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Chapter 1

Superconducting Properties of
Solids

References:

• Ashcroft and Mermin, Solid State Physics, Chapter 34.
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• T. van Duzer and C.W. Turner, Principles of Superconductive Devices and Circuits,
Elsevier, NY (1981).

• M. Tinkham, Introduction to Superconductivity, McGraw-Hill, 1975.

• T.P. Orlando, Foundations of Applied Superconductivity, Addison–Wesley, 1991.

Superconductors exhibit a unique set of properties. These unique properties are summarized
in this chapter.

1.1 Perfect Conductivity R = 0 (1911)

The resistance of a normal metal gradually decreases as the temperature is lowered and levels
off at very low temperatures (see Fig. 1.1). The resistance at absolute zero is determined by
electrons scattered by impurities and defects in the metal (see §7.3 of part I). Many metals,
however, undergo a phase transition to the superconducting state (see Fig. 1.1), whereby
these metals have zero resistance below some temperature, Tc, the superconducting tran-

sition temperature (see Fig. 1.1). The phase transition to a superconducting phase effect
was discovered by Kamerlingh Onnes in 1911, shortly after he had for the first time liquefied
helium (boiling point = 4.2 K). Some typical Tc’s for elemental superconductors are 9.25 K
for Niobium (Nb), 7.2 K for lead (Pb), 1.1 K for Al, and even silicon is superconducting
under pressure at 7.1 K! Some typical Tc’s for important elemental superconductors are
given in Table 1.1. However, noble metals like copper (Cu), gold (Au) and silver (Ag) have
not yet been found to undergo a superconducting transition for temperatures as low as a few
millidegrees Kelvin. Until 1986, the highest known transition temperature was 23.2 K for
Nb3Ge. This is one reason why the scientific community was so surprised by the discovery
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Figure 1.1: Low temperature resistance of a
typical normal metal (upper curve), showing a
dc resistivity at low temperatures of the form
ρ = ρ0 + AT 5 and a superconductor (lower
curve), showing zero resistivity below the su-
perconducting transition temperature Tc.

Table 1.1: Superconducting transition temperatures (Tc) and critical magnetic fields (Hc)
for some typical elemental superconductors.

Material Tc (K) Hc (gauss)

Al 1.1 99
Sn 3.7 305
Pb 7.2 803
Nb 9.25 1980
Hg 4.15 411
V 5.38 1020
In 3.4 293
La 4.9 798
Ta 4.48 830
Tc 7.77 1410
Pa 1.4 –
Re 1.7 198
Tl 2.39 171
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Figure 1.2: A superconducting ring showing
persistent current threaded by magnetic lines
of flux.

in 1986 of high Tc superconductivity in transition metal cuprate compounds, with Tc values
far exceeding the previous record of 23.2 K, and by 1987 Tc values of > 120 K were reported,
ushering in a new period of high research activity on high Tc superconducting materials.

An interesting consequence of perfect conductivity is that if a current is introduced into
a ring of a superconducting material, then the current will persist indefinitely, without de-
caying (see Fig. 1.2). On the other hand, the current carrying capacity of a superconductor
is finite and cannot exceed a critical current density jc, above which it reverts back to the
normal state.

1.2 Meissner Effect B = 0

Besides perfect conductivity, the other main characteristic of superconductivity is perfect
diamagnetism; this means that B = 0 within a superconductor and that magnetic flux is
excluded from a superconductor. This fundamental property of superconductors was first
identified by Meissner in 1933 and is called the Meissner effect. In Fig. 1.3 we see the
magnetic field lines for a perfect conductor (a) and for a perfect diamagnet (b), which is
a superconductor. We shall see later that there is, in fact, an exponential decay of the
magnetic flux at the surface of a superconductor e−z/λ, and this decay is characterized by
the superconducting penetration depth λ.

As shown in Fig. 1.3, no flux penetrates a superconductor for T < Tc and H < Hc,
whether it is cooled in a magnetic field or not. In contrast, a perfect conductor will have
no flux inside, only if it is cooled below Tc in zero field. This is evidence that a supercon-

ductor is more than a perfect conductor.
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Figure 1.3: Schematic diagram of the mag-
netic field behavior of (a) a “perfect electri-
cal conductor” defined as a normal metal hav-
ing zero resistance below Tc, and (b) a metal
that is a superconductor below Tc. The lines
with arrows indicate the magnetic flux lines.
Whereas the normal metal has no flux exclu-
sion, a superconductor exhibits full flux exclu-
sion.

1.2.1 Critical Fields

If an external magnetic field is increased above a critical value (see Table 1.1), the super-
conductor will revert to the normal state with finite resistivity. For type I superconductors,
B remains zero until the sample exceeds the critical field Hc (see Fig. 1.4a). Most elemental
superconductors are Type-I superconductors and exhibit low critical fields (see Fig. 1.5a)
and a simple magnetization curve (see Fig. 1.6a). For a Type II superconductor, B remains
zero only for relatively small magnetic fields (H < Hc1) (see Fig. 1.4b). Then above this
critical field value (Hc1), magnetic flux enters the superconductor in the form of vortices
(see Figs. 1.4b and 1.6b). These vortices have a core of material in the normal state, around
which super-currents circulate. As the magnetic field increases, the density of vortices in-
creases until the upper critical field Hc2 is reached, where the vortex cores (which are in
the normal phase) overlap with one another, and the material becomes a normal metal
completely (see Figs. 1.4b and 1.6b). Most materials of practical interest are type II super-
conductors where typical values of Hc2 are in the Tesla range (see Figs. 1.5a,b). The critical
parameters that characterize a type II superconductor are Tc, Hc2 and jc, where jc is the
critical current density. For current densities above jc, superconductivity is destroyed and
the normal resistive state is restored. For practical applications it is desirable for all three
critical parameters (Tc, Hc2, jc) to be large.

1.3 Flux Quantization

When a persistent (non-decaying) current is induced in a superconducting ring (see Fig. 1.2),
the resulting flux within the ring is found to be quantized in units of Φ0 = ch/2e =
2.0678 × 10−7gauss cm2 = 2.0678 × 10−15 tesla-m2. The experimental confirmation of flux
quantization in superconductor rings was first reported by 2 experimental groups in 1961
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Figure 1.4: Schematic magnetic phase diagrams of (a) type I and (b) type II superconduc-
tors. Note the formation of a vortex phase above Hc1 in a type II superconductor, where
magnetic flux penetrates into the core of the vortices.

Figure 1.5: (a) Plot of Hc vs T for several type I superconductors. (b) Plot of Hc2 vs T for
several type II superconductors. Notice the great difference in scale for the critical fields
between type I and type II superconductors. Because of their high critical fields, Type II
superconductors are of particular interest for superconducting magnet applications.
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Figure 1.6: (a) Magnetization versus applied magnetic field for a bulk superconductor ex-
hibiting a complete Meissner effect, i.e., perfect diamagnetism. A superconductor with this
behavior is called a type I superconductor. Above the critical field Hc the specimen be-
comes a normal conductor and the magnetization is too small to be seen on this scale. Note
that −4πM is plotted on the vertical scale (a negative value for the magnetic susceptibility
corresponds to diamagnetism). (b) Magnetization curve of a type II superconductor. The
flux starts to penetrate the specimen at a field Hc1 which is lower than the thermodynamic
critical field Hc. The specimen is in a vortex state between Hc1 and Hc2, but has super-
conducting electrical properties up to Hc2. For a given type II superconductor, the area
under the dashed magnetization curve in (b) is the same for a type II superconductor as
for a type I superconductor.
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(B.S. Deaver and W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961) and R. Doll and M.
Näbauer, Phys. Rev. Lett. 7, 51 (1961)). This observation strongly suggested that
superconductivity is a quantum mechanical phenomenon. As a consequence of flux
quantization, there are vortices in type II superconductors, and each vortex encloses a single
quantized unit of flux Φ0.

1.4 The Superconducting Energy Gap

Prior to the discovery of flux quantization, experiments on the heat capacity and on the
absorption of microwave power were performed, each of which provided evidence for an
energy gap, characteristic of the superconducting state. These two experiments were critical
to the development of the microscopic theory of superconductivity. The existence of an
energy gap was soon verified experimentally by the elegant tunneling experiments by Giaever
(see § 1.6).

The heat capacity C of a material is the amount of heat ∆Q needed to raise the tem-
perature by ∆T = 1 K per mole, namely ∆Q = C∆T . For normal metals the heat capacity
exhibits a temperature dependence C = γT + βT 3. The first term (Ce = γT ) arises from
the electronic contribution, while the second term (CL = βT 3) arises from the lattice. At
low temperatures the specific heat is dominated by the electronic part, Ce = γT . As a metal
is cooled below the transition temperature Tc, the electronic part of the heat capacity of
a superconductor, increases abruptly and then decays rapidly with decreasing temperature
(see Fig. 1.7), falling off to zero exponentially as T → 0. Such an exponential fall-off in
C(T ) provided early evidence (1954) for an energy gap, ∆ (see Fig. 1.7).

The microwave absorption experiment likewise provided direct evidence for an energy
gap, including an early determination of the temperature dependence of the energy gap ∆(T )
(see Fig. 1.8). In §1.8 we present a simple model for the thermodynamics of superconductors,
which provides background for the heat capacity studies of Fig. 1.7, while in § 2.5 we present
the London equations, describing the electromagnetics of superconductors, which is based on
a two-fluid model for superconductivity (see §2.6). According to this model the electrons
in a superconductor consist of superconducting electrons with no resistance and normal
electrons which can dissipate energy at ac (microwave) frequencies.

1.5 Thermal Conductivity

In our study of transport properties (see part I, §6.2.2) we found that for metals, the
electronic contribution κe dominates the thermal conductivity κ = κe + κL. For normal
metals, κe is proportional to the electron density. However, for a superconductor at T = 0,
the electrons are all in the superconducting state, bound in Cooper pairs, as we discuss
in §2.1. When the electrons are all bound in pairs, they do not contribute to κ, because
they are in a fully ordered state and have no entropy. Thus at finite temperatures, κ for
a superconductor is very small (see Fig. 1.9), since only the excited quasiparticles of the
two fluid model (as discussed below) can contribute to κ. The low thermal conductivity of
superconductors for T ¿ Tc, can be utilized in a low temperature heat switch. Application
of a magnetic field can be used to cause a superconducting-normal transition, thereby
restoring high thermal conductivity and a good thermal conduction path to the metal.
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Figure 1.7: (a) The heat capacity of gallium in the normal and superconducting states. The
normal state (which is restored by a 200 G magnetic field) has electronic, lattice and (at low
temperatures) nuclear quadrupole contributions to the heat capacity. In (b) the electronic
part Cel of the heat capacity in the superconducting state is plotted on a log scale versus
Tc/T : the exponential dependence of C(T ) on 1/T at low temperature is evident in the
figure. (The coefficient γ = 0.60 mJ mol−1 deg2 for Ga).

Figure 1.8: The reduced values of the ob-
served energy gap Eg(T )/Eg(0) as a func-
tion of reduced temperature T/Tc for sev-
eral superconductors. The solid curve is
drawn for the BCS theory of supercon-
ductivity.
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Figure 1.9: Ratio of the electronic thermal
conductivity in the superconducting state to
that in the normal state of aluminum (dots) as
a function of temperature. The curve is calcu-
lated from the BCS theory of superconductiv-
ity, and shows the poor thermal conductivity
of superconductors at low temperatures.

Figure 1.10: Superconducting tunnel junction
which consists of a superconductor-insulator-
superconductor (S/I/S) sandwich, where tun-
neling occurs between the two superconduct-
ing layers (S) which are in black and an oxide
layer is used as an insulator (I) between them.

