity, written herd 4s), to

a good approximation as follows:

c\IIVe consider the basic linear regression problem, where we
ve data of typ€y,z1s,x0,---) for t = 1,2,---,n, and
wish to learn how the valuag of the regressionvariable
y depend on the values;;,: = 1,2,---, K, of the regressor
variables{z;}. There may be a large number of the regressor
L(s) =c(s)log c(s) — Z ci(s)logci(s) variables, and the problem of interest is to find out which
subset of them may be regarded to be the most important.
e(s)m This is clearly a very difficult problem, because not only is it
5 + 01 /c(s)). (17) necessary to search through subsets but we must also be
able to compare the performance of subsets of different sizes.
Instead of computing the stochastic complexities for everyaditionally, the selection is done by hypothesis testing or by
symbol occurrence by this formula it is much simpler to dg variety of criteria such as AIC, BIC, [1], [49], and cross

i=0,1

+L10g
5198

it recursively as follows: validation. They are approximations to prediction errors or to
‘ Bayes model selection criterion but they are not derived from

. ci(s)+1/2 o ) ; )
P(i|s) = ———— (18) any principle outside the model selection problem itself. We

ols) +1 shall apply the MDL principle as the criterion, and the problem

and the counts are the ones when the symibotcurred at remains to find that subset of, sayregressor variables which
the nodes. This recursive implementation, when cumulategermit the shortest encoding of the observed values of the
over all the past symbol occurrences at this node, gives regression variableg™, given the values of the subset of the
within the last term the stochastic complexity in (17). To geegressor variables. ’
a universal code we encode the symbgl; with the ideal For small values ofK, a complete search of th(aiz)
codelength—log P(i|s*) at the selected node€*, which can subsets fork = 1,-.-, K is possible, but for a large value
be approximated with an arithmetic code as well as desiredve have to settle for a locally optimal subset. One rather
Collectively, all the special “encoding” node$ carve out convenient way is to sort the variables by the so-called
from the treeT; a complete subtre&,*, which defines dree “greedy” algorithm, which finds first the best single regressor
Machine(Weinbergeret al. [54]). If the data are generated byvariable, then the best partner, and so on, one at a time. In
someTree Machinen a class large enough to include the set afrder to simplify the notations we label the regressor variables
Markov chains as specidtee Machinesthen with a somewhat so that the most important is;, the next most important.,
more elaborated rule for selecting the encoding nodes thed so on, so that we need to find the vakusuch that the
algorithm was shown to find the data-generating machisebset{xy, z2, -,z } is the best as determined by the MDL
almost surely. (The algorithm given above differs slightly frongriterion.
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We fit a linear model of type still f(y™;8), as the product of the marginal densityé)hnd
the conditional density of™ given 6

k
w=pFztea= ; Picie + €t (19) F(y7:8) = p(y™18(y™);: 0)p(6(y™); ). (26)

where the prime denotes transposition, and for the computatfd} the sufficiency of the statistié we also have

of the required codelengths the deviatiansare modeled as Fly™0) = h(yn)p(é(yn),e) (27)
samples from an i.i.d. Gaussian process of zero mean and ’ ’

variancer = o2, also as a parameter. In such a model, thghich shows thap(y™|6(y™); 0) = h(y™) is actually indepen-
response datg", regarded as a column vectgy, ---,yn, IS dent of . Moreover,

also normally distributed with the density function

1
(2m7)n/2

p(6;6) = p1(B; )pa(7; 7) (28)

where p; is normal with means and covariancer/n)S~*
while p, is obtained from the¢? distribution for n7/7 with
n — k degrees of freedom.

f(yn|Xa /3a7) = e—(1/27) %, (y1—B'z,)? (20)

whereX; = {z;:} is thek x n matrix defined by the values of
the regressor variables. Writg, = X} X, = nS, which is . L N n
taken to be positive definite. The development until the ver Instﬁgrr]a?rr:gt ét(hen)cc;nilglosnzj; y f!zé% )\;ael)u é_ ihe(lzs) ucr)1\i/te '
end will be for a fixed value ok, and we drop the subindex: Y q y y Y

