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1. Introduction and Summary

1.1 What is the Problem?

The identification problem is to infer relationships between past input-output

data and future outputs. Collect a finite number of past inputs u(k) and

outputs y(k) into the vector ¢(t)
o(t) = [yt —1)...y(t — na) ult — 1)...u(t — np)|T (1.1)

For simplicity we let y(t) be scalar, Let d = n, + ny. Then ¢(t) € R The
problem then is to understand the relationship between the next output y(t)
and @(t): .
y(t) « o(t) (1.2)
To obtain this understanding we have available a set of observed data (some-
times called the “training set”)

ZV = {[y(t), )]l t =1,..N} (1.3)
From these data we infer a relationship
9(t) = gn(e(t)) (1.4)

We index the function g with a “hat” and N to emphasize that it has been
inferred from (1.3). We also place a “hat” on y(t) to stress that (1.4) will
in practice not be an exact relationship between ((t) and the observed y(t).
Rather §(t) is the “best guess” of y(t) given the information ¢(t).
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1.2 Black Boxes

How to infer the function gn? Basically we search for it in a parameterized
family of functions

G = {9(o(t),6)|60 € Dum} (1.5)
How to choose this parameterization? A good, but demanding, choice of
parameterization is to base it on physical insight. Perhaps we know the re-
lationship between y(t) and ¢(t) on physical grounds, up to a handful of
physical parameters (heat transfer coefficients, resistances,. ..). Then param-
eterize (1.5) accordingly.
This paper only deals with the situation when physical insight is not used;
Le. when (1.5) is chosen as a flexible set of functions capable of describing
almost any true relationship between y and ¢. This is the black-boz approach.
Typically, function expansions of the type

9(0,8) = > 0(k)gx ) (16)
k

are used, where
alp): RESR

and (k) are the components of the vector 4. For example, let
9k(p) = ¢ (k:th component of ) k=1,...,d.
Then, with (1.1)
y(t) = gle(t),6)

reads .
yt) Fary(t— 1)+ ...+ an, Yt ~ng) =
bru(t ~ 1) + ... + by, ult — np)
if
a=—0() b =6(n, +i)

so the familiar ARX-structure is a special case of (1.6), with a linear rela-
tionship between y and ¢.
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1.3 Nonlinear Black Box Models

The challenge now is the non-linear case: to describe general, non-linear,
dynamics. How to select {g(¢)} in this general case? We should thus be
prepared to describe a “true” relationship .

9() = go(w0(2))

for any reasonable function go = R® = R. The first requirement should be
that {gr()} is a basis for such functions, i.e. that we can write

[B1]: go(0) = Y 0(k)ge(y) 17

k=1

for any reasonable function g, using suitable coefficients 0(k). There is of
course an infinite number of choices of {g;} that satisfy this requirement, the
classical perhaps being the basis of polynomials. For d = 1 we would then
have , , ’
9x(p) = ¢

and (1.7) becomes Taylor or Volterra expansion. In practice we cannot work
with infinite expansions like (1.7). A second requirement on {gx} is therefore
to produce “good” approximations for finite sums: In loose notation:

[B2]: | go(e) =D 0K)ar(e)

k=1
“decreases quickly as n increases” (1.8)

There is clearly no uniformly good choice of {gx} from this respect: It will
all depend on the class of functions go that are to be approximated.

1.4 Estimating g

Suppose now that a basis {gx} bas been chosen, and we try to approximate
the true relationship by a finite number of the basis functions:

5(t16) = 9(0(2),0) = 3 0(R)ie () (19)
k=1

where we introduce the notation 7(t]8) to stress that 9{(t),0) is a “guess”
for y(t) given the information in (t) and given a particular parameter value
6. The “best” value of 4 is then determined from the data set ZN in (1.9) by

N

Oy = argmin Y y(t) - §(¢/6)[2 (1.10)
k=1

~ The model will be
9(t) = §(t10n) = G (0(2)) = g(e(t), bn) (1.11)
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1.5 Properties of the Estimated Model

Suppose that the actual data have been generated by
y(t) = g0((t)) + e(t) (1.12)

where {e(t)} is white noise with variance A. The estimated model (1.11) (e
the estimated parameter vector 6x) will then be a random variable that
depends on the realizations of both e(t),t=1,...,N and ei),t=1,...,N.
Denote its expected value by .

n .
Ein =gn = 0*(K)gx (1.13)
k=1
where we used subscript n to emphasize the number of terms used in the
function approximation.
Then under quite general conditions

Elgw (#(8)) - an(e() =2 T (114)

where E denotes expectation both with respect to ¢(t) and Gy, Moreover,
m is the number of estimated parameters, i.¢., dim 8. The total error thus

becomes .
Elgn(e(t)) — go(e(0)))* =
Foo()) - gale) I? +A- 2 (1.15)

The first term here is an approximation error of the type (1.8). It follows from
(1.15) that there is a trade-off in the choice of how many basis functions to
use. Bach included basis function increases the variance error by A/N, while
it decreases the bias error by an amount that could be less than so. A third
requirement on the choice of {g;} is thus to

[R3] Have a scheme that allows the exclusion of spurious basis functions
from the expansion.

Such a scheme could be based on a priori knowledge as well as on information
in ZN,

1.6 Basis Functions

Out of the many possible choice of basis functions, a large family of special
ones have received most of the current interest. They are all based on just
one fundamental function o(¢), which is scaled in various ways, and centered”
at different points, i.e.

96(¢) = o (6L (0 + 1)) = o (BF 0 + ) = oo, mi) (1.16)
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where v, = 874 and 7y is the d + 1-vector

M = [Bk, 1&] (1.17)

Such a choice is not at all strange. A very simplistic approach would be to
take o(y) to be the indicator function (in the case d = 1) for the interval

[0,1]:
A 1 pelo,1]
0 v¢01]

For a countable collection of 7, (e-g. assuming all rational numbers) the func-
tions gx () would then contain indicator functions for any interval, arbitrarily
small and placed anywhere along the real axis. Not surprisingly, these {gx}
will be a basis for all continuous functions. Equivalently, it could be threshold
function

aly)=

o) uA 0 o028 (118)

since the basic indicator function is just the difference between two threshold
functions.

1.7 What Is the Neural Network Identification Approach?

The basic Neural Network (NN) used for System Identification (one hidden
layer feedforward net) is indeed the choice (1.16) with a smooth approxima-
tion for (1.18), often . o

l+e=

Include the parameter 5 in (1.16)-(1.17) among the parameters to be esti-
mated, 6, and insert into (1.9). This gives the Neural Network model structure

o(z) =

9(t16) = 3" oo (Brg + 1)
k=1

= F&SQ»:\SL. k=1,...,n .AH.HOV
The n - (d + 2)-dimensional parameter vector @ is then estimated by (1.10).