1.6 Quasi-particle Tunneling

Measurements of the properties of the superconducting energy gap were greatly facilitated
by the observation of tunneling in a superconductor. In this section, we explain quasiparticle
tunneling in a superconductor and show how measurement of the I − V characteristics of
the tunnel junction yields information on the superconducting energy gap. The structure
of a tunnel junction is shown in Fig. 1.10. Classical physics, of course, would say that
no current could pass through the insulating barrier in Fig. 1.10. However, the quantum
mechanical nature of the electrons allows them to tunnel through a thin insulating barrier.

Two types of tunneling can, in fact, occur if the counter-electrode is also a supercon-
ductor. The first is quasiparticle tunneling which was discovered by Giaever in 1960 and is
discussed in this section, and the second type of tunneling is Josephson tunneling discovered
by Josephson in 1962, and discussed in §2.10. Both of these discoveries were made by two
very young men, before either had completed their Ph.D. theses.

In the quasiparticle tunneling experiments, “electrons” tunnel through the insulating
layers of the S/I/S sandwich of Fig. 1.10 until their energy exceeds the gap energy, above
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Figure 1.11: I − V characteristics for (a) quasiparticle tunneling in a tunnel junction for a
S/I/S device (see Fig. 1.10), and (b) Josephson tunneling through a weak link Josephson
tunnel junction.

which the I − V curve follows Ohm’s law (see Fig. 1.11a). In Josephson tunneling (see
Fig. 1.11b), a superconducting current can flow at zero voltage until the current reaches
a critical current Ic, above which the I − V curve switches to the resistive part of the
tunnel-junction characteristic and again follows Ohm’s law (see §2.10).

Once quasiparticle tunneling was discovered, it became the standard method for mea-
suring the superconducting energy gap and the dependence of the gap on temperature and
magnetic field. The insulator in Fig. 1.10 normally acts as a barrier to the flow of conduc-
tion electrons from one metal to the other. If the barrier is sufficiently thin (less than 10 or
20 Å), there is a significant probability that if a voltage is applied across the S/I/S device,
an electron which impinges on the insulating barrier will tunnel from one metal electrode
to the other.

When both metals are normal conductors (M), the current-voltage relation of the M/I/M
sandwich or tunneling junction is ohmic at low voltages, with the current directly propor-
tional to the applied voltage. Giaever (1960) discovered that if one of the metals becomes
superconducting (S), the current-voltage characteristic of the M/I/S sandwich changes from
the linear Ohmic behavior of Fig. 1.12(a) to the curve shown in Fig. 1.12(b). Giaever ex-
plained his observation in terms of the model of the density of states shown in Fig. 1.12(b)
for the superconductor.

Figure 1.12(b) contrasts the electron density of states in the superconductor with that
in the normal metal, shown in Fig. 1.12(a). In the superconductor there is an energy gap
centered at the Fermi level. The electron states that had been in the energy gap range (in
the normal state), now pile up on either side of the energy gap, giving a very high density
of states in the regions adjacent to the energy gap, and shown in Fig. 1.12(b). From the
microscopic theory of superconductivity it is known that quasiparticle tunneling involves
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Figure 1.12: The six density of states versus energy diagrams on the left are for T = 0K and
the three diagrams on the right are all plots of the current versus voltage for the various
types of metals on the left. (a) This shows two normal metals separated by a thin insulating
film with zero applied voltage and then for V > 0. (b) The same situation as (a) but now
one of the metals is a superconductor. (c) Now both of the metals are superconductors with
different gaps. (EF is the Fermi energy.)
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a pair of electrons (see §2.1) rather than a single electron, as in the case of tunneling in a
normal metal.

Since an electron pair is involved, the current in the M/I/S sandwich starts to flow
at T = 0K when eV = ∆ where ∆ is half the energy gap (see Fig. 1.12b). At finite
temperatures there is a small current flow even at lower voltages, because of electrons in the
superconductor that are thermally excited across the energy gap. Clearly Fig. 1.12b shows
that quasiparticle tunneling provides a direct method for measuring the superconducting
energy bandgap.

Also of interest is case (c) of Fig. 1.12 for tunneling in a S/I/S junction, where the metals
on either side of the tunnel barrier are superconducting. Near T = 0 all the electrons in the
small gap superconductor [Fig. 1.12(c)] are paired and there are few excited electrons. Thus,
it is only when the bias voltage exceeds (∆1 + ∆2)/e that there is a significant density of
electrons to tunnel across the barrier. For bias voltages less than (∆1−∆2)/e, only the low
density of thermally excited electrons from the small gap superconductor can tunnel into
the wide gap superconductor, so that only a small amount of tunneling occurs. In this case,
I increases until V = (∆1−∆2)/e is reached where the joint density of states is maximized.
As the voltage is increased from (∆1 − ∆2)/e to (∆1 + ∆2)/2, the joint density of states
available for tunneling decreases and the tunneling current consequently also decreases. By
increasing the temperature above Tc or increasing the magnetic field above Hc2, the small
bandgap material will go normal, and case (b) is reached. Thus when two superconductors
are used, it is possible to get information on the bandgaps of both superconductors.

1.7 Isotope Effect

The first clue to the microscopic origin of superconductivity came from studying metals con-
taining different isotopes of a particular elemental superconductor. In these experiments,
the superconducting transition temperature Tc was found to decrease with increasing iso-
topic mass according to the relation

MαTc = constant, (1.1)

where α ' 1/2. The discovery of the isotope effect was totally unexpected and indicated
that superconductivity involved a strong interaction (electron-phonon coupling) between
the electrons and the lattice.

1.8 Thermodynamics of Superconductors

In order to increase our understanding of the temperature dependence of the specific heat of
superconductors and the nature of the normal-superconducting phase transition, we consider
in this section a simple model for the thermodynamics of a metal in the normal state and
in the superconducting state.

The Gibbs free energy per unit volume of a superconductor in a magnetic field can be
written as

G = U − TS −HM (1.2)

where M is the magnetization, S is the entropy and the usual pV term is neglected. We
may verify Eq. 1.2 by observing that the changes in internal energy density in the presence
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of a magnetic field is given by

dU = TdS +HdM. (1.3)

Then, from Eqs. 1.2 and 1.3, we obtain

dG = −SdT −MdH. (1.4)

Substituting M = −H/4π for a perfect diamagnet (B = 0) and integrating Eq. 1.4, we
obtain the following important relation for the superconducting state at a given temperature

Gs(H) = Gs(0) +
1

8π
H2. (1.5)

From thermodynamic theory we know that for two phases to be in equilibrium (at constant
T, P,H), it is necessary that the Gibbs free energies be equal. Thus, along the critical field
curve where the superconducting and normal states are in equilibrium,

Gn = Gs(0) +
1

8π
H2
c , (1.6)

where Gn is the Gibbs free energy density of the normal state and is essentially independent
of the magnetic field. From Eq. 1.4, we obtain

(

∂G

∂T

)

H
= −S (1.7)

so that Eqs. 1.5 and 1.6 give the important result that in equilibrium

Sn − Ss = −
Hc

4π

dHc

dT
(1.8)

where Ss denotes the entropy in the superconducting phase in zero field. Since dHc/dT is
always found to be negative, the entropy of the normal state is always greater than that of
the superconducting state.

Finally, the difference in heat capacity per unit volume in the superconducting and
normal states is given by

∆C = Cs − Cn = T
d

dT
(Ss − Sn) =

THc

4π

d2Hc

dT 2
+

T

4π

[

dHc

dT

]2

, (1.9)

which is shown in Fig. 1.7. At T = Tc, where Hc = 0, we thus have

∆C =
Tc
4π

(

dHc

dT

)2

. (1.10)

We note from Eq. 1.8 that at the critical temperature Hc = 0 so that there is no latent
heat of transition (∆S = 0), but there is, according to Eq. 1.10, a discontinuity in the heat
capacity. For this reason the phase transition at T = Tc (where Hc = 0) is of second order,
but away from Tc, the phase transition has a latent heat and is a first order phase transition.
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1.9 Microscopic Description of Superconductivity

From the survey of properties of superconductors outlined in this chapter we see that a
description of superconductivity must embody the following features:

• The superconducting state is a special state of the electrons; i.e., it is more than just
a perfectly conducting state.

• This special state is quantum mechanical in nature.

• An energy gap exists between the ground state and the states for the excited quasi-
particles (electrons).

• The interaction between the electrons and the lattice vibrations is important in the
mechanism of conventional superconductivity.

Some of these facts were recognized as early as the late 1930’s, but it was not until 1957
that Bardeen, Cooper, and Schrieffer (BCS) developed a microscopic theory of supercon-
ductivity and were able to fit all the pieces together. The central result of the BCS theory
is that the energy gap is given by

Eg = 2h̄ωD exp

(

− λep
NV

)

' 3.5kBTc (1.11)

where ωD is the Debye phonon frequency, λep is a dimensionless coupling constant that
describes the strength of the electron-phonon interaction, N denotes the density of single
particle states at the Fermi level and V denotes the attractive electron-phonon interaction.
Note that Tc and Eg are non-analytic in λep which implies that Tc and Eg cannot be
expressed in a power series for small λep. Therefore, quantum mechanical perturbation
theory, the mainstay of theoretical physics, cannot be used to solve the superconductivity
problem. What BCS did was to open up a new method in theoretical physics. What they
did is exciting, but beyond the scope of this course.

Nevertheless, we will rely on some of the basic BCS results, as will be described in
Chapter 2. First, the special state of nearly 1023 electrons/cm3 can be described by one
quantum mechanical wave function Ψ(~r). Second, the electrons are bound in pairs, the
so-called Cooper pairs, which means that electrons with opposite momenta (+~p) and (−~p)
and opposite spins (↑) and (↓) are bound by an energy ∆0 related to the superconducting
band gap. Since all the Cooper pairs are the same, we can also think of Ψ(~r) as the wave
function for a Cooper pair.

14



Chapter 2

Macroscopic Quantum Description
of Superconductivity

In this chapter, a simple picture of the macroscopic quantum description of superconduc-
tivity is presented. The concept of the Cooper pair of electrons with equal and opposite
vectors and opposite spins is introduced, along with the wave function for all the electrons
in the superconductor. From this macroscopic description of the wavefunction, we derive
an expression for the super-current, the London equations for the electro-dynamics, the
Meissner effect, perfect conductivity, flux quantization, and the Josephson Effect.

2.1 The Cooper Pair

Most of the distinctive properties of superconductivity are explained by the macroscopic
quantum description of superconductivity. The starting point of this description is that all
the superconducting electrons, all 1023 of them, can be represented quantum mechanically
by a single wave function Ψ(~r). Although the exact form of the wave function comes from the
Bardeen–Cooper–Schrieffer (BCS) theory, most of the physics of superconductivity follows
from the existence of a macroscopic wave function, regardless of the exact form of Ψ(~r).

The physical mechanism for superconductivity lies in a pairing of the Fermi particles to
form a Bose gas of paired quasiparticles. The mechanism for this pairing in conventional
superconductors is the electron-phonon coupling.

The physical basis for an attraction between two electrons via the electron-phonon
interaction was pointed out by Fröhlich in 1950. Suppose that one electron passes through
the lattice [see Fig. 2.1(a)]. In so doing, it polarizes the positive ion cores and leaves
a lattice distortion in the immediate vicinity of the electron trail. If a second electron
enters this region before the lattice relaxes, its energy will be lowered because the lattice is
already polarized by the first electron. The mechanism shown in Fig. 2.1(a) thus provides
an attractive interaction between the two electrons.