. . . Therefore, with
k in the matrices above as well as in the parameters. The

maximum-likelihood solution of the parameters is given by p(8;6) = g(7) = p1(B; O)pa(7:6)
Bly™) =271 X"y" (21)  we get from the expression for thé density function in (28)
1 R
™) == (w0 ")) (22) .
"2 ¢ = [ 1186y (29)
We next consider the NML density function (3) IAn,k/ = F+2/2) g g (30)
~ 70,8
oy JW" X, B™), ("
faix) = LWL PWDTWD) Ak ke a1
[ seripen ey w2
Y(To,R)

_ _ whereV is the volume ofB = {3’53 < R} and
where ¢ is restricted to the set

n—k n—k/2
Y(7o,r) = {z"|7(z") Z 70}. (24) 2 \ 5
|S| 2e

In this the lower boundy, is determined by the precision with (2m) F(” - /f)
which the data are written. This is because we use the normal 2
density function (20) to model the data and approximate the : L
induced probability of a data point written to a precisior, We then have the NML density function itself
by 6 times the density afy. For an adequate approximation, A 1 1 .

i - JW"X) = - = - ~w(7) (33)
6 should be a fraction of the smallest value ofof interest, (2met)/2C  (2med)n/2g(7)
namely, /7, which, in turn, has to be no larger than Put w(?) = g(7)/C. (34)
R > B y™)Spy")-

The numerator in (23) has a very simple form Equations (34) and (32) give the stochastic complexity in

. exact form. However, the evaluation of the gamma function

F@M X, B, A (™) = 1/(2rer(y™)™*  (25) has to be done from an approximation formula, such as

. . . . Stirling’s formula. When this is done the stochastic complexity
and the problem is to evaluate the integral in the denom'”atf’éduces to the general formula (9) with a sharper estimate for

In [19], Dom evaluated such an integral in a domain thg}o \omainder terna(1). For this the Fisher information is
also restricts the range of the estimai@go a hypercube. needed, which is given byI(3,7)| = |S|/(2r*+2) and the
He did the evaluation in a direct manner using a coordinaﬁtﬁegral of its square root by’

transformation with its Jacobian. As discussed in Subsection
[lI-D we can do it more simply and, more importantly, for
the given simpler domain by using the facts taand+ are
sufficient statistics for the family of normal models given, and
that they are independent by Fisher's lemma. Hence if Wie see in passing that the density functiofr) agrees with
with 8 = (3, 7) rewrite f(y"|X,3,7) = f(y™;€) in order to oo

avoid confusion, then we haveAfirst the factorization of the w(T) = |](/3,T)|1/2// |](9,T)|1/2 dr dp. (36)
joint density function fory™ and é(y™), which, of course, is 0,B

°o 2 .
[ = Rispegt @)
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If we then apply Stirling’s formula to the gamma function irprobability mass of the normal density function in the mixure

(32) we get centered a3, and the left-hand side of (41) will exceed the
right-hand side only slightly. However, for smal| the setB

—1n f‘(yn|X) _n In (2re?) + k+1 In 1V wiI.I have to.pe taken relqtively large to capturg most of the
2 2 2n said probability mass, which means thfat,- x, will be a lot

+ln /Oo |1(6,7)|"/? dr + R(k,n) (37) Smaller thanf (y"| X), and the mixture criterion will not be as
7o sharp as the one provided by the NML density.

where C. Density Estimation
R(k,n)=-1/(12(n — k)) — k/(2n) In this section we discuss a simple density estimator based
+ O /n2) + O(1/(n — k)% on histograms. Consider a histogram density function on the

unit interval with m equal-length bins, defined by the bin

in agreement with the general formula (9) except that the teRfobabilitiesp = p1, - - -, p,, satisfyingp: + -+ +pn =1
o(1) gets sharpened.