1.8 Why Have Neural Networks Attracted So Much Interest?
This tutorial points at two main facts, .

1. The NN function expansion has good properties regarding requirement
[R2] for nonlinear functions go that are “localized”; i.e. there is not much
nonlinear effects going to the infinity. This is a reasonable property for
most real life physical functions. More precisely, see (7.1) in Section 7..

2. There is a good way to handle requirement R3] by implicit or explicit
regularization (See Section 3.)
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1.9 Related Approaches

Actually, the general family of basis functions (1.16), is behind both Wavelet
Transform Networks and estimation of Fuzzy Models. The paper [2] explains
these connections in an excellent manner.

2. The Problem
2.1 Inferring Relationships from Data

A wide class of problems in disciplines such as classification, pattern recog-
nition and system identification can be fit into the following framework.
A set of observations (data)

2z = {y(t), 2}V,

of two physical quantities y € IR? and & € R" is given. It may or may not
be known which variables in & influence y. There may also be other, non-
measured, variables v that influence y. Based on the observations ZN | infer
how the variables in & influence y.

Let ¢ be the variables in & that influence y, then we could represent the
relation between ¢, v and y by a function o

¥ =go(,v) (21)

The problem vmm thus two-fold:

1. Find which variables in & that should be used in ©.
2. Determine gg.

In identification of dynamical systems, finding the right ¢ is the model order
selection problem. Then ¢ represents the time index and &(t) would be the
collection of all past inputs and outputs.

There are two issues that have to be dealt with when determining go:

1. Only finite observations in the (p-space are available.
2. The observations are perturbed by the non-measurable variable {v(t)}.

1) represents the function approximation problem, i.e. how to do interpola-
tion and extrapolation, which in itself is an interesting problem. Notice that
there would be no problem at all if y was given for all values of ¢ (if we
neglect the non-measurable input) since the function then in fact would be
defined by the data. 2) increases the difficulty further since then we cannot
infer exactly how ¢ influences y even at the points of observations. Blended
together, these two problems are very challenging. Below we will try to dis-
close the essential ingredients. For further insight in this problem see also

[2).
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2.2 Prior Assumptions

Notice that as stated, the problem is ill-posed. There will be far too many

unfalsified models, i.e., models satisfying (2.1), if any function g and any
non-measurable sequence {v(t)} is allowed. Thus, it is necessary to include
- some a priori information in order to limit the number of possible candidates.
However, often it is difficult to provide a priori knowledge that is so precise
that the problem becomes well-defined. To ease the burden it is common to
resort to some general principles: ’
1) Non-measurable inputs are additive. This means that go is additive in
its second argument, i.e., :

9o(,v) = go(p) +v

This is, for example, a relevant assumption when {v(t)} is due mainly to
measurement errors. Therefore v is often called disturbance or noise.

2) Try simple things first (Occam’s razor). There is no reason to choose a
complicated model unless needed. Thus, among all unfalsified models, select
the simplest one. Typically, the simplest means the one that in some sense
has the smoothest surface. An example is spline smoothing. Among the class
C?2 of all twice differentiable functions on an interval J , the solution to

18 500 ~ oo+ A [ " (0)d

is given by the cubic spline, [38]. Other ways to penalize the complexity
of a function are information based criteria, such as AIC, BIC and MDL,
regularization (or ridge penalty) and cross-validation.

2.3 Function Classes

Thus, go is assumed to belong to some quite general family G of functions.
The function estimate §% however, is restricted to belong to a possibly more
limited class of functions, G,, say. This family G,, where n represents the
complexity of the class!, is a member of a sequence of families {G.} that
satisfy On — G. As explained above, the complexity of gy is allowed to
depend on Z¥, i.e., n is a function of Z¥. We will indicate this by writing
n(N).

In this perspective, an identification method can be seen as a rule to
choose the family {G,,} together with a rule to choose n{N) and an estimator
that given these provides an estimate wv:é. . Notice that both the selection
of {Gn} and n(INV) can be driven by data. This possibility is, as we shall see
in Section 7., very important.

Typical choices of G are Holder Balls which consist of Lipschitz continuous
functions:

! Typically n is the number of basis functions in the class.
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A%C) =Af: 1f(@) - fW)| < C- |z —y|*} (22)
and Ly Sobolev Balls which have derivatives of a certain degree which belongs
to Ly:

W(0) = {1+ [ I epa < o) (23)

Recently, Besov classes and Triebel classes, {35] have been employed in
wavelet analysis. The advantage with these classes are that they allow for
spatial inhomogenity. Functions in these classes can be locally spiky and
jumpy.

3. Some Qmsoﬂm_ wm&:uwao& Results

The basic estimation set-up is what is called non-linear regression in statis-
tics. The problem is as follows. We would like to estimate the relationship
between a scalar y and ¢ € IR®. For a particular value ¢(t) the corresponding
y(t) is assumed to be

y(8) = go(p(2)) + e(t) (3.1)

where {e(t)} is supposed to be a sequence of independent random vectors,
with zero mean values and variance

Ee(t)ef(t) = A (3.2)
To find the function go in (3.1) we have the mEoSFW information available:

1. A parameterized family of functions

4 Gm = {g(¢(t),0)l0 € Dpy C R™) (3.3)
2. A collection of observed y, p-pairs:
2V = {ly(t),p®).t = 1,.., N} (3.4)

The typical way to estimate g is then to form the scalar valued function
1 & ,
Vn(8) = % Msm ly(t) - 9(e(t),0) (3.5)
and determine the parameter estimate §y as its minimizing argument:
6 = argmin Vn(8) (3.6)
The estimate of go will then be
an(®) = g(p,0n) 37

Sometimes a general, non-quadratic, norm is used in (3.4)
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N
Vi(6) = 5 D Ut 0) (38)
i=1

&(t,0) = y(t) — g((2), )
Another modification of (3.4) is to add a regularization term,

Wi () = Vv (6) + 6|6 — 6% (3.9)

(and minimize W rather than V) either to reflect some prior knowledge that
a good @ is close to 6# or just to improve numerical and statistical properties
of the estimate 6. Again, the quadratic term in (3.9) could be replaced by
a non-quadratic norm, :