This attractive Fröhlich interaction is represented by the diagram in Fig. 2.1(b) showing
an electron of wave vector ~k1 emitting a phonon of wave vector ~q and being scattered into
a state ~k′1 where ~k1 = ~k′1 + ~q. Likewise the second electron with wave vector ~k2 absorbs the
phonon so that ~k2 + ~q = ~k′2 from which it follows that

~k1 + ~k2 = ~k′1 +
~k′2 =

~b (2.1)
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Figure 2.1: (a) A schematic diagram of an
electron polarizing positive ions in its vicinity
to create an attractive potential for a second
electron following in the wake of the first elec-
tron. (b) A schematic diagram of an electron–
electron interaction transmitted by a phonon
of wave vector ~q, such that ~k1+~k2 = ~k′1+

~k′2 .

Figure 2.2: Schematic diagram showing two
shells in ~k–space of radius kF and thickness
∆k corresponding to the two electrons form-
ing a Cooper pair. The cross-hatched section
is a cross section of the ring in which the elec-
trons satisfy the conditions ∆k = mωD/(h̄kF )
and ~k1 + ~k2 = ~b. The volume of this ring has
a very sharp maximum when the spheres are
concentric and ~k1 = −~k2.

which shows the conservation of crystal momentum between the initial and final electron
states. The vector ~b denotes the sum of the crystal momenta of this electron pair. If E1

and E′1 denote the energy of the first electron before and after scattering, respectively, it
follows that ∆E1 = |E1−E′1| < h̄ωq where h̄ωq is the phonon energy. This argument shows
that the energies involved in this attractive interaction are small, since ωq < ωD (the Debye
frequency) and (h̄ωD/EF ) ∼ 10−3.

The electron–phonon coupling mechanism for superconductivity explains why the high-
est Tc superconductors are usually metals with the highest resistance in the normal state,
since the same mechanism that produces superconductivity (the electron-phonon interac-
tion) also gives rise to carrier scattering in metals in the normal state. The experimental
linking of the superconductivity mechanism with the electron–phonon interaction came
through the observation of the isotope effect (see §1.7) which showed that for the various
mercury isotopes Tc ∝M−1/2, where M is the ion mass for each isotope.

Cooper’s seminal contribution to the pairing mechanism was to observe that the energy
change implied by the pairing mechanism

∆E =
h̄2

m
kF∆k ' h̄ωD (2.2)

also implies

∆k ' mωD
h̄kF

(2.3)

and that the maximum number of electron pairs that would obey Eqs. 2.2 and 2.3 occurs

16



when ~b = 0 or when ~k1 = −~k2 (as shown in Fig. 2.2). The Cooper pair is then formed by the

electron–phonon interaction between states with wave vectors ~k and −~k and with opposite
spins to maximize the probability that the electrons are close together. The BCS ground
state involves the construction of a many body wave function for pairing all the electrons
in the Fermi sea to form Cooper pairs with equal and opposite wave vectors and opposite
spins. According to BSC theory, the energy of this ensemble of paired states is lowered
by 2∆ ∼ 3.5kBTc, the energy gap observed experimentally (see §1.4 and §1.6 of Part IV).
From Eq. 2.2, we see that 2∆ ≤ h̄ωD corresponds to an estimate of ∼30 K for the upper
limit of Tc for a superconductor for which the pairing mechanism is the electron-phonon
interaction. Therefore the discovery in 1987 of a high Tc superconductor with Tc ∼ 100 K
was so surprising.

2.2 Macroscopic Quantum Description of the Supercurrent

Following the discussion in §2.1, the wave function for the superconducting electrons can
be represented by a single-valued complex function Ψ(~r), having both a real and imaginary
part, and possessing the properties described below. These comments are quite general and
are not dependent on the pairing mechanism. Therefore, if the pairing mechanism for high
Tc superconductivity is not through the electron–phonon interaction, many of the properties
of superconductors enumerated here will still be valid.

We now give a summary of the interpretations of the wave function Ψ(~r):

1. The squared modulus of Ψ(~r) is equal to the density n∗s(~r) of superconducting Cooper
pairs:

|Ψ(~r)|2 = Ψ∗(~r)Ψ(~r) = n∗s(~r) (2.4)

The asterisk on the wave function signifies complex conjugation, but the asterisk on n∗s
signifies a convention that n∗s is the density of Cooper pairs which is half the density
of superconducting electrons ns. That is 2n∗s = ns, since two electrons with wave
vectors ~k and −~k are bound in a Cooper pair. The wavefunction Ψ(~r) thus denotes
the degree of superconducting order, and is in that sense an order parameter, which
vanishes for T ≥ Tc in the normal state.

2. The superconducting current ~js is a generalization of the probability current in quan-
tum mechanics

~js =
q∗

2m∗

{

Ψ∗
(

h̄

i
~∇− q∗

c
~A

)

Ψ+

[(

h̄

i
~∇− q∗

c
~A

)

Ψ

]∗

Ψ

}

(2.5)

where q∗ = −2|e| is the charge on the Cooper pair, m∗ = 2m0 is the mass of the
Cooper pair, and ~A is the magnetic vector potential, where ~∇ × ~A = ~B, and m0 is
the free electron mass.

3. The time evolution of the wave function is given by Schrödinger’s Equation

− h̄
i

∂Ψ

∂t
= HΨ = EΨ (2.6)

where E is the energy for the quantum mechanical state.
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2.3 The Quantum Mechanical Current

For completeness, we give here a brief derivation of the quantum mechanical current density
~j for a general potential V (~r). This current density ~j was used to write Eq. 2.5. The
derivation relies on the continuity equation

∂ρ

∂t
+ ~∇ ·~j = 0 (2.7)

where ~j is the current density, and ρ(~r) = qn(~r) denotes the charge density. Then we can
write

∂ρ

∂t
= q

∂

∂t
n(~r) = q

∂

∂t
(ΨΨ∗) = q

[(

∂Ψ

∂t

)

Ψ∗ +Ψ

(

∂Ψ∗

∂t

)]

. (2.8)

Using the time-dependent Schrödinger equation Eq. 2.6 and its complex conjugate, we
obtain

∂ρ

∂t
= q

[(

− i

h̄

)

Ψ∗HΨ+Ψ

(

i

h̄

)

HΨ∗
]

(2.9)

and substitution of the Hamiltonian

H =
p2

2m
+ V (~r) = −

(

h̄2~∇ · ~∇
2m

)

+ V (~r) (2.10)

into Eq. 2.9 consequently yields

∂ρ

∂t
=

(

qh̄i

2m

)(

Ψ∗~∇ · ~∇Ψ−Ψ~∇ · ~∇Ψ∗
)

= ~∇·
[(

qh̄i

2m

)

(Ψ∗~∇Ψ−Ψ~∇Ψ∗)
]

= −~∇ ·~j (2.11)

making use of the continuity equation and the fact that since Ψ and Ψ∗ only differ by a
phase factor, ~∇Ψ and ~∇Ψ∗ commute

[~∇Ψ∗, ~∇Ψ] = 0. (2.12)

We thus identify the current density with

~j =
q

2m

[

Ψ∗
(

h̄

i
~∇
)

Ψ−Ψ

(

h̄

i
~∇
)

Ψ∗
]

=
q

2m

[

Ψ∗~pΨ+ c.c.

]

(2.13)

showing that the second term in Eq. 2.13 is the complex conjugate of the first, thereby
guaranteeing that ~j is a Hermitian operator that will yield real eigenvalues. In the presence
of a magnetic field, we replace ~p by

~p→ ~p− q

c
~A (2.14)

so that Eq. 2.13 then becomes

~j =

(

q

2m

){

Ψ∗
(

h̄

i
~∇− q

c
~A

)

Ψ+

[

Ψ∗
(

h̄

i
~∇− q

c
~A

)

Ψ

]∗}

(2.15)

where again the second term in Eq. 2.15 is the complex conjugate of the first. If we
identify the charge q and the mass m with the effective charge q∗ and the effective mass
m∗, respectively, then Eq. 2.15 yields Eq. 2.5 for the superconducting current ~js.
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2.4 The Supercurrent Equation

In considering the role of the wave function Ψ(~r) in the superconductivity problem, the
current density given by Eq. 2.15 is a very important and useful equation. Ginzburg and
Landau observed that all the Cooper pairs are in the same two–electron state, and therefore
a single complex wavefunction can denote the order parameter of the superconducting state.
With this interpretation of Ψ(~r) as a complex order parameter for a Cooper pair, then Ψ(~r)
can be written in terms of an amplitude and a phase

Ψ(~r) = |Ψ(~r)|eiθ(~r) = [n∗s]
1/2eiθ(~r) (2.16)

where we have not explicitly considered the time dependence of Ψ(~r). Here we assume that
the significant spatial variation of the wave function is through the phase θ(~r), so that the
density of Cooper pairs is essentially independent of position and time. Putting this form
of Ψ(~r) into Eq. 2.5 gives:

~js =

(

− q∗
2
n∗s

m∗c

)

~A+

(

q∗n∗sh̄

m∗

)

~∇θ =

[

− q∗
2

m∗c
~A+

q∗h̄

m∗
~∇θ
]

|Ψ|2 (2.17)

or

~js = −
~A

Λsc
+

h̄

q∗Λs
~∇θ (2.18)

which is the Supercurrent Equation in which

1

Λs
=
q∗

2
n∗s

m∗
=
e2ns
m0

. (2.19)

From Eq. 2.18 we see that the supercurrent ~js is driven by two terms. The first term is
strictly a classical term which is proportional to the classical vector potential ~A. The second
term is a partly quantum mechanical term which is proportional to the gradient of the phase
θ(~r) of the wave function. Although the second term looks purely quantum mechanical, the
change of phase can also result from a classical field. For example, if Eq. 2.16 is substituted
into the time-dependent Schrödinger equation Eq. 2.6, and if we assume that the amplitude
of the wave function is independent of time (which is equivalent to saying that the density
of Cooper pairs is time independent), we have simply that

∂θ

∂t
= −H

h̄
. (2.20)

Therefore, in an applied electrical field, the Hamiltonian is perturbed by the scalar potential
φ(~r)

H = H0 + q∗φ(~r). (2.21)

From Eq. 2.20, we see that a classical voltage q∗φ(~r) causes the quantum mechanical phase
of the wavefunction θ(~r) to change with time.
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2.5 The London Equations

We now derive the two London equations which describe the electrodynamics of supercon-
ductors from the supercurrent equation (Eq. 2.18). The first London equation relates to
the perfect conductivity of superconductors, while the second London equation follows from
the perfect diamagnetism condition, or the Meissner effect.

1. Perfect Conductivity - First London Equation

By assuming that the density of Cooper pairs n∗s is independent of time, then differ-
entiation of Eq. 2.18 yields

∂~js
∂t

= −
(

1

cΛs

)

∂ ~A

∂t
+

(

h̄

q∗Λs

)

~∇∂θ
∂t
. (2.22)

We can write (∂θ/∂t) in terms of the Hamiltonian from Eq. 2.20 and in the presence
of an applied electric field as

h̄
∂θ

∂t
= −

(

H0 + q∗φ(~r)

)

. (2.23)

Assuming that H0 is independent of position, Eq. 2.22 becomes

∂~js
∂t

= −Λ−1s
(

∂ ~A

c∂t
+ ~∇φ

)

= Λ−1s ~E, (2.24)

which states that current flows under the influence of an electric field without any
damping, m~̇v = e ~E. This equation relates to the perfect conductivity of supercon-
ductors and is known as the first London equation. This equation is usually written
as

~E = Λs
∂~js
∂t

(2.25)

where Λs = m∗/(q∗2n∗s).