This formula can be used as a criterion for selecting
provided the regressor variables are already sorted so ti@erei(y) denotes the index of the bin wheyefalls.
we Only want to find the firsk most important ones. This This extends to Sequence@1 by independence_ Write
is because we may safely encode edchwith the fixed the resulting joint density function ag(z"|p,m). We are
codelengthlog K, or logn if no other upper bound exists.jnterested in calculating the NML density by use of (9). The

If by contrast the variables are not sorted by importance Wigsher information is given byI(p)| = II; p;t, and the
have to add to the criterion the codelengty ( ;) needed to integral of its square root, which is of Dirichlet's type, is given
encode each subset considered. by 7/2 /T(m/2). Equation (9) then gives

It is of some interest to compare the stochastic complexity
derived with the mixture density with respect to Jeffreys’ prior  _1og f(2"|m) = — log f(x"|p, m) + —— ! log —
|1(3,7)|*/? divided by its integral, which, however, cannot be 2 2
taken as in (35) but it must be computed over a range of both +log /2 +o(1) (43)
3 andr. The latter can be taken as above, but the former will T'(m/2)

have to be a set such that it includén its interior. A natural
choice is ak-dimensional hyperbalB or an ellipsoid defined
by the matrix$S of volume V;.. Jeffreys’ prior, then, is given
by #(3,7) in (34). We need to calculate the mixture

where the components ¢f= j(z™) arec;(z")/n andc;(z™)
denoting the number of data points frarfi that fall into the
jth bin. Just as in the previous subsection one can obtain
sharper estimates for the remainder th&t), but we will

nivy R k2 ~ 1 not need them.
Fy"|X) = 213, 0 /B dp /TO (2m7)n/2 Next, consider the mixture
- (2T FHE=AY (A=) =272 g (38) ) m(n) )
b a2\ Fle™) = 3 wnlm) Fyle”,m) (44)
< W’fo |S| <7) m=1
oo . where
. / (/20— 2/2) g (39) -
- ) N wa(m) = W (45)
2 k/2 —1/2 _7r N
EETAPSTZA <n) > fan k)
k=1
i\ " n
"\ 9 F(g)- (40)  andm(n) = [n!/3] for large values of.. This number comes

from analysis done in [45], where such a value for the number
The firstinequality comes from the fact thatdoes not capture of hins was shown to be optimal asymptotically, when the ideal
all of the probability mass of the normal density. The secongdelength for a predictive histogram estimator, equivalent to
approximation is better; only the small probability mass falling(,»|;,), is minimized. For small values of the choice of
in the initial interval(0, 7o) of the inverse gamma distribution () could be made by the desired smoothness.
for 7 is excluded. If we apply Stirling's formula to the gamma  Thjs estimator has rather remarkable properties. If the data

function we get are samples from some histogram with the number of bins
Fy1X) less thamm(n), then the corresponding weight gets greatly
In m > In Vi, + Rem(k, n) (41) emphasized, and the mixture behaves like the data-generating

histogram. If again the data are generated by a smooth density
whereRem(%, n) is a term similar taR(k, ») in (37). For fixed function, then the mixture will also produce a surprisingly
k and largen the two criteria are essentially equivalent. Thismooth estimate. To illustrate we took a test case and generated
is because then the fixed sBtwill include virtually all of the 400 data points by sampling a two-bin histogram on the unit
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mixture: dotted line
10-bin histogram: dashed line

1 1
.5 1
Fig. 2. Mixture and ten-bin histograms.
1
5t
1 |
5 1

Fig. 3. A mixture histogram.

interval, where the first half has the probability m&s3$ and any density function. The length of the steps is seen to be short
the second).?, so that at the middle there is an abrupt changi the rapidly changing regions of data density, which gives the
We took m(400) = 10. Fig. 2 shows the result, dotted line,illusion of smoothness and flexibility. Generating a continuous
together with a ten-bin histogram, dashed line. The mixtufensity function by connecting the dots with a curve would be

nails down the two-bin data generating density just abofi#sy: but to do so would require prior knowledge not present

perfectly, while the ten-bin histogram shows rather sevefd the discrete data.
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