Now, what are the properties of the estimated relationship §5? How close
will it be to go? Following some quite standard results (see, e.g., [20, 31)),
we have the following properties. We will not state the precise assumptions
under which the results hold. Generally it is assumed that {((t)} is (quasi)-
stationary and has some mixing property (i.e., that ¢(t) and ¢(t + s) become
less and less dependent as s increases). The estimate § is a random variable
that depends on Z". Let E denote expectation with respect to both e(t) and
@, t=1,..,N. Let )

0" =Eéfn
and
9 () = 9(,6")

Then g*(¢) will be as close as possible to go() in the following sense:

arg min Elg(p) - go(¢)I” = g*(¢) (3.10)

where expectation E is over the distribution of ¢ that governed the observed
sample ZN. We shall call

97 () = 90()
the bias error. Moreover, if the bias error is small enough, the variance will
be given approximately by

Elin(e) ~ 9" (0)* ~ 1A . (3.11)

Here m is the dimension of 8 (number of estimated parameters), N is the
number of observed data pairs and X is the noise variance. Moreover, expec-
tation both over fx and over , assuming, the same distribution for ¢ as in
the sample Z~. The total integrated mean square error (IMSE) will thus be

Blan (#) ~ o(@)* = llg* () = so(@)II? + A (312)

Here the double bar norm denotes the functional norm, integrating over ¢
with respect to its distribution function when the data were collected. Now,
what happens if we minimize the regularized criterion Wy in (3.9)?
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1. The value g*(y) will change to the function that minimizes
Elg(¢,0) — go(0)f* + 616 — 6** (3.13)
2. The variance (3.11) will change to

Elgn () — ¢* (@) ~ .ﬂﬁzb A (3.14)
where m )
r(m,6) = W Alqwmﬂﬂ (3.15)

where o; are the eigenvalues (singular values) of EV}/(8), the second
derivative matrix (the Hessian) of the criterion.

How to interpret (3.15)? A redundant parameter will lead to a zero eigenvalue
of the Hessian. A small eigenvalue of V" can thus be interpreted as corre-
sponding to a parameter (combination) that is not so essential: “A spurious
parameter”. The regularization parameter § is thus a threshold for spurious
parameters. Since the eigenvalues o; often are widely spread we have

r(m,8) ~ m¥* = # of eigenvalues of V"
that are larger than §

We can think of m# as “the efficient number of parameters in the parameter-
ization”. Regularization thus decreases the variance, but typically increases
the bias contribution to the total error.

4. The Bias/Variance Trade-Off

Consider now a sequence of parameterized function families

Gn = {gn(0(t),8)|0 € Dp C R™}
n=123... (4.1)

where 7 denotes the number of basis function (1.9).
In the previous section we saw that the integrated mean square error is
typically split into two terms the variance term and the bias term

Va(§i: 90) = Va(@R, 63) + Va(gl.g0) (4.2)

where, according to (3.11),

_,‘3 _
Va(@n, 95) ~ ¥ (4.3)
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The bias term, which is entirely deterministic, decreases with n. Thus, for
a given family {G,} there will be an optimal n = n*(N) that balances the
variance and bias terms.

Notice that (4.3) is a very general expression that holds almost regardless
of how the sequence {G,} is chosen. Thus, it is in principle only possible
to influence the bias error. In order to have a small integrated mean square
error it is therefore of profound importance to choose {Gn} such that the bias
is minimized. An interesting possibility is to let the choice of {G,} be data
driven. This may not seem like an easy task but here wavelets have proven
to be useful, see Section 7. ‘

When the bias and the variance can be exactly quantified, the integrated
mean square error can be minimized with respect to n. This gives the optimal
model complexity n*(N) as a function of N. However, often it is only possible
to give the rate with which the bias decreases as a function of n and the rate
with which the variance increases with n. Then it is only possible to obtain
the rate with which n*(N) increases with N. Another problem is that if 90
in reality belongs not to G but to some other class of functions, the rate will
not be optimal. These considerations has lead to the development of methods
where the choice of n is based on the observations ZV. Basically, n is chosen
50 large that there is no evidence in the data that go is more complex than
the estimated model, but not larger than that. Then, as is shown in [14], the
bias and the variance are matched. These adaptive methods are discussed in
Section 7.

5. Neural Nets

What is meant by the term neural nets depends on the author. Lately neu-
ral net has become a word of fashion and today almost all kinds of models
can be found by the names neural network somewhere in the literature. Old
types of models, known for decades by other names, have been converted to,
or reinvented as neural nets. This makes it impossible to cover all types of
. neural networks and only what is called feedforward and recurrent will be
considered, which are the networks most commonly used in system identifi-
cation. Information about other neural network models can be found in any
introductory book in this field, e.g., [18, 29, 15].

In [16, 25, 34] alternative overviews of neural networks in system iden-
tification and control can be found. Also the books [41, 42] contain many
interesting articles on this topic. ’

5.1 Feedforward Neural Nets

The step from the general function expansion (1.9) to what is called neu-
ral nets is not big. With the choice gx(¢) = aro(Bry + ) where B is a
parameter vector of size dimy, and v, and oy, are scalar parameters we obtain
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9(9) = 3" 0xo (B + 1) + (5.1)

=1

where a mean level parameter o has been added. This model is referred to
as a feedforward network with one hidden layer and one output unit in the
NN literature. In Fig. 5.1 it is displayed in the common NN way. The basis
functions, called hidden units, nodes, or neurons, are univariate which makes
the NN to an expansion in simple functions. The specific choice of o(-) is
the activation function of the units which is usually chosen identically for all
units.

_ 1
M.vo./

2 =0

Fig. 5.1. Feedforward network with one hidden layer and one output unit. The
arrows symbolize the parameters of the model. .

The name feedforward is explained by the figure; there is a specific direc-
tion of flow in the computations when the output g is computed. First the
weighted sums calculated at the input at each unit, then these sums pass
the activation function and form the outputs of the hidden units. To form
9, a weighted sum of the results from the hidden units is formed. This sum
at the output is called the output unit. If g is vector function there are sev-
eral output units forming an output layer. The input, @, is sometimes called

" the input layer. The weights at the different sums are the parameters of the

network. .
In [6] it was shown that condition [R1], (1.7), holds if the activation func-
tion is chosen to be sigmoidal which is defined as

mebm&oum.w.h&qﬁsvo@gamagﬁ.g ﬂ@%a&&n«@ie&?ﬁ.
tion if it has the following properties .
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+
cw={ BET ©2

where a,b, b < a are any real values.