2. Perfect Diamagnetism - Second London Equation

By taking the curl of Eq. 2.18, the supercurrent equation, we obtain the second London
equation

~∇×~js = −
1

Λsc
~B (2.26)

where we note that ~∇ × ~∇θ = 0 because the curl of a gradient vanishes. Using
Maxwell’s equation ~∇× ~H = (4π/c)~j, neglecting the displacement current, and noting
that ~B = µ̂ ~H, we obtain

~∇× ~∇× ~B = −
(

4πµ̂

c2Λs

)

~B. (2.27)

Since
~∇× ~∇× ~B = ~∇(~∇ · ~B)−∇2 ~B (2.28)

and since ~∇ · ~B = 0, we further obtain

∇2 ~B =
1

λ2s
~B (2.29)
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where λs is the superconducting penetration depth and from Eqs. 2.27 and 2.29 we
obtain:

λs =

(

Λsc
2

4πµ̂

)1/2

=

(

m∗c2

4πµ̂q∗n∗s

)1/2

. (2.30)

The penetration depth λs has a magnitude λs ∼ 1000 Å, which is obtained by assuming
that there are ns ∼ 1023 electrons/cm3 and using Eq. 2.19 to yield Λs ∼ 10−31/sec2.
The second London equation thus implies an exponential spatial decay of the B field
in the superconductor with a functional dependence

B(z) = B(0) exp(−z/λs). (2.31)

Equation 2.31 is the physical manifestation of the Meissner effect, which states that
the ~B field is excluded from the interior of a superconductor. The exponential decay
of the ~B field in a superconductor, also leads to the decay of the current density ~js
in the same superconducting penetration depth. This result is obtained by taking the
curl of the second London equation (Eq. 2.26) which gives

~∇× ~∇×~js = −
1

Λsc
~∇× ~B = − µ̂

Λsc
~∇× ~H = − µ̂

Λsc

(

4π

c

)

~js. (2.32)

From the continuity equation we can write ~∇ · ~j = 0 for the steady state condition,
and we thus obtain a differential equation for ~js

−∇2~js = −
(

µ̂

Λsc

)

4π

c
~js = −

(

1

λ2s

)

~js. (2.33)

Thus we see that the second London equation in the steady state leads to an expo-
nential decay of both the ~B field and the supercurrent ~js as we move away from the
surface into the superconductor. This rapid exponential decay of ~B, ~js and also ~H
(since ~B = µ̂ ~H)

B(z) = B(0)e−z/λs (2.34)

H(z) = H(0)e−z/λs . (2.35)

js(z) = js(0)e
−z/λs (2.36)

clarifies the Meissner effect regarding the exclusion of flux in a superconductor.

2.6 The Two-Fluid Model

The London equations are appropriate at T = 0 where all the electrons are in Cooper pairs.
To describe the electrodynamics at a finite temperature, a two-fluid model is introduced.
According to this model the total current density in a superconductor is considered to be
a superposition of the contributions to the current from the superconducting electron pairs
and from the normal electrons, which are identified with quasi-electrons that are excited
above the superconducting energy gap by breaking Cooper pairs. We then write:

j = jn + js (2.37)
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as the superposition of a normal (resistive) current given by

~jn = σ ~E (2.38)

and a superconducting current ~js. Then from Maxwell’s equations, we can write
(

c

µ̂

)

~∇× ~B = 4π(σ ~E +~js) + ε ~̇E, (2.39)

in which we have also included the displacement current ~̇D = ε ~̇E. We can thus write
(

c

µ̂

)

~∇× ~∇× ~B = −
(

c

µ̂

)

~∇2 ~B = 4π(σ~∇× ~E + ~∇×~js) + ε~∇× ~̇E, (2.40)

or, using Eq. 2.26 for ~∇×~js, we obtain

1

µ̂
∇2 ~B =

4πσ

c2
~̇B +

4π

Λsc2
~B + ε

~̈B

c2
. (2.41)

If we seek a plane wave solution

B ∼ exp[−i(ωt− ~k · ~r)], (2.42)

then Eq. 2.41 gives
k2c2

µ̂
= −4π

Λs
+ 4πσωi+ εω2. (2.43)

The successive terms on the right hand side of Eq. 2.43 represent the effects of the super-
conducting penetration depth, the ordinary eddy current skin depth, and the displacement
current. Equation 2.43 determines the propagation characteristics at finite temperature of
a superconductor in an electromagnetic field.

In the limit of low frequencies,

k ∼= i

(

4πµ̂

Λsc2

)
1
2

, (2.44)

which represents the exponential decay of the B field discussed in §2.5, where the super-
conducting penetration depth λs is given by

λs =

(

Λsc
2

4πµ̂

)
1
2

=

(

mc2

4πne2µ̂

)
1
2

, (2.45)

and λs is one of the important length scales in a superconductor. Here m, n and e refer to
single electron states, utilizing the relation between the characteristics of Cooper pairs and
the single electron states (see Eq. 2.19).

We recall that for a normal conductor in a time-varying ac magnetic field, that the
magnetic field is confined to a skin depth near the surface of thickness δn = c(2πµ̂ωσ)−1/2.
In the radio frequency range, δn À λs, so that the superconducting decay length dominates
the spatial variations of the magnetic field. In the millimeter wave range δn and λs can
be of comparable magnitudes, but then for most conventional superconductors the electro-
magnetic frequency would exceed the superconducting band gap, and would serve to break
the Cooper pairs and give rise to behavior similar to that observed in a normal metal.

22



2.7 Flux Quantization

Besides perfect conductivity and perfect diamagnetism (Meissner effect), quantization of
the magnetic flux is characteristic of superconductivity. Flux quantization follows directly
from Eq. 2.18, the supercurrent equation, and from the interpretation of the wave function,
as discussed below. Rearranging Eq. 2.18, we have

~∇θ = q∗
(

Λs
h̄

)

~js+

(

q∗

h̄c

)

~A. (2.46)

Integrating Eq. 2.46 around a closed contour yields the phase difference around the contour

∮

c

~∇θ · d~s = q∗
Λs
h̄

∮

c

~js · d~s+
q∗

h̄c

∮

c

~A · d~s. (2.47)

Now, the first term on the left of Eq. 2.47 can be integrated directly to yield a phase
difference

∮

c
(~∇θ) · d~s = θ2 − θ1 (2.48)

where θ2−θ1 is the phase difference of the wave function in going around a closed loop. Our
interpretation of the complex wave function, |Ψ(~r)|eiθ, where |Ψ(~r)|2 equals the density of
Cooper pairs, |Ψ(~r)|2 = n∗s, demands only that the modulus be a single-valued function. The
phase can in general be multi-valued as long as the function Ψ(~r) is invariant under rotation
by 2π or in other words ei(θ1−θ2) = 1. From this argument it follows that θ1 − θ2 = ±2nπ.

The last term in Eq. 2.47 becomes, after using Stokes’ theorem,

∮

c

~A · d~s =
∫

s
(~∇× ~A) · d~S =

∫

s

~B · d~S = Φ (2.49)

where Φ is the flux enclosed by the contour and S is the area defined by the contour. Hence,
Eq. 2.47 becomes

±2πn =
q∗Λs
h̄

∮

c

~js · d~s+
q∗

h̄c
Φ (2.50)

where n is an integer. If the path of the line integral for the supercurrent is chosen to be
deep inside the superconducting material, so that ~js = 0, then

|Φ| = h̄c

q∗
2πn =

hc

q∗
n (2.51)

which gives the quantization of flux in units of (hc/q∗) = Φ0, if the supercurrent flows
around the path of the superconductor. For |q∗| = |2e| we thus obtain a magnitude for the
flux quantum Φ0 = ch/2e = 2.07 × 10−7gauss cm2 = 2.07 × 10−15teslam2. As an example
of flux quantization, consider the metallic torus (see Fig. 1.2) which is cooled in a magnetic
field to a temperature below Tc. If the magnetic field is then removed, flux will be trapped.
Suppose that a is the radius of the cross section of the torus. Then if aÀ λs, then all the
currents decay exponentially from the surface of the torus. By considering a contour many
penetration depths from the surface, the current density js can be made negligibly small.
Hence, the quantization condition of Eq. 2.51 states that the flux Φ passing through the
torus is quantized in units of Φ0 or that Φ = nΦ0.

23



Figure 2.3: Triangular lattice of flux lines
through the top surface of a supercon-
ducting cylinder as observed in an elec-
tron microscope. The points where the
flux lines exit the surface are decorated
with fine ferromagnetic particles.

2.8 The Vortex Phase and Trapped Flux

Physically, the lower critical field Hc1 (see Fig. 1.6) denotes an applied magnetic field large
enough to create one fluxoid in the area of flux penetration (estimated as πλ2s)

πλ2sµ̂Hc1 = Φ0 (2.52)

where λs is the superconducting penetration depth. Thus, Hc1 measures the initiation of
flux penetration into a type II superconductor.

In the vortex state of a type-II superconductor, the vortices form a regular lattice (see
Fig. 2.3). This can be understood physically if we recognize that two vortices of the same
sign repel one another which maximizes their distance apart, while requiring a fixed number
density to account for the specified flux penetration. There are many examples in physics
of ordering caused by similar competing processes. For simplicity, we consider the vortex
lattice to be a square array, although the results given below are independent of the type of
regular array (i.e., whether it is triangular or square). Consider an infinite slab of a vortex
array (such as in Fig. 2.3) with the field perpendicular to the top surface. Suppose that the
vortices are a distance 2a apart and have a non–superconducting (normal) core of radius ξs
which is surrounded by superconducting material.

Consider the contour c for the line integral in Eq. 2.50 drawn along the perpendicular
bisectors between one vortex and its nearest neighbor vortices. If flux goes through each
vortex, there must be a circulating current around each vortex. By symmetry, the circulating
currents are identically zero along a contour drawn along the bisectors of the distance
between the vortices. (A similar contour with ~js = 0 can be found for any regular array).
Hence, the quantization condition (Eq. 2.51) requires the flux within the contour to be an
integral number of flux quanta nΦ0. The same condition holds for each vortex, so that
for a triangular lattice nΦ0 = µ̂Ha(3

√
3/2)a2, where Ha is the applied magnetic field.
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Experimentally, n = 1 for type II superconductors at the closest packing of the vortices.
Hence, Hc2 = Φ0/[µ̂ξ

2
s (3
√
3/2)] for the closest packing of the vortices, which we explain

as follows. As the applied field is increased above Hc1, the spacing 2a between vortices
becomes smaller and smaller. The spacing can only get as small as some minimal distance
a = ξs, when the cores on adjacent vortices begin to overlap and the material becomes
normal. This minimal distance ξs is called the superconducting coherence distance, and is
an important length scale in a superconductor. The externally applied field corresponding
to a = ξs is called the “upper critical field” Hc2, so that Hc2 = Φ0/(µ̂3

√
3ξ2s/2).

