6.433 Recursive Estimation 6.435 System Identification

S.K. Mitter

February 13, 2002

Problem Set 1

- 1. Kalman Filter as an Application of the Bayes Formula
	- (a) Let X be a Gaussian random variable with mean μ and variance $\sigma_x > 0$. We denote this by saying that the probability law of

$$
P(X) := N(\mu, \sigma_x) .
$$

Let Y be a random variable such that

 $P(Y|X) := N(a + bX, \sigma_u), \sigma_u > 0.$

Then

$$
P(X|Y) = N(\hat{X}, \sigma_v)
$$

where $\sigma_v > 0$ and the random variable \hat{X} are determined by

$$
\frac{1}{\sigma_v} = \frac{1}{\sigma_x} + \frac{b^2}{\sigma_u} , \frac{\hat{X}}{\sigma_v} = \frac{\mu}{\sigma_x} + \frac{b(Y-a)}{\sigma_u}
$$

(b) Show that

$$
E\{(X-\hat{X})^2\} = \sigma_v
$$

and

$$
E\{(X - \hat{X})^2 | Y\} = \sigma_v \text{ (Conditional Expectation)}
$$

(c) Noisy Observation of a Single Random Variable Let X, U_1, U_2, \ldots be independent random variables with

$$
P(X) = N(0, \sigma_x^2), P(U_i) = N(0, 1).
$$

Let

$$
Y_K = X + g_K U_K, \quad K = 1, 2, \dots
$$

$$
g_K > 0
$$

We regard the Y_K 's as noisy observations of the single random variable. Let

$$
\Pi_0(X) = P(X) := N(0, \sigma_x^2)
$$

and

$$
\Pi_n(X) := P(X|Y_1,\ldots,Y_n) \ n = 1,2,\ldots
$$

Prove by induction that

$$
\Pi_n(X) = N(\hat{X}_n, \Sigma_n) \ n = 1
$$

where

$$
\frac{1}{\Sigma_n} = \frac{1}{\Sigma_{n-1}} + \frac{1}{g_n^2}
$$

$$
\frac{\hat{X}_n}{\Sigma_n} = \frac{\hat{X}_{n-1}}{\Sigma_{n-1}} + \frac{Y_n}{g_n^2}
$$

(d) Now suppose that

$$
X_{n+1} = f_n X_n + g_n U_n , \quad n = 0, 1, 2, ...
$$

$$
Y_n = h_n X_n + V_n
$$

Assume that $X_0, U_0, U_1, \ldots, V_0, V_1, \ldots$ are mutually independent with

$$
P(X_0) := N(0, \sigma^2)
$$

$$
P(U_i) := N(0, 1)
$$

and

$$
P(V_i) := N(0,1) .
$$

Let

$$
\Pi_n(X_n) = P(X_n|Y_0,\ldots,Y_n) .
$$

Show that $\Pi_n(X_n) := N(\hat{X}_n, \Sigma_n)$ and obtain a recursion relationship for \hat{X}_n and Σ_n .

- (e) Let $E_n = X_n \hat{X}_n$. Compute the covariance of E_n , and show that it is independent of the Y 's.
- 2. This problem is concerned with least-squares problems where there is uncertainty in the data. Let $b \in \mathbb{E}^m$ and let A be an $n \times m$ matrix which has full column rank (so $n \leq m$). We are required to solve the min-max least-squares problem

$$
\lim_{x} \lim_{\|\delta A\|_2 \le \gamma \, ; \, \|\delta b\|_2 \le \lambda} \left\| (A + \delta A)x - (b + \delta b) \right\|_2
$$

where for a vector $b \in \mathbb{E}^m$, $|| \cdot ||_2$ is the Euclidean norm, and for a matrix A, $||A||_2$ is the maximum singular value of A.

The value of the min-max is given by

$$
||A\hat{x} - b||_2 + \gamma ||\hat{x}||_2 + \lambda ,
$$

where

$$
\hat{x} = (A^T A + \gamma I) A^T b \enspace .
$$

(a) First prove that, for $x \in \mathbb{E}^n$

$$
\max_{||\delta A||_2 \leq \gamma \, ; \, ||\delta b||_2 \leq \lambda} ||(A + \delta A)x - b + \delta b||d_2 = ||Ax - b||_2 + \gamma ||x||_2 + \lambda .
$$

To prove this, fix x and δA , and carry out the maximization with respect to δb satisfying the constraint. Then for fixed x and the maximizing δb , carry out the maximization with respect to δA satisfying the constraint. To do this use a singular value decomposition for $(\delta A)_0$ which performs the maximization under consideration.

(b) Finally prove that the \hat{x} which carries out the minimization is given by

$$
\hat{x} = (A^T A + \gamma I)^{-1} A^T b \enspace .
$$