The most common choice is
1
l4e=

which gives a smooth, differentiable, model with the advantage that gradient
based parameter estimate methods can be used, see Section 6.. However, in
{19] it is shown that (5.1) is a universal approximator, i.e., [R1] holds for all
non-polynomial o(-) which are continuous except at most in a set of measure
Zero. .
The one hidden layer NN is related to the Projecting Pursuit (PP) model,
see Section 7. In each unit a direction is estimated (Bx) but, in difference to
PP, the function in this direction is fixed except for scaling and translation.
The one hidden layer network (5.1) can be generalized into a multi-layer
network with several layers of hidden units. The outputs from the first hidden
layer then feeds in to another hidden layer which feeds to the output layer -
or another hidden layer. This is best shown with a picture; in Fig. 5.2 such a
net with two hidden layers and several outputs is shown. The formula for a
NN with two hidden layer and one output becomes

ofz) = (5.3)

9(@) =) 630 | 362,003 6% nom) (5.4)
i j m

The parameters have three indexes. &,«_Ar is the parameter between the unit
¢ in one layer and unit j in the following layer. M denotes which layer the
parameter belongs to. The translation parameters corresponding to vy in
(5:1) has not been written out.

At first, because of the general approximation ability of the NN with
one hidden layer, there seems to be no reason to add more hidden layers.
However, the rate of convergence might be very slow for some functions and
it might be possible with a much faster convergence with two hidden layers
(i-e., condition [R2], (1.8) might favor two layers). Also, in [33] it is shown that
in certain control applications a two hidden layer NN can stabilize systems
which cannot possibly be stabilized by NN with only one hidden layer.

5.2 Recurrent Neural Nets

If some of the inputs of a feedforward network consist of delayed outputs
from the network, or some delayed internal state, then the network is called
a recurrent network, or sometimes a dynamic network. In Fig. 5.3 an example
of a recurrent net with two past outputs fed back into the network.
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Input layer Hidden layers Output layer
} - - - ] e N r - "
1 0 1 @ 1 4]
¥y -k Yy K ) et
=X X -x z

Fig. 5.2. Feedforward network with two hidden layers,

X =K

™~
\{

\ /"

5 -k

% [ U R B
q

Fig. 5.3. Recurrent network. ¢~* delays the signal one time sample.
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The dynamic recurrent networks are especially interesting for identifica-
tion, and in Section 9. two black-box models introduced based on recurrent
networks.

Recurrent networks can also be used as a non-linear state-space model.
This is investigated in [23].

6. Algorithmic Aspects

In this section we shall discuss how to achieve the best fit between observed
data and the model, i.e. how to carry out the minimization of (1.10).

N
Va(6) = 537 > (O) - a((t), O (61)
t=1

No analytic solution to this problem is possible, so the minimization has
to be done by some numerical search procedure. A classical treatment of
the problem of how to minimize sum of squares is given in [7]. A survey of
methods for the NN application is given in |18 and in [36]. Most efficient
search routines are based on iterative local search in a “downhill” direction
from the current point. We then have an iterative scheme of the following
kind ) .

8+ = 60) — RV, (62)
Here 6 s the parameter estimate after iteration number i. The search
scheme is thus made up from the three entities
~ p; step size .
— V§; an estimate of the gradient V()
— R; a matrix that modifies the search direction
It is useful to mmmﬂzmﬁmr between two different minimization situations

(1) Off-line or batch: The update wiR; 1¥V; is based on the whole available
data record ZV.

(ii) On-line or recursive: The update is based only on data up to sample i
(Z%), (typically done so that the gradient estimate V§; is based only on
data just before sample i.)

We shall discuss these two modes separately below. First some general aspects
will be treated.

6.1 Search Directions

The basis for the local search .mm the gradient

N
V() = 5 > (w(®) ~ o(p(t), 0)p(o(2),6) (6.3)
t=1 .
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where 3
PYle(t),0) = 759(0(t),6) (df1 ~ vector) (6.4)

It is well known that gradient search for the minimum is inefficient, o@%m&m.,:%
close to the minimum. Then it is optimal to use the Newton search direction

ROV (65)
where N
R(B) = Vi) = 7 > $(o(t), 07 (o(2),6)+
. t=1

1L 8 o
7 20 — 90, 0)559(0(0),0) (66)

t=1
The true Newton direction will thus require that the second derivative
n.wm
%ﬁﬁ?y 6)
be computed. Also, far from the minimum, R(#) need not be positive mo.EEam,
inite. Therefore alternative search directions are more common in practice:

- Gradient direction. Simply take

R, =1 6.7)
- Gauss-Newton direction. Use
N
1 . o

J= Hy = — t), 6N T ((t), 6D 6.8

Ri=Ho= 3 3 0(0.09)97 (09, 09) (638)
- Levenberg-Maguard direction. Use

R;=H;+6I (6.9)

where H; is defined by (6.8).

- Conjugate gradient direction. Construct the Newton direction from a se-
quence of- gradient estimates. Loosely, think of V} as constructed by
difference approximation of d gradients. The direction (6.5) is however
constructed directly, without explicitly forming and inverting V.

It is generally considered, [7], that the Gauss-Newton search direction is to
be preferred. For ill-conditioned problems the Levenberg-Maquard modifica-
tion is recommended. However, good results with conjugate gradient methods
have also been reported in NN applications ([36]).
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6.2 Back-Propagation: Calculation of the Gradient

The oz_w. model-structure dependent quantity in the general scheme (6.2) is
the gradient of the model structure (6.4). For a one-hidden-layer structure
(5.1) this is entirely straightforward, since

d

0B+ = a(Bp+7)

d

FooBe+) = ao'(Bp+v)
& .

mmoaﬁs +7) = ad'(Bo+)p

For multi-layer NNs the gradient is calculated by the well known Back-
Propagation (BP) method which can be described as the chain rule for differ-
entiation applied to the expression (5.4). It also makes sure to re-use inter-
mediate results which are needed at several places in the algorithm. Actually,
the only complicated with the algorithm is to keep track of all indexes.

Backpropagation has been “rediscovered” several times (see, e.g., [40, 28]).

Here the algorithm will be derived for the case where the network has two
hidden layers and one output unit. For multi output models and with less-
or more hidden layers only minor changes have to be done.