Since the magnetic field will be uniform within the core, the field, and hence also the
currents, will fall off exponentially from the edge of the core as long as a À λs. For most
type-II superconductors λs À ξs, so that most of the flux is contained in an area λ2s around
the core, and a very small fraction of the flux (ξ2s/λ

2
s)Φ0 ¿ Φ0 is in the core itself. Therefore,

by considering a contour very near the edge of the core, the quantization condition gives

Φ0 =
4πµ̂λ2s
c

∮

~js · d~s+
ξ2s
λ2s

Φ0 (2.53)

and neglecting the term in (ξ2s/λ
2
s)Φ0 we can write

Φ0 =
4πµ̂λ2s
c

∮

~js · d~s. (2.54)

That is, near the core it is the line integral of the current which is quantized in integral
numbers of flux units. The circulating current near the core is in the ~iφ circumferential
direction. Carrying out the line integral in Eq. 2.54 thus yields

Φ0 =
4πµ̂λ2s
c

js2πr (2.55)

or

js =
Φ0c

2(2π)2µ̂λ2s

1

r
. (2.56)

Thus for a vortex we see that the current density decreases as 1/r, which is also true for a
hydrodynamic vortex (e.g., water flowing down a drain). By noting that

~js = n∗sq
∗~vs (2.57)

and writing
4πµ̂λ2s
c2

= Λs =
m∗

n∗sq
∗2

(2.58)

we have,

js = n∗sq
∗vs =

c2h/(2e)

2πc2(m∗/n∗sq
∗2)

1

r
=
h̄n∗sq

∗2)

m∗
1

r
(2.59)

or

vs =
h̄

m∗
1

r
(2.60)

yielding the quantization condition

∫

~vs · d~̀=
h

m∗
. (2.61)
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Furthermore, the velocity cannot be made arbitrarily large, because the minimumsize
of r is the superconducting coherence distance r ≥ ξs, the coherence distance, thus yielding

vmax =
h̄

m∗
1

ξs
. (2.62)

The circulating currents acquire an additional kinetic energy in circulating around the
vortices. However, if this additional kinetic energy exceeds ∆0, where 2∆0 is the gap
energy, the Cooper pairs will unbind. That is why the core region of a vortex cannot be
superconducting but must be normal! To estimate the core size, note that

∆0 = δ

(

1

2
m∗v2

)

= m∗vδv. (2.63)

Since the electrons forming the Cooper pairs are at the Fermi surface, we can write v = vF
and δv = vs, where vs is the velocity of the Cooper pair. Therefore, using Eq. 2.62 and
writing δvs as the maximum vortex velocity we obtain:

∆0 ≈ m∗vF

(

h̄

m∗
1

ξs

)

(2.64)

so that

ξs ≈
h̄vF
∆0

. (2.65)

From the BCS theory of superconductivity, ξs for a clean material with very little scattering
is given by

ξ0 =
h̄vF
π∆0

(2.66)

where ξ0 is called the “BCS coherence length”, and is the length over which Cooper
pairs are correlated in the absence of any scattering.

2.9 Summary of Length Scales

We list in Table 2.1 some of the characteristic lengths found in superconductors. In §2.5,
we discussed the superconducting penetration depth λs

λs =

(

m0c
2

4πnµ̂e2

)1/2

(2.67)

which governs the penetration of magnetic fields and supercurrents in the superconducting
state (see Eqs. 2.34 – 2.36). In most cases, the superconducting penetration depth is much
smaller than the penetration depth for metals in the normal state δn

δn =
c

(2πµ̂ωσ)1/2
. (2.68)

Important parameters for type II superconductors are the intrinsic superconducting coher-
ence length ξ0 which by the BCS theory is written as

ξ0 =
h̄vF
π∆0

(2.69)
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Table 2.1: Some characteristic length scales for superconducting materials. The supercon-
ductors with κ = λ0s/ξ0 > 1/

√
2 = 0.71 are type II. Here λ0s and ξ0 are the superconducting

penetration depth and coherence length in the clean limit.

Material λ0s(Å) ξ0(Å) λ0s/ξ0
Sn 3,400 23,000 0.16
Al 1,600 160,000 0.01
Pb 3,700 8,300 0.45
Cd 11,000 76,000 0.14
Nb 3,900 3,800 1.02
YBa2Cu3O7−x ‖ 170 3.0 56
YBa2Cu3O7−x ⊥ 6,400 16.4 390

and the coherence length ξs in real superconducting materials (in the dirty limit) is given
by

ξs = (ξ0`n)
1/2 (2.70)

where `n is the mean free path for the carriers in the normal state, and is temperature
dependent. Likewise, the superconducting penetration depth λs in dirty superconductors
(i.e., `n ¿ ξ0) is given by

λs = λ0s

(

ξ0
`n

)1/2

(2.71)

where λ0s is the superconducting penetration depth (see Table 2.1) for large `n (e.g., `n > ξ0).
From Eqs. 2.70 and 2.71, we then conclude that

κ ≡ λs
ξs

=
λ0s
`n
. (2.72)

The parameter κ defined by Eq. 2.72 is used to distinguish type I superconductors (κ <
1/
√
2) from type II superconductors (κ > 1/

√
2), and typical values of κ for some super-

conductors are given in Table 2.1. Thus the decrease in `n favors type II superconductivity
(see Fig. 2.4), but in the limit of small `n we have ξs ¿ ξ0 with a relatively low ξs. One
major contrast between conventional superconductors and high Tc superconductors is the
relatively high κ values for the high Tc superconductors.

2.10 Weakly-Coupled Superconductors – The Josephson Ef-
fect

Suppose that a thin nominally non-superconducting region connects two superconductors
(see Fig. 2.5). Then the wavefunctions of the Cooper pairs in the two superconductors
can overlap and produce a coupling between them. Put another way, we can say that the
two regions of strong superconductivity are now connected by a region of weak supercon-
ductivity or by a weak link. It also seems plausible that the detailed properties of the
non-superconducting region won’t matter too much other than to establish the thickness
required to get appreciable coupling between the superconductors.
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Figure 2.4: Penetration depth λs and the
coherence length ξ as functions of the
mean free path `n of the conduction elec-
trons in the normal state. All lengths
are in units of ξ0, the intrinsic coher-
ence length. The curves are sketched for
ξ0 = 10λ0s, where λ0s is the supercon-
ducting penetration depth for large `n.
For short mean free paths the coherence
length becomes shorter and the penetra-
tion depth becomes longer. A decrease in
`n favors type II superconductivity.

Figure 2.5: Schematic diagram for (a)
a Josephson junction. (b) and (c) are
schematic diagrams for various kinds of
weak links. All of these cases exhibit the
Josephson effect.
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Assume that at the two boundaries of the weak link region we set the wave functions
across the boundaries equal to one another (see Fig. 2.5). Then, if we make the reasonable
assumption that in general Ψ(~r) decays exponentially from the edges, we have to a first
approximation (valid if `w À ξN , where ξN is the characteristic decay length of the Cooper
pair wave function in the junction region and `w is the length of the weak link). Thus we
write for the wave function in the weak link (normal state)

ΨN (x) = |ΨN1|e−x/ξN + |ΨN2|e−(`w−x)/ξN ei∆θ (2.73)

where the factor ei∆θ accounts for the very important fact that the phase of the wave
function for the Cooper pair on the two sides of the weak link will not in general be the
same.

More generally, we could assume that ΨN (x) is governed by the equation

ξ2N
d2ΨN (x)

d2x
= ΨN (x) (2.74)

subject to the boundary conditions ΨN (0) = ΨN1 and ΨN (`) = ΨN2. In this case ΨN (x)
can be written in the form

ΨN (x) = f1(x) + f2(`w − x)ei∆θ (2.75)

where f1(x) and f2(x) are governed by an equation of the form

ξ2N
d2f

dx2
= f (2.76)

with the boundary conditions
f1,2(0) = |ΨN1,N2|. (2.77)

Neglecting the presence of magnetic fields for the moment, the current through the
junction can be calculated using Eq. 2.13, and we obtain the result

~js =
q∗h̄

2m∗i

(

Ψ∗~∇Ψ−Ψ~∇Ψ∗
)

=
q∗h̄

m∗
Im(Ψ∗~∇Ψ) (2.78)

and using Eq. 2.73 for Ψ we obtain

js =
2q∗h̄

m∗ξN
|ΨN1||ΨN2| sin∆θ (2.79)

which we write as
js = j0 sin∆θ (2.80)

where

j0 =
2q∗h̄

m∗ξN
|ΨN1||ΨN2| (2.81)

and ∆θ is the phase difference of the superconducting wave function across the weak link.
Equation 2.80 states that dc tunneling of Cooper pairs can occur when the current

density is less than the maximum value j0. For current density values above j0, some of the
current must be carried by normal electrons, and there must by a voltage drop across the
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Figure 2.6: Current-voltage characteris-
tics of a Josephson junction. Dc cur-
rents flow under zero applied voltage up
to a critical current ic (or critical cur-
rent density j0); this is the dc Joseph-
son effect. At voltages above Vc the junc-
tion has a finite resistance. Below Vc the
current has an oscillatory component of
frequency ωJ = 2eV/h̄: this is the ac
Josephson effect.

junction. We thus interpret j0 as the maximum current that can pass through a Josephson
junction before driving it normal (see Fig. 2.6).

We thus obtain the remarkable result that the current is a sinusoidal function of the
phase difference across the superconductor. Such behavior is known as the dc Josephson
effect. Although Josephson first predicted this result from the point of view of tunneling
through an oxide barrier between two superconductors, it is a quite general property of
weakly coupled superconductors as our discussion above suggests. Josephson recognized
this fact also and was one for the first to emphasize the generality of the Josephson effect.
For his extremely important discovery, Josephson was awarded the Nobel Prize in 1973.

Referring to Eqs. 2.20 and 2.21 we see that the time derivative of the phase difference
across a Josephson junction is given by

∂

∂t
(θ2 − θ1) = −

2eV

h̄
(2.82)

so that

θ2 − θ1 = −
2eV

h̄
t (2.83)

which states that the current in Eq. 2.80 oscillates with a frequency

ωJ =
2eV

h̄
. (2.84)

This time dependent oscillation is known as the ac Josephson effect. A dc voltage of 1
µV across the Josephson junction produces a phase oscillation frequency ωJ of 483.6 MHz.
Equation 2.84 implies that when a Cooper pair crosses the weak link junction a photon of
frequency ωJ is emitted or absorbed.
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Figure 2.7: The geometrical arrange-
ment demonstrating macroscopic super-
conducting quantum interference in a
SQUID. A magnetic flux Φ passes
through the interior of the loop contain-
ing two Josephson junctions.
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2.11 Effect of Magnetic Fields on Josephson Junctions – Su-
perconducting Quantum Interference

The fact that the current through a Josephson junction depends on the quantum phase
difference across the junction gives rise to quantum interference effects in circuits containing
these junctions. Moreover, from the supercurrent equation (Eq. 2.18) we see that the
phase differences introduced by the Josephson junction will be sensitive to the presence
of magnetic fields. These quantum interference effects are a spectacular demonstration of
the quantum nature of superconductivity. The Josephson effect is also important from a
practical point of view, because of the great sensitivity of circuits containing Josephson
junctions to magnetic fields, making possible very sensitive magnetometers using these
quantum interference effects. These devices are called SQUID’s (superconducting quantum
interference devices). At the same time the magnetic field provides a way of altering the
electrical characteristics of single Josephson junctions, thereby providing a way to convert
these junctions into three-terminal devices. As is well known, three-terminal devices are
much more versatile than two-terminal devices in electronic circuitry.

2.12 Quantum Interference Between Two Junctions

Consider a parallel-connected superconducting circuit in which each arm of the circuit
contains a Josephson junction denoted as an insulator in Fig. 2.7. Assume for the moment
that the junction behaves uniformly so that the phase change across the junction is the same
over the entire junction. The total current flowing through the two junctions connected in
parallel is then written as

I = I1 + I2 = I01 sin∆θ1 + I02 sin∆θ2 (2.85)

where I01 and I02 are the current amplitudes through the individual junctions, while ∆θ1
and ∆θ2 are the phase differences across each of the junctions.

Clearly, the total current I that can be passed through the two junctions depends
on ∆θ1 − ∆θ2. When ∆θ1 = ∆θ2, the currents in the individual arms add, but when
∆θ1 −∆θ2 = π, they cancel. In a quantum interference device a magnetic field is used to
vary the flux through the current loop, as shown in Fig. 2.7, so that the phase difference
∆θ1 −∆θ2 can be varied by any desired amount of flux Φ enclosed within the circuit. This
magnetic flux can be found by taking the line integral of the supercurrent equation (Eq. 2.18)
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and imposing the requirement that the wavefunction be single valued after completing a 2π
excursion around the circuit.