. Consider the NN model (5.4). Denote by zM and fM the result at unit b
in layer M before and after the activation function, respectively. That is

£ =o(a})
We can then write g(y) = 2§ = 3,63 ;72 and the derivative with respect to
one of the parametersin the output layer becomes
Oy 2
Y(P)s1 = o2, I.\v
In the same way 27 = 3, 62 fL and the derivative of a parameter in the
middle layer becomes

_ _9g __ £241
P(P)2,ap = 8z, = 621

where
82 =63 30" (z2)

For the first layer we can write 2} = 62 m@m and the derivative of a
parameter in this layer becomes

g
ﬂ\\.?cvu.n.v = m%m-.v = %“Ga

where

.
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6l = me%w.a% (x?)
7
The nice feature is that {f} and {x}} are obtained as intermediate results
when g(p) is calculated (forward propagation in the network). Calculating
{6M} can be viewed as propagating g{¢) backwards through the net, and
this is the origin of the name of the algorithm.
The calculations are further simplified by the relation of the derivative of

the sigmoid which follows from (5.3).

o'()=0()(1-0()) (6.10)

6.3 Implicit Regularization

Recall the discussion about regularization in Section 3.. We pointed out that
the parameter § in (3.9) acts like a knob that affects the “efficient number of
parameters used”. It thus plays a similar role as the model size:

— Large 8: small model structure, small variance, large bias
— Small §: large model structure large variance, small bias

It is quite important for NN applications to realize that there is a direct
link between the iterative process (6.2) and regularization in the sense that
aborting the iterations before the minimum has been found, has a guite similar
effect as regularization. This was noted in [37] and pointed out as the cause of
“overtraining” in [30]. More precisely, the link is as follows (when quadratic
approximations are applicable)

(I - pRIV"Y ~ §(6T + V")~

so, as the iteration number increases, this corresponds to a regularization
parameter that decreases to zero as

log6 ~ —i (6.11)

How to know when to stop the iterations? As i — oo the value of the criterion
Vv will of course continue to decrease, but as a certain point the correspond-
ing regularization parameter becomes so small that increased variance starts
to dominate over decreased bias. This should be visible when the model is
tested on a fresh set ~ the Validation data (often called generalization data in
the NN context). We thus evaluate the criterion function on this fresh data
set, and plot the fit as a function of the iteration number. A typical such
plot is shown in Fig. 9.3. The point where the fit starts to be worse for the
validation data is the iteration number (the degree of regularization or the
effective model flexibility) where we are likely to strike the optimal balance
between bias and variance error. Experience with NN applications has shown
that this often is a very good way of limiting the actual model flexibility
by effectively eliminating spurious parameters, i.e., dealing with requirement
[R3], mentioned in Section 1.
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6.4 Off-line and On-line Algorithms

The expressions (6.3) and (6.6) for the Gauss-Newton search clearly assume
that the whole data set Z¥ is available during the iterations. If the application
is of an off-line character, i.e., the model gn is not required during the data
acquisition, this is also the most natural approach.

) However, in the NN context there has been a considerable interest in
on-line (or recursive) algorithms, where the data are processed as they are
measured. Such algorithms are in NN contexts often also used in off-line
situations. Then the measured data record is concatenated with itself several
times to create a (very) long record that is fed into the on-line algorithm. We
may refer to [21] as a general reference for recursive parameter estimation
algorithm. In (32] the use of such algorithms is the off.line case is discussed.

It is natural to consider the following algorithm as the basic one:

8(t)=0(t — 1) + Ry ({2, B¢ - 1))e(t, bt ~ 1)) (6.12)

&(t,0) = y(t) — g(w(t), ) (6.13)
R,=R, ,+
pe[(p(2), 6t — 1)) (p(2), (¢ — 1)) — Ry_y] (6.14)

The reason is that if g(i(t),8) is linear in 6, then (6.12) - (6.14), with
p: = 1/t, provides the analytical solution to the minimization problem (6.1).
This also means that this is a natural algorithm close to the minimum, where
a second order expansion of the criterion is a good approximation. In fact, it
is shown in [21}, that (6.12)~(6.14) in general gives an estimate 6(f) with the
MMM.% (“optimal”) statistical, asymptotic properties as the true minimum to

In the NN literature, often some averaged variants of (6.12)~(6.14) are
discussed:

8(t) = b(t - 1) + e Ry Vg, (6.15)

Vit = Vg1+
W), 8¢ — 1)e(t, 8¢ - 1)) - V5o a] (6.16)
8(t) = b(t — 1) + pulf(t) — b2 - 1)) (6.17)

The basic algorithm (6.12)—(6.14) then corresponds to Y = p = 1. Now,
when do the different averages accomplish?

Let us first discuss (6.17) (and take v, = 1). This is what has been called
“accelerated convergence”. It was introduced by [27] and has been extensively
discussed by Kushner and others. The remarkable thing with this averaging is
that we achieve the same asymptotic statistical properties of ws by (6.15)-
{6.17) with R, = I (gradient search) as by (6.12)~(6.14) if

n=1
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pe=1/t
e>>p  p—0

It is thus an interesting alternative to (6.12)~(6.14), in particular if dim# is
large so R; is a big matrix.

We now turn to the averaging in (6.16).For v < 1 this gives what is known
as a momentum term. Despite its frequent use in NN applications, it is more
debatable. An immediate argument for (6.16) is that the averaging makes
the gradient V§; more reliable (less noisy) so that we can take larger steps
in (6.15). It is, however, immediate to verify that exactly the same averaging
takes place in (6.15) if smaller steps are taken. A second argument is that
(6.16) lends a “momentum” effect to the gradient estimate V§;. That is, due
to the low pass filter, V§, will reflect not only the gradient at 6(t — 1), but
also at several previous values of A(k). This means that the update push in
(6.15) will not stop immediately at value § where the gradient is zero. This
could of course help to push away from a non-global, local' minimum, which
is claimed to be a useful feature. However, there seems to be no systematic
investigation of whether this possible advantage is counter balanced by the
fact that more iterations will be necessary for convergence.

6.5 Local Minima

A fundamental problem with minimization tasks like (6.1) is that Vyy(6) may
have several or many local (non-global) minima, where local search algorithms
may get caught. There is no easy solution to this problem. It is usually well
used effort to spend some time to come up with a good initial value 8(®) where
to start the iterations. Other than that, only various global search strategies
are left, such as random search, random restarts, simulated annealing, the
genetic algorithm and whathaveyou. ’

7. Adaptive Methods

The use of data to select the basis functions characterize adaptive methods.
The adaptation can be more or less sophisticated. In its simplest form, only
the number of basis functions is selected. The merits and limitations of this
procedure are explained in the first subsection while the second subsection
deals with more advanced methods where also the basis functions themselves
are adapted to the data. ,

7.1 Adaptive Basis Function Expansion

Suppose that we have a set of basis functions {b;} that span G. Each set of n
basis functions would generate a function class G,, and a good idea would be to
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select these n basis function such that the approximation error is minimized
among all possible choices of these sets of n basis functions. The problem
of finding an n-dimensional subspace that minimizes the worst approxima-
tion error is is known as Kolmogorovs n-width problem, [26]. Depending on
G, the problem can be more or less complicated. For example, for the func-
tions 3772 ; az2Fthat are analytic inside the disc of radius r < 1 satisfying
Yieo lakl?r? < 1, the optimal subspace is given by span{1, z,... , 2771,

Wavelets. For orthonormal basis functions, the basis functions that cor-
respond to the largest coefficients in the expansion of go give the best ap-
proximation. Thus, an idea is to estimate a large number of coefficients and
to select the n largest ones. It is interesting to note that with this procedure
one get adaptation of the {G,} to the smoothness of G for free; if the basis
functions span several (or a scale of) spaces of functions, the approach will
be optimal for all these spaces.

This approach has been exploited in the wavelet theory. Wavelet theory
is based on orthonormal bases of Lo that also span a wide scale of function
spaces with a varying degree of smoothness, Besov and Triebel spaces, [35].

The basic problem with such a method is to determine which param-
eters are small and which are large, respectively. [10] has shown that the
use of shrinkage gives (near) minimax rates in these spaces. Shrinkage es-
sentially means that a threshold is determined that depends on the number
of data. Parameter estimates less than this threshold are set to zero. Often,
for technical reasons, a soft threshold is used instead. In that case, every
wavelet coefficient is “pulled” towards zero by a certain non-linear function.
This is conceptually closely related to the regularization procedure outlined
in Section 3. Then, parameters are attracted towards the nominal value 6%.
However, so far explicit regularization does not seem to have been exploited
in wavelet theory. )

Neural Networks. Neural networks is an example of a structure where the
basis functions appear more implicit. Consider the expression (5.1). This is
an expansion with {o(y, )} as basis functions. The fact that the kS are
estimated from data means that the basis functions are chosen adaptively.
In other words, the basis functions are selected from data. Below we shall
see that they have an important property when it comes to high-dimensional
systems.

7.2 The “Curse” of Dimensionality

Almost all useful approximation theorems are asymptotic, i.e., they require
the number of data to approach infinity, N — co. In practical situations this
cannot be done and it is of crucial importance how fast the convergence is.
A general estimation of a function RY — R becomes slower in N when d is
larger and in most practical situations it becomes impossible to do general
estimation of functions for d larger than, say, 3 or 4. For higher dimensions
the number of data required becomes so large that it is in most cases not
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realistic. This is the curse of dimensionality. This can be shown with the
following example

Ezample 7.1. Approximate a function IR — IR within the unit cube with
the resolution 0.1. This requires that the distance between data is not larger
than 0.1 in every direction, requiring N = 10¢ data. This is hardly realistic
for d > 4. When there are noisy measurements the demand of data increase
further.

7.3 Methods to Avoid the “Curse”

From the discussion in the preceding subsection it should be clear that general
nonlinear estimation is not possible, Nevertheless, a number of methods have
been developed to deal with the problems occurring for high-dimensional
functions. The idea is to be able to estimate functions that in some sense
have a low-dimensional character. Projection pursuit regression, [11), uses an
approximation of the form

@) =) gk (¥7O(K))
k=1

where the grs are smooth univariate functions. The method thus expands the
function in n different directions. These directions are selected to be the most
important ones and, for each of these, the functions g; are optimized. Thus,

it is a joint optimization over the directions {#(k)} and the functions gs. The

claim is that for small n a wide class of functions can be well approximated
by this expansion, [9]. The claim is supported by the fact that any smooth
function in d variables can be written in this way, [8]. It is supposed to be
useful for moderate dimensions, d < 20. :

Projection pursuit regression is closely related to neural netwoiks where
the same function, any sigmoid function ¢ satisfying Definition 5.1, is used
in all directions. The effectiveness of such methods has been illustrated in
[1]: Consider the class of functions {g} on R? for which there is a Fourier
representation § which satisfies

¢s= [lollg)ido < o.
Then there is a linear combination of sigmoidal functions such that
2rCy)?
[ 196) - gateyae < CrC1° (71)
B, n
where B, is a ball with radius 7. The important thing to notice here is that the

degree of approximation as a function of n does not depend on the dimension
d.
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This work originated with the result in [17] where sinusoidal functions
where used to prove a similar result. The above result is not limited to
sinusoidal and sigmoidal functions and the same idea has been applied to
projection pursuit regression, [43], hinging hyperplanes, [3], and radial basis
Junctions, [12].

Notice, however, that the result is only an approximation result and a
stochastic counterpart still awaits its proof.

(1] also showed that 1/n%/? is a lower bound for.the minimiax rate for
linear methods. For large d, this rate is exceedingly slow compared with 1/n.
Thus, this is a serious disadvantage for the methods described in the previous
section. In higher dimensional spaces, the convergence rate of linear method
is much slower compared with certain non-linear methods.

8. Specific Properties of NN Structures

So, what are the special features of the Neural Net structure that motivate
the strong interest? Based on the discussion so far, we may point to the
following list of properties:

— The NN expansion is a basis, even for just one hidden layer, i.e., Require-
ment [R1] is satisfied.

— The NN structure does extrapolation in certain, adaptively chosen, direc-
tions and is localized across these directions. Like Projection Pursuit it can
thus handle larger regression vectors, if the data pattern [y(t), p(t)] cluster
along subspaces.

— The NN structure uses adaptive bases functions, whose shape and location
are adjusted by the observed data. :

— The approximation capability (Requirement [R2]) is good as manifested in
(7.1).

— Regularization, implicit (stopped iterations) or explicit (penalty for pa-

rameter deviations, usually from zero) is a useful tool to effectively include -

only those basis functions that are essential for the approximation, without
increasing the variance. (Requirement [R3]).

— In addition, NNs have certain advantages in implementation, both in hard-
ware and software, due to the repetitive structure. The basis functions are
built up from only one core function, 0. This also means that the structure
is resilient to failures, since any node can play any other node’s role, by
adjusting its weights. :
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9. Models of U%go& Systems Based on Neural
Networks

We are now ready to take the step from general “curve fitting” to system
identification. The chice of a model structure for dynamical systems contains
two questions
1. What variables, constructed from observed past data, should be chosen
as regressors, i.e., as components of p(t)?
2. What non-linear mapping should ©(t) be subjected to, i.e., How many
hidden layers in (5.1) should. be used, and how many nodes should each
layer have?