More explicitly, from the single valuedness requirement, we have
∮

c

~∇θ · ~d` = 2π n. (2.86)

Then using the relation Eq. 2.18 we obtain an expression for the gradient of the phase of
the superconducting wave function in a magnetic field

~∇θ =

(

m∗

h̄

)

~vs+

(

q∗

ch̄

)

~A (2.87)

in the bulk superconductors connecting the junctions. Then applying Eq. 2.87 to 2.86 and
noting the direction of current flow we obtain

(

∆θ1 −∆φ2

)

+
q∗

ch̄

∮

~A · d~̀= 2πn (2.88)

where we have taken the contour c in Eq. 2.86 deep enough in the superconductor so that
vs = 0 along c (except of course in the junctions themselves). We thus obtain

∆θ1 −∆θ2 + 2π
Φ

Φ0
= 2πn (2.89)

where we have expressed the magnetic flux within the current loop in units of the flux
quantum Φ0 = ch/2e.

Equation 2.89 shows that the phase difference ∆θ1 − ∆θ2 between the two junctions
is solely determined by the flux enclosed within the circuit. The flux Φ depends on both
the applied field present and also upon any fields produced by the currents circulating in
the circuit itself. Since the maximum possible circulating current around the circuit is I0,
the flux produced by I will be negligible (i.e., there will be no self-shielding) if I0L ¿ Φ0,
where L is the loop inductance on the circuit. In the case where the loop inductance can
be neglected, we have the result Φ = Φa, where Φa is the applied flux.

Suppose that the two Josephson junctions in Fig. 2.7 are identical and have a phase
difference ∆θ = ∆θ1 = ∆θ2 in zero magnetic field. In a magnetic field the phase difference
across each Josephson junction then becomes ∆θ1+π

Φ
Φ0

and ∆θ2−π Φ
Φ0

. Then using Eq. 2.80
for the Josephson current and assuming the two junctions in Fig. 2.7 to be identical, we
obtain

I = I01 sin

(

∆θ + πΦ
Φ0

)

+ I02 sin

(

∆θ − πΦ
Φ0

)

= I0

[(

sin∆θ cosπΦ/Φ0 + sinπΦ/Φ0 cos∆θ

)

+

(

sin∆θ cosπΦ/Φ0 − sinπΦ/Φ0 cos∆θ

)]

= 2I0 sin∆θ cosπΦ/Φ0

(2.90)
where I0 = I01 = I02 and ∆θ = ∆θ1 = ∆θ2. Equation 2.90 shows that the parallel
combination of junctions in a magnetic field acts very much like a single junction in zero
field that is now modulated by the magnetic flux passing through the current loop. Thus
Eq. 2.90 has a periodicity shown in Fig. 2.8 with maxima occurring whenever

eΦ

h̄c
= sπ (2.91)
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Figure 2.8: Josephson interference from two parallel junctions such as in Fig. 2.7. Josephson
interference is mathematically identical to a two-slit interferogram.

where s is an integer. The resulting interference pattern is shown in Fig. 2.8. The short
period variation is produced by the interference condition between the two junctions as
predicted by Eq. 2.91, and the longer period variation is a diffraction effect arising from the
finite dimensions of each junction.

The interference pattern in Fig. 2.8 is formally analogous to a two-slit interference pat-
tern in physical optics. In the case of the SQUID device the “phase difference” is determined
by the flux enclosed in the ring. Since a very small amount of flux can be detected in this
way (a small fraction of the unit of quantum flux Φ0 = 2.07 × 10−7gauss cm2), SQUID’s
can be used as very sensitive magnetometers. Large arrays of Josephson junctions have also
been used to model 2D phase transitions in magnetic systems, and SQUID magnetometers
have become the standard equipment for magnetic susceptibility measurements.
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Chapter 3

Microscopic Quantum Description
of Superconductivity

3.1 Bardeen-Cooper-Schrieffer (BCS) Theory

3.1.1 The Cooper Instability

References:

• L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas,” Phys. Rev. 104,
1189 (1956).

• J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity,” Phys.

Rev. 108, 1175 (1957).

• T. van Duzer and C.W. Turner, Principles of Superconductive Devices and Circuits,
Elsevier, NY (1981).

Cooper’s 1956 paper demonstrated that the energy of a Fermi system can be lowered
by the formation of weakly bound electron pairs at T = 0 for any attractive interaction,
no matter how small. This landmark paper paved the way for the full–blown BCS theory,
which was published shortly afterward. Here we will show the derivation of the famous BCS
formula for Tc as given in Cooper’s paper, which contains many of the important ideas of
the BCS paper.

Let us therefore follow Cooper’s derivation. Consider an arbitrarily weak interaction
between electrons, H1. If the interaction is small, then there is a minimum energy εmin =
(h̄2q2min)/2m below which its effect will be so small that it can approximately be ignored.
Likewise there should also be a maximum energy, εmax = (h̄2q2max)/2m. Since we know
that in real superconductors the electron–electron interaction is phonon–mediated, we can
assume that the minimum energy for which the perturbation H1 is non–negligible is about
(EF − h̄ωD ), and the maximum energy is about (EF + h̄ωD) where ωD is the Debye
frequency, so that εmax − εmin = 2h̄ωD.

For the wavefunctions of the assumed electron pairs, we can take the simplest possible
form,

φ(~k1, ~k2; ~r1, ~r2) =
1

V
ei(

~k1·~r1 +~k2·~r2) (3.1)
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where the spins of the two electrons in question must be antiparallel, so that their overall
wavefunction will be antisymmetric under interchange of their coordinates, as is required
for Fermions. If we now let

~R = 1
2 (~r1 + ~r2),

~r = (~r2 − ~r1),

~K = (~k1 + ~k2), and

~k = 1
2 (
~k2 − ~k1)

(3.2)

in order to change to center of mass coordinates, then

φ(~k1, ~k2; ~r1, ~r2) =
1

V
ei(

~K·~R+~k·~r), (3.3)

and the energy becomes

E =
h̄2

2m
(k21 + k22) =

h̄2

m
(
K2

4
+ k2) = εK + εk (3.4)

We can equally well write the Cooper pair wave function as

Ψ ~K(~R,~r) =
1

V
ei(

~K·~R)
∑

~k

a~k e
i~k·~r (3.5)

where the coefficients a~k must be chosen so that ~∇~k Ψ ~K(~R,~r) = i~kΨ ~K(~R,~r). (So far all
we have done is notational, in order to make what follows plausible.) If we now substitute
the wavefunction of Eq. (3.5) into the Schrödinger equation, with the energy defined in Eq.
(3.4), we get

[

− h̄2

m

(

~∇2
r +

1

4
~∇2
R

)

+ H1

]

Ψ ~K(~R,~r) = E Ψ ~K(~R,~r) (3.6)

If we take the dot product of Eq. (3.6) with 〈 e−i( ~k·~r+ ~K·~R) | and perform the integrations
over ~R and ~r, we get for the kinetic energy term

〈 e−i( ~k·~r+ ~K·~R) | − h̄
2

m
(~∇2

r +
1

4
~∇2
R) | Ψ ~K′(~R,~r)〉 = (εK′ + εk′)

a~k′

V
(3.7)

and the perturbation term becomes

〈 e−i( ~k·~r+ ~K·~R) | H1 | Ψ ~K′(~R,~r)〉 =
δ( ~K ′ − ~K)

V

∑

~k′

a~k′

[
∫ ∞

−∞
d3re−i

~k·~rH1 e
i~k′·~r

]

(3.8)

Therefore, if we use the notation | ~k〉 for a plane wave, the Schrödinger equation may be
written as

(E − εK − εk) a~k = δ( ~K − ~K ′)
qmax
∑

k′ ≥ qmin

a~k′ 〈 ~k | H1 | ~k′ 〉 (3.9)
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Since the perturbation H1 couples only electrons with k and k′ in a small shell around
the Fermi surface, Cooper made the approximation that

〈 ~k′ | H1 | ~k 〉 ≈











−|V |, qmin ≤ k, k′ ≤ qmax

0, otherwise

(3.10)

With this approximation, the Schrödinger equation reduces to

a~k =
−|V |

(E − εK − εk)

∑

~k′

a~k′ (3.11)

as long as ~K = ~K ′. Since from normalization we must have

∑

~k

a~k = C, (3.12)

Eq. (3.11) becomes

∑

~k

a~k = C = −|V |
∑

~k

C

(E − εK − εk)
= −|V | 2C

(2π)3

∫ qmax

qmin

d~k

(E − εK − εk)
(3.13)

We can change the variable of integration to energy:

−|V |
∫ εmax

εmin

dεk N(E)

(E − εK − εk)
= 1

and using the fact that the range of the limits of integration is small, we can take the density
of states at the Fermi energy N(E) ≈ N(K, EF ).

If we then integrate the above equation, and make use of

∫

dx/x=lnx and

lnx− ln y=ln(x/y)

(3.14)

we find

exp

[

1

N(K,EF )|V |

]

=
E − εK − εmax

E − εK − εmin
. (3.15)

Then, by simplifying Eq. (3.15), we get for the energy of the pair

E = εK + εmin −
2h̄ωD

exp[ 1
N(K,EF )|V | ] − 1

(3.16)

There are several interesting points to be made about Eq. (3.16), as Cooper himself pointed
out. The first is that the energy of the electron pair is lower than that of the individual
electrons, and the energy of the pair is lowest if εK , the center–of–mass energy, is zero. A
zero center of mass energy implies that the electrons have both opposite spin and momenta

36



(see Fig. 2.2); such a state has henceforth been known as a Cooper pair. The energy of such
a pair is lower than that of the individual electrons by an amount ∆ defined by

∆ =
2h̄ωD

exp[ 1
N(EF )|V | ] − 1

≈ 2h̄ωD exp

[ −1
N(EF )|V |

]

(3.17)

where we have neglected the 1 since in the exponential term the product N(EF )V is small.
If ∆ ≈ 2kBTc, then we recover the famous BCS equation for Tc.

What has been presented above is the substance of Cooper’s original paper, from which
many of the important ideas, if not the details, of the BCS theory can be extracted. The
BCS paper makes many useful predictions, and continues today to be widely read because
of its great physical content. However, the theory is of limited utility as far as calculation of
the properties of actual materials goes, and has been largely supplanted by modern Green’s
functions methods for first principles calculations. For understanding of the properties of
superconducting systems with complex geometries, like layered materials, the phenomeno-
logical Ginzburg–Landau theory of superconductivity (see Chapter 2) has proven to be very
useful.

3.1.2 Ground State From Cooper Pairs

The preceding section gave a description of a Cooper pair for two electrons in a Fermi sea.
BCS took the essential step in providing a full microscopic description of the supercon-
ducting state by constructing a ground state wave function in which all the electrons form
bound pairs. The BCS approximation to the electronic ground state wave function can be
described as follows: group the N conduction electrons into N/2 Cooper pairs described by
the wave function φ(~rs, ~r′s′), where ~r is the electronic position and s is the spin quantum
number. Then consider the N -electron wave function as a product of N/2 identical Cooper
pair wave functions

ΨN (~r1s1, . . . , ~rNsN ) = φ(~r1s1, ~r2s2) · · ·φ(~rN−1sN−1, ~rNsN ). (3.18)

Though this state describes a state in which all electrons are bound, in pairs, into identical
two electron states, it lacks the symmetry required by the Pauli principle:

ΨBCS = AΨN (3.19)

where A is the antisymmetrization operator.

3.1.3 Hamiltonian for the Superconducting Ground State

In this section and the next we shall introduce the theory of the superconducting ground
state, which is a part of the microscopic theory of superconductivity published by Bardeen,
Cooper, and Schrieffer in 1957. The method of finding the ground state involves

1. devising a Hamiltonian operator, which we do in this section,

2. using an assumed ground-state wave function to find an expression for the energy, and
finally

3. minimizing the energy to find the coefficients in the ground-state wave function.
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The latter two parts are done in the following section.
The BCS theory is presented in the formalism of second quantization involving creation

and annihilation operators. For a systematic introduction to operator algebra, consult a
quantum mechanics text.

The equations are written in terms of the creation and annihilation operators introduced
earlier for single electrons and now extended to electron pairs. The creation operator c∗~k↑
places an electron in state ~k with spin up, so that if c∗~k↑ operates on the “vacuum” state, in

which all ~k states are empty, it produces a new state with one spin-up electron in state ~k:

c∗~k↑|0〉 = |1~k↑〉 (3.20)

Likewise, the annihilation operator c~k↑ causes the elimination of an electron in state ~k with
spin ↑:

c~k↑|1~k↑〉 = |0〉. (3.21)

These operators are used to formulate the Hamiltonian. It is only necessary to consider
the differences from the normal ground state, which are referred to as reduced energies.

Each electron-phonon-electron interaction of the type shown in Fig. 2.2 and discussed in
§3.1.1 contributes to the potential energy of the superconducting state relative to the ground
state. As in the Cooper model, we restrict consideration to paired states ~k ↑, −~k ↓. The
pair transition can be represented by the product of creation and annihilation operators,

c∗~k+~q↑c
∗
−~k−~q↓

c
−~k↓

c~k↑ (3.22)

If this operator operates on the ground state, it first removes the electrons from ~k and −~k
states and then places them in ~k+~q and −~k−~q with their spin unaffected. Taking the sum
of all such scattering events, one obtains the potential energy relative to the normal state,
which we call the reduced potential energy:

Vred =
∑

~k,~q

V~k~k′c
∗
~k+~q↑

c∗
−~k−~q↓

c
−~k↓

c~k↑ (3.23)

where ~k′ = ~k + ~q. It can be shown that this gives a lowering of the energy for the super-
conducting state and this lowering of the energy becomes more pronounced as the number
of scattering events increases, thus adding justification for using ~k, −~k pairs.

Since the BCS theory involves only pairs of a certain kind (i.e., ~k ↑ and −~k ↓), single-
electron operators are replaced by pair operators

b∗k = c∗~k↑c
∗
−~k↓

(3.24)

and
b~k = c

−~k↓
ck↑ (3.25)

Since these pairs consist of a spin ↑ and a spin ↓ electron, it might be expected that the
pairs would behave like bosons. However, this is not strictly the case because the Pauli
principle applies: no ~k ↑, −~k ↓ state may be occupied by more than one pair at a time.
It does turn out that the pair behavior is close enough to that of a boson so that boson
electrodynamics gives a very good representation of the actual behavior of superconductors.
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Using Eqs. 3.24 and 3.25, the reduced potential energy in Eq. 3.23 may be rewritten as

Vred =
∑

~k~k′

V~k~k′b
∗
~k′
b~k (3.26)

The kinetic energy can be written as the sum of the pair energies in each of the occupied
pair states. The corresponding Hamiltonian thus must contain the number operator n̂k
which has the property

n̂~k|n~k〉 = n |n~k〉 (3.27)

which states that the eigenstate of n̂~k is the state having the wave number ~k and occupancy
n, and the eigenvalue of n̂~k is the occupancy. The number operator in the case of pairs is
b∗kb~k. Then the pair kinetic energy relative to the Fermi energy is

HKE = 2
∑

~k

ε~kb
∗
~k
b~k (3.28)

where ε~k = (h̄2k2/2m) − EF is a single particle energy representing the kinetic energy of
a Bloch state measured relative to the Fermi level. To express the energy in reduced form
(i.e., the kinetic energy relative to the normal ground state), we subtract

2
∑

k<kF

ε~k (3.29)

from the kinetic energy given by Eq. 3.28 and the factor of 2 arises because ε~k denotes the
single particle energy for each of the electrons in the pair. This can be done by using the
pair commutation relations:

[b~k, b
∗
~k′
] = [1− n̂~k↑ − n̂

−~k↓
] δ~k~k′ (3.30)

and the anti-commutator

{b~k, b~k′} = 2b~kb~k′ (1− δ~k~k′) (3.31)

where the square bracket denotes the commutator [x, y] = xy − yx and the curly bracket
denotes the anti-commutator {x, y} = xy + yx. Performing this operation on Eq. 3.28 and
adding to Eq. 3.26, we get the total reduced Hamiltonian:

Hred = 2
∑

k<kF

|ε~k|b~kb
∗
~k
+ 2

∑

k>kF

ε~kb
∗
~k
b~k +

∑

~k′

V~k~k′b
∗
~k′
b~k (3.32)

When operating on the ground state |0〉 only the operator b∗~k can yield a non-vanishing result
and likewise the operator b~k is required to operate on an excited state. To explain the factor
of 2 in Eqs. 3.28–3.32 another way, these factors of two arise because we count pairs and
there are two possible sets of spins for each ~k. The summation considers only the case where
we put a spin-up electron in each ~k state and a spin-down electron in the corresponding
−~k state with the factor of 2. Each state for k < kF contains the full complement of both
spin-up electrons and spin-down electrons.
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3.1.4 Superconducting Ground State

In this section we use the reduced Hamiltonian Eq. 3.32, to find the distribution of pair
occupancy in the superconducting ground state. According to the BCS theory, the ground
state should be written as the product of the occupation operators for all pair states.

|Ψ〉 =
∏

~k

[

u~k + v~kb
∗
~k

]

|0〉 (3.33)

Here |0〉 is the vacuum state, v2~k is the probability of pair occupancy, and u2~k = 1 − v2~k is
the probability of pair vacancy. The first term in Eq. 3.33 is included since it is needed for
normalization of |Ψ〉. The formation of the BCS ground state of Eq. 3.33 is illustrated in
Fig. 3.1 where the successive addition of pairs is schematically shown.

The energy of the superconducting ground state relative to the normal ground state is
the expectation value of the reduced Hamiltonian:

W = 〈Ψ|Hred|Ψ〉 (3.34)

Substituting Eq. 3.33 and Eq. 3.32 into Eq. 3.34, one obtains

W = 2
∑

k>kF

ε~kv
2
~k
+ 2

∑

k<kF

|ε~k|u
2
~k
+
∑

~k~k′

V~k~k′u~kv~ku~k′v~k′ (3.35)

To find the equilibrium state we must minimize Eq. 3.35 with respect to v2~k by setting

[∂W/∂(v2~k)] = 0. The resulting probability of occupancy is found to be

v2~k =
1

2
[1− ε~k/(∆

2
~k
+ ε2~k)

1/2]. (3.36)

The parameter ∆~k
called the gap parameter will be seen in §3.2 to have a special significance

and is defined by
∆~k

= −
∑

~k′

V~k~k′v~k′u~k′ (3.37)

We can put Eq. 3.36 in a simpler form by defining another energy

E~k =

(

∆2
~k
+ ε2~k

)1/2

. (3.38)

Using Eq. 3.38 the probability of occupancy (see Eq. 3.36) becomes

v2~k =
1

2
[1− ε~k/E~k] (3.39)

which is plotted in Fig. 3.2. This figure shows that the probability of pair occupancy
does not vanish above EF . Pairs move to ~k states of higher kinetic energy [first term
in Eq. 3.35] in order to maximize scattering possibilities since that reduces the potential
energy [third term in Eq. 3.35] by more than the increase of kinetic energy. The equilibrium
distribution is reached when a further increase of kinetic energy is not offset by a decrease
of potential energy. The distribution is reminiscent of the normal state with T 6= 0; but for
the superconducting state, this distribution occurs at T = 0. The region of ε~k over which
v2~k is significantly different from both unity and zero is of the order of a few ∆~kF

(typically,

a few milli-electron volyl).
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Figure 3.1: Formation of the BCS ground state by successive addition of pairs. Not illus-
trated are the weighing v~k of the pairs. The oppositely directed spins are shown. (i) shows
the vacuum state and (ii)-(iv) show successive additions of pairs.

Figure 3.2: Probability of pair occupancy
in the superconducting ground state.
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Figure 3.3: The superconducting ground state is composed of a very large number of over-
lapping Cooper pairs. The phases are locked together to minimize the energy. If there is
net momentum, there is a gradient of phase, as illustrated by the dashed line.

3.1.5 Long-range Coherence

The electron occupation of the paired ~k states can be considered to be that of the Cooper
pair. Within a spatial region having a diameter on the order of 1 µm, there is a phase
coherence much like that in a de Broglie wave packet for a single electron. This distance is
called the coherence length and is denoted by the symbol ξ. The center-of-mass coordinates
of about a million interacting pairs lie within a sphere of diameter ξ. It is energetically fa-
vorable for overlapping pairs to lock phases. The whole superconducting fluid can be viewed
as consisting of a large number of overlapping pairs. The individual pairs are comprised
of a large number of ~k states centered in magnitude about kF . The resulting wave packet
has a wavelength of about one-thousandth of the pair diameter. The waves oscillate at a
frequency ω = 2EF /h̄. In the absence of a net pair momentum, the phases of all pairs are
locked together and they oscillate in unison.

If the pairs of ~k states have a nonzero net wave vector ~K, the wave function representing
the superconducting fluid is multiplied by exp(i ~K · ~r). We can represent the fluid by an
ensemble-average function Ψ = |Ψ(~r)| when K = 0 and by

Ψ = |Ψ(~r)|ei ~K·~r (3.40)

when K 6= 0. This is usually written in the more general form

Ψ = |Ψ(~r)|eiθ(~r) (3.41)

where θ is the phase of the electron pairs, thereby giving a mathematical basis for the
ansatz used in Eq. 2.16. Figure 3.3 shows the situation where there is a phase variation, as
in Eq. 3.41. In Fig. 3.3 the phases of just two pairs are shown to avoid confusion; the phases
of these pairs are seen to differ from one another by 180◦. The phases of all the pairs evolve
at the angular frequency 2EF /h̄ while maintaining the θ(~r) relative phase differences.

3.2 Gap Parameter and Condensation Energy at T = 0

Let us examine further the gap parameter ∆~k
. Substitution of Eq. 3.39 into Eq. 3.37 gives

∆~k
= −

∑

~k′

V ′~k~k′
∆~k′

2E~k′
(3.42)
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At this point some simplifying assumptions are made to solve Eq. 3.42. First, we assume
that V~k~k′ = −V if both |ε~k| and |ε~k′ | are less than h̄ωD and is zero otherwise following Eq. 3.8.
It is further assumed that ∆~k

= ∆, a constant, for |ε~k| < h̄ωD and is zero otherwise. Thus
the quantity in Eq. 3.42 becomes

E = (∆2 + ε2)1/2 (3.43)

in which ∆ taken as a constant and ε and E understood to be functions of ~k. Next, the
summation over ~k′ in Eq. 3.42 is replaced by an integral over the corresponding energy
range. Further, we make use of the fact that the density of states is nearly constant close
to EF , so N(ε) ∼= N(0) over the range |ε~k| < h̄ωD. With these simplifications, Eq. 3.42
becomes

2

N(0)V
=

∫ h̄ωD

−h̄ωD

dε

[ε2 +∆2]1/2
. (3.44)

Performing the integration in Eq. 3.44 and rearranging terms, we obtain

∆ =
h̄ωD

sinh

[

1
N(0)V

] (3.45)

If N(0)V ¿ 1, the superconductor has weak coupling between electrons and phonons, as
is the case in most of the elemental superconducting materials, and in this limit Eq. 3.45
reduces to

∆ = 2h̄ωD exp

[ −1
N(0)V

]

(3.46)

A typical value of ∆ for conventional superconductors is about 1 meV.

3.2.1 Condensation Energy

We now calculate the difference in energy between the superconducting and normal states;
this is called the energy of condensation into the superconducting state. The difference of
kinetic energies is

(KE)s − (KE)n = 2
∑

~k<~kF

|ε~k|(v
2
~k
− 1) + 2

∑

~k>~kF

ε~kv
2
~k

(3.47)

Using Eqs. 3.38, 3.39 and 3.46 we can rewrite Eq. 3.47 as

(KE)s − (KE)n = N(0)∆2
[

1

N(0)V
− (1− e−2/N(0)V )

2

]

(3.48)

Similarly, the difference of potential energies from Eq. 3.35 is

Vs − Vn = −∆2

V
(3.49)

since Vn = 0. The total difference of energies is the sum of Eqs. 3.48 and 3.49. Noting that
the change of potential energy is just canceled by the first term of Eq. 3.48 We have the
following for the condensation energy:

Ws −Wn = −1

2
N(0)∆2

[

1− e−2/N(0)V
]

' −1

2
N(0)∆2 (3.50)

43



A useful physical understanding of Eq. 3.50 can be derived by taking the energy range of
pairing interactions to be ∆ and noting that the number of pairs in this energy range is
about N(0)∆. If 2∆ to be the binding energy of each electron pair, then the product of the
number of pairs and the binding energy is approximately the condensation energy. Thus
it is clear that although the BCS theory of the ground state has all electrons paired, only
those in a narrow energy range of order ∆ participate in the condensation. Those farther
below the Fermi level are also described mathematically as pairs but they are too far from
the Fermi surface to be scattered by the electron–phonon interaction, and hence do not
participate in the reduction of the energy of the system.

3.3 Some Quantitative Predictions of BCS

The BCS theory makes a number of quantitative predictions about observables. We sum-
marize results for the critical temperature, energy gap, critical field and specific heat. At
present, many of these observables are being measured for the high Tc materials in an at-
tempt to look for deviations from the BCS theoretical predictions. Agreement with the
BCS theory may be explained by the existence of pairs, and for this reason may not provide
direct information on whether the pairing mechanism is the electron–phonon interaction or
is some other attractive pairing mechanism.

3.3.1 Critical Temperature

In zero field, ordering sets in at a critical temperature Tc given by

kBTc = 1.13h̄ωDe
−1/N0V0 (3.51)

No matter how weak the electron-phonon coupling, BCS predicts a transition to a super-
conducting state for an attractive interaction described by the attractive potential V0 where
N0 is the density of states at the Fermi level and ωD is the Debye frequency.

3.3.2 Energy Gap

The zero-temperature energy gap is given by

∆(0) = 2h̄ωDe
−1/N0V0 (3.52)

The ratio of Eq. 3.52 to Eq. 3.51 gives a fundamental formula independent of the phe-
nomenological parameters

∆(0) = 1.76kBTc. (3.53)

This result seems to hold to within 10% for a large number of superconductors including
some of the new high Tc materials, though the results for the high Tc materials must be
considered to be preliminary.

The BCS theory also predicts the temperature dependence of the energy gap for T near
to Tc as

∆(T )

∆(0)
≈ 1.74

(

1− T

Tc

)1/2

(3.54)
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Figure 3.4: The critical field plotted as
a deviation from the empirical relation
(Eq. 3.55). Measurements are for several
metals. The weak-coupling theory of Swi-
hart is shown.

3.3.3 Critical Field

The BCS prediction for Hc(T ) is usually expressed in terms of deviations from the empirical
law:

Hc(T )

Hc(0)
≈ 1−

(

T

Tc

)2

(3.55)

The BCS prediction is that near Tc the relation is linear

Hc(T )

Hc(0)
∼ 1.74

[

1−
(

T

Tc

)]

(3.56)

whereas at very low temperatures the prediction is

Hc(T )

Hc(0)
∼ 1− 1.06

(

T

Tc

)2

. (3.57)

Figure 3.4 shows the deviation from Eq. 3.55 for typical type I superconductors where Al is a
weak coupling superconductor while Hg and Pb are strong coupling type I superconductors.

The Werthamer–Helfand–Hohenberg (WHH) equation which is also based on the BCS
theory

Hc2(0) = 0.7

(

∂Hc2

∂T

)
∣

∣

∣

∣

Tc

Tc (3.58)

relates the value of the upper critical field of a typical type II superconductor Hc2(0) to the
slope at Tc with no adjustable parameters. The WHH formula (Eq. 3.58) works well for
isotropic type II superconductors. The application of WHH theory to anisotropic type II
high Tc superconductors is currently under investigation.
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3.3.4 Specific Heat

BCS predicts a discontinuity at Tc of magnitude

Cs − Cn
Cn

∣

∣

∣

∣

Tc

= 1.43 (3.59)

In zero magnetic field. The BCS theory also predicts the low temperature heat capacity
which can be written as

Cs
γTc

= 1.34

(

∆(0)

kBT

)3/2

e−∆(0)/kBT (3.60)

where γ is the coefficient of the linear specific heat. Equation 3.60 shows that the expo-
nential dependence of the specific heat at low temperature gives a direct measure of the
superconducting band gap ∆.
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Chapter 4

Superconductivity in High
Transition Temperature Cuprate
Materials

4.1 Introduction to High Tc Materials

References:

• Tinkham and Lobb, Solid State Physics, edited by Ehrenreich and Turnbull, Academic
Press, vol 42, p. 91 (see also other articles in the same volume).

• Poole, Datta and Farach, Copper Oxide Superconductors, Wiley–Interscience (1988).

• Phillips, Physics of High Tc Superconductors, Academic Press (1989).

• Kamimura and Oshiyama, Mechanisms of High Temperature Superconductivity, Springer
Series in Materials Science, 11.

• D.M. Ginsberg, Physical Properties of High Temperature Superconductors I, World
Scientific (1989).

Using arguments based on the magnitude of the electron–phonon interaction, it was
argued that the maximum expected Tc would not exceed ∼ 30K. Therefore, the discovery
of superconductivity in the lanthanum cuprates (La2−xSrxCuO4) in 1986 with Tc values
of ∼ 40K and soon thereafter in the YBa2Cu3O7 compounds with Tc ∼ 90K was so very
surprising. Equally surprising was the discovery of such high Tc’s in materials with magnetic
properties and exhibiting insulating phases.

A number of researchers have drawn attention to the fact that almost all high Tc super-
conductors are layered compounds. The layering introduces anisotropy into the problem
which must be considered both in the normal state and in the superconducting state prop-
erties. Whereas many of the conventional superconductors are familiar materials that have
been studied in depth, the cuprate superconductors relate to much less familiar materials,
which are difficult to prepare in stoichiometric, single phase form, and cannot be described
theoretically by simple one–electron band theory. We are now at an early stage in our
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Figure 4.1: A schematic phase diagram for
La2−xSrxCuO4−y. The horizontal axis as-
sumes y = 0 when x 6= 0 and x = 0 when
y 6= 0. The dashed curve separates tetragonal
and orthorhombic structures. The insulator
(INS)–metal boundary is not shown because
of experimental uncertainties. The diagram
shows antiferromagnetic (AF) and supercon-
ducting (SC) phases which are common to the
various high Tc families: La2−xSrxCuO4−y,
YBa2CuO7−δ, and Bi2Sr2Ca1−xYxCu2O8+y.

understanding of the high Tc superconducting materials. The problems are challenging and
more difficult than initially envisaged.

It has been suggested that the construction of high Tc superconductors can be engineered
from basic building block units, consisting of electrically active slabs between which are
sandwiched layers which transfer charge to the electrically active slab. Though we focus here
on layered superconductors, it is not clear that all high Tc superconductors are necessarily
layered, insofar as the Tc = 30 K superconductor BiKBaO is a cubic material which also
has no copper ions and thus no magnetism.

All the currently studied high Tc superconductor families seem to follow the common
phase diagram shown in Fig. 4.1 Here we see that below a threshold value for the hole
concentration x, there is no superconducting state. According to Fig. 4.1, the stoichiometric
compounds are all non–conducting antiferromagnets.

To illustrate the basic building blocks of a typical high Tc superconductor, consider the
crystal structure for the layered YBa2Cu3O7 compound in Fig. 4.2 where each of the layers
is labeled. The structure in Fig. 4.2 can be considered in terms of two constituents: the
electrically active slab (see Fig. 4.3) which has a chemical formula YBa2Cu2O6 and the
intercalate layer CuO, where the Cu and O form chains. This intercalate layer allows entry
and departure of oxygen, thereby providing a mechanism for creating a hole concentra-
tion necessary for observation of the superconducting phase. In Fig. 4.3 we see the basic
building blocks and various guest layers that can be introduced between the electrically
active YBa2Cu2O6 slabs. If a single intercalate layer is introduced, the result is a 90 K Tc
material, such as YBa2Cu3O7. Various substitutions for Y in terms of a rare earth, or the
other substitutions indicated in Fig. 4.3, make little difference to Tc. Insertion of two layers
(indicated by the two TlO or BiO layers) give rise to a 110 K Tc material and three layers
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Figure 4.2: The crystal structure of the “123”
compound YBa2Cu3O7. On the left, the con-
stituents of each of the layers are indicated.

result in a 125 K Tc material (which has been prepared with the Tl compounds). If there
is no spacer Y layer between the two CuO2 layers we have the La2CuO4 series which yields
a 40 K Tc superconductor. In this case, holes are supplied by the substitution of Sr2+ for
La3+ to yield a family of materials La2−xSrxCuO4.

One advantage of viewing the high Tc materials in this way might perhaps be the
prediction of new arrangements of the building blocks to achieve higher Tc materials. It
is still too soon to be able to judge whether this approach will indeed guide the synthesis
of new high Tc materials. It is likely that some new ideas might be needed to produce
materials with Tc in the 200 K range.

Most of the high Tc materials are layered compounds with nearly tetragonal crystal
structures. In the superconducting phase, they tend to be orthorhombic, but having lat-
tice constants close to those in the corresponding tetragonal phase which is stable at high
temperatures. The orthorhombic distortion causes the distance between two oxygens on
one diagonal in the CuO2 planes to be slightly different from the distance between the two
oxygens along the other diagonal (see Fig. 4.4).

Because of the basic layering of the crystal structure of the high Tc materials, the
critical magnetic fields and the critical currents are also anisotropic in contrast to the
simpler superconductors discussed in Chapters 1–3. The transition temperature Tc is a
scalar and is unaffected by crystalline anisotropy. It should be emphasized that conventional
BCS superconductors can also be anisotropic. On the other hand, since anisotropy is so
widespread in the high Tc superconductors, some generalization of the previous discussion
of the critical field (see §1.2.1) is necessary. A similar generalization of the critical current
concept is alos needed.
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Figure 4.3: Viewing high Tc superconductors in terms of basic building blocks (host mate-
rial) between which an intercalate layer (or multilayer) is introduced. In general, the larger
the number of intercalate layers, the greater the Tc value.
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Figure 4.4: Structures of the orthorhombic (x = 0) and tetragonal (x = 0.7) phases of
YBa2Cu3O7−x.
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Figure 4.5: Angular dependence of the up-
per critical fields determined by different
criteria, i.e., zero-resistance, 10%, 30% and
50% of the normal resistance. The angle
θ denotes the angle of the magnetic field
from the c–axis. The dashed curves repre-
sent the best fit of Eq. 4.1.

4.2 Anisotropic Superconducting