The second question is related to more general NN considerations, as dis-
cussed in Section 5.. The first one is more specific for identification appli-
cations. To get some guidance about the choice of regressors ¢, let us first
review the linear case.

9.1 A Review of Linear Black Box Models
The simplest dynamical model is the Finite Impulse Response model (FIR):
y(®) = B(g)u(t) +e(t) = byu(t ~ 1) + ... + byu(t — n) + e(t) (9.1)

Here we have used g to denote the shift operator, so B(g) is a polynomial
in ¢~*. The corresponding predictor is #(t|0) = B(g)u(t) is thus based on a
regression vector

o(t) = [u(t - 1), uft = 2),...,u(t —n)]

As n tends to infinity we may describe the dynamics of all (“nice”) linear
systems. However, the character of the noise term e(t) will not be modeled
in this way.

A variant of the FIR model is the Output Error model (OE):

B(qg)

y(t) = wl@:@ +e(t) (9.2)
where .
Fl@)=1+fig7 +...+ fo, g™
The predictor is
9010) = £ 2u(t) (93)

Also this predictor is based on past inputs only. It can be rewritten
9(E10) = bru(t — 1) +... + b u(t — p)—
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~fig(E-18) ~ ... — fo,G(t — nsl6) (9.4)
It is thus based on the regression variables

[wlt = 1), ult — m), 5t = 116), .., §(t ~ ns6)] (9.5)

Note that these regressors are partly constructed from the data, using a
current model. As ny and ny tend to infinity, also this model is capable of
describing all reasonable linear dynamic systems, but not the character of the
additive noise e(t). The advantage of (9.2) over (9.1) is that fewer regressors
are normally required to get a good approximation. The disadvantage is that
the minimization over § becomes more complicated. Also, the stability of the
predictor {9.3) depends on F(q), and thus has to be monitored during the
minimization.
A very common variant is the ARX model

A(Qy(t) = B(g)u(t) +e(t) (9.6)
.é:.& the predictor
98 = ~ay(t—1)—... - an,y(t - ny)
+oru(t — 1) + ... + by, u(t — ny) (9.7)

thus using the regressors

[t = 1), 9t = na), ut = 1), ..., ult — ) 98)

As shown, e.g., in [22] this structure is capable of describing all (reasonable)
linear systems, including their noise characteristics, as n, and n, tend to
infinity. The ARX model is thus a “complete” linear model from the black
box perspective. The only disadvantage is that n, and ny may have to be
chosen larger than the dynamics require, in order to accomodate the noise
description. Therefore, a number of variants of (9.6) have been suggested,
where the noise model is given “parameters of its own”. The best known of
these is probably the ARMAX ‘model

A(9)y(t) = Blg)u(t) + Clg)e(t) (9.9)
Its predictor is given by

9(419)

(e —ea)y(t—1)+...

+ (e —an)y(t—n)

+ bu(t—1)+... 4+ byu(t —n)

+ gt~ 1) +... + cud(t — nlo) (9.10)

: .? thus uses the regression vector (9.8) complemented with past predictors,
Just as in (9.5) (although the predictors are caclulated in a different way).
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A large family of black box linear models is treated, e.g., in [21]. It has the
form

B(g) Cla)

, Ag)y(t) ) u(t) + 0] e(t) (9.13)
The special case A(g) = 1 gives the well known Box-Jenkins (BJ) model. The
regressors used for the corresponding predictor are given, e.g., by equation
(3.114) in [21]. These regressors are based on y(t - k), u(t — k), the predicted
outputs §(t — k|f) using the current model, as well as the simulated outputs
Ju(t—k|6), which are predicted outputs based on an output error model (9.2).
Let us repeat that from a black box perspective, most variants of (9.11)
are equivalent, in the sense that they can be transformed into each other,
at the expense of changing the orders of the polynomials. The ARX model
(C=D=F=1) covers it all. The rationale for the other variants is that we may

come closer to the true system using fewer regressors.

9.2 Choice of Regressors for Neural Network Models

The discussion on linear systems clearly points to the possible regressors:

— Past Inputs u(t — k)

— Past Measured Outputs y(t — k)

— Past Predicted Outputs, using current model, §(¢ — k|6)

— Past Simulated Outputs, using past inputs only and current model,
u(t — k|6)

A rational question to ask would be: Given that.I am prepared to use m
regressors (the size of the input layer is m), how should I distribute these
over the four possible choices? There is no easy and quantitative answer to
this question, but we may point to the following general aspects:

— Including u(t — k) only, requires that the whole dynamic response time
is covered by past inputs. That is, if the maximum response time to any
change in the input is 7', and the sampling time is T, then the number
of regressors should be 7/T. This could be a large number. On the other
hand, models based on a finite number of past inputs cannot be unstable
in simulation, which often is an advantage. .
A variant of this approach is to form other regressors from u!, e.g., by
Laguerre filtering, (e.g., [39]). This retains the advantages of the FIR-
approach, at the same time as making it possible to use fewer Tegressors.
It does not seem to have been discussed in the NN-context yet.

— Adding y(t — k) to the list of regressors makes it possible to cover slow
responses with fewer regressors. A disadvantage is that past outputs bring
in past disturbances into the model. The model is thus given an additional
task to also sort out noise properties. A model based on past outputs may
also be unstable in simulation from input only. This is caused by the fact
that the past measured outputs are then replaced by past model outputs.
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— Bringing in past predicted or simulated outputs §(t — k|6) typically in-
creases the model flexibility, but also leads to non-trival difficulties. For
neural networks, using past outputs at the input layer gives recurrent net-
works. See Section 5. Two problems must be handled:

— It may lead to instability of the network, and since it is a non-linear
model, this problem is not easy to monitor. :

— The simulated/predicted output depends on 6. In order to do updates in
(6.2) in the true gradient direction, this dependence must be taken into
account, which is not straightforward. If the dependence is neglected,
convergence to local minima of the criterion function cannot be guaran-
teed.

The balance of this discussion is probably that the regressors (9.8) should be
the first ones to test.

9.3 Neural Network Dynamic Models

Following the nomencalture for linear models it is natural to coin similar
names for Neural Network models. This is well in line with, e.g., [5, 4]. We
could thus distinguish between

— NNFIR-models, which use only u(t — k) as regressors

— NNARX-models, which use u(t — k) and y(t — k) as regressors

— NNOE-models, which use u(t — k) and §, (¢ — k|6)

— NNARMAX-models, which use u(t — k),y(t — k) and §(t — k|6)
— NNBJ-models, which use all the four regressor types.

In [25] another notation is used for the same models. The NNARX model is
called Series-Parallel model and the NNOE is called Parallel model.

From a structural point of view, these black-box models are just slightly
more troublesome to handle than their linear counterparts. When the re-
gressor -has been decided upon, it only remains to decide how many hid-
den units which should be used. The linear ARX model is entirely specified
by three structural parameters [ng np ngl. [ng is here the delay, which we
have taken as 1 so far. In general we would work with the input regressors
u(t—ng), ..., u(t—nr—np+1).] The NNARX model has just one index more,
[na np ng ns), where ny, is the number of units in the hidden layer which in
some way corresponds to “how non-linear” the system is. The notation for
NNOE and NNARMAX models follow the same simple rule.

If more then one hidden layer is used there will be one additional struc-
tural parameter for each layer.

It follows from Section 5.2 that NNOE, NNBJ, and NNARMAX corre-
spond to recurrent neural nets because parts of the input to the net (the
regressor) consist of past outputs from the net. As pointed out before, it is in
general harder to work with recurrent nets. Among other things, it becomes
difficult to check under what conditions the obtained model is stable, and it
takes an extra effort to calculate the correct gradients for the iterative search.
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9.4 Some Other Structural Questions

The actual way that the regressors are combined clearly reflect structural
assumptions about the system. Let us, for example, consider the assumption
that the system disturbances are additive, but not necessarily white noise:

y(t) = g(u*) + v(t) (9.12)

Here u* denotes all past inputs, and v(t) is a disturbance, for which we only
need a spectral description. It can thus be described by

v(t) = H(g)e(t)
for some white sequence {e(t)}. The predictor for (9.12) then is
§() = (1= 7 (@)y(t) + E(9)g(u") (9.13)

In the last term, the filter H~! can equally well be subsumed in the gen-
eral mapping g(u®). The structure (9.12) thus leads to a NNFIR or NNOE
structure, complemented by a linear term containing past y.

In’ [25] a related Neural Network based model is suggested. It can be
described by .

where 1(t) consists of delayed outputs and ,(t) of delayed inputs. The
parameterized functions f and g can be chosen to be linear or non-linear by
a neural net. A further motivation for this model is that it becomes easier to
develop controllers from (9.14) than from the models discussed earlier.

In [24], it is suggested first to build a linear model for the system. The
residuals from this model will then contain all unmodelled non-linear effects.
The Neural Net model could then be applied to the residuals (treating inputs
and residuals as input and output), to pick up the non-linearities, This is
attractive, since the first step to obtain a linear model is robust and often
leads to reasonable models. By the second Neural Net step, we are then
assured to obtain at least as good a model as the linear one.

The question of how many layers to use is not easy. The paper [34] contains
many useful and interesting insights into the importance of second hidden
layers in the NN structure. See also the comments on this in Section 5.1.

9.5 The Identification Procedure

A main principle in identification is the rule try simple things first. The idea
is to start with the simplest model which has a possibility to describe the
system and only to continue to more complex ones if the simple model does
not pass validation tests.

When a new more complex model is investigated the results with the
simplér model give some guidelines how the structural parameters should
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be chosen in the new model, For example, it is common to start with an
ARX model. The delay and number of delayed inputs and outputs give a
good initial guess how the structure parameters should be chosen for the
more complex ARMAX model. In this way less combinations of structural
parameters have to be tested and computer time is saved.

Many non-linear systems can be described fairly well by linear models
and for such systems it is a good idea to use insights from the best linear

" model how to select the regressors for the NN model. To begin with, only the
number of hidden units the needs to be varied. Also, there might be more
problems with local minima. for the non-linear than for the linear models
which makes it necessary to do several parameter estimates with different
initial guesses. This further limits the number of candidate models which can
be tested.

In the following example a hydraulic actuator is identified. First a linear
model is proposed which does not capture all the fundamental dynamical
behavior and then a NNARX model is tried. The same problem is considered
in [2] using wavelets as model structure.
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Fig. 9.1. Measured values of oil pressure (top) and valve position (bottom).
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Ezample 9.1. Modeling a Hydraulic Actuator, The position of a robot arm
is controlled by a hydraulic actuator. The oil pressure in the actuator is
controlled by the size of the valve opening through which the oil flows into
the actuator. The position of the robot arm is then a function of the oil
pressure. In [13] a thorough description of this particular hydraulic system is
given. Fig. 9.1 shows measured values of the valve size and the oil pressure,
which are input- and output signals, respectively. As seen in the oil pressure,
we have a very oscillative settling period after a step change of the valve size.
These oscillations are caused by mechanical resonances in the robot arm.

Following the principle “ry simple things first” gives an ARX model
with structural parameters [n, np ng] = [3 2 1). In Fig. 9.2 the result of a
simulation with the obtained linear model on validation data is shown. The
result is not very impressive.
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Red/solid: Model output, Green/dashed: Measured output

Fig. 9.2. Simulation of the linear model on validation data. Solid line: simulated
signal. Dashed line: true oil pressure.

Instead a NNARX model is considered with the same regressor as the
linear model, i.e., with the same first three structural indexes, and with 10
hidden units, n, = 10. In Fig. 9.3 it is shown how the quadratic criterion
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develops during the estimation for estimation and validation data, respec-
tively. For the validation data the criterion first decrease and then it starts
to increase again. This is the overtraining which was described in Section
6.3. The best model is obtained at the minimum and this means that not all
parameters in the non-linear model have converged and, hence, the “efficient
number of parameters” is smaller than the dimension of 6.

RMS error
. ovm L 1 L} L) ¥ L] T T T

e -
0.4} .

0.35F . ‘ 1

0.25f
0.2

0.15}

0.1

0.05 3 ] (- i Il ] i 1 Il [l
0 10 20 30 40 50 - 60 70 80 90 100

Number of iterations

Fig. 9.3. Sum of squared error during the training of the NNARX model. Solid
line: Validation data. Dashed line: estimation data.

The parameters which give the minimum are then used in the non-linear
model and in Fig. 9.4 this NNARX model is used for simulation on the
validation data. .

This model performs much better than the linear model and it is com-
patible to the result obtained with a wavelet model in [2].
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Output 1, fit: 0.4673

-t

-2f

-3+

i
J
4
4
il

4 .
o] 100 200 300 400 500 600

Fig. 9.4. Simulation of the non-linear model on validation data. Solid line: simu-
lated signal. Dashed line: true oil pressure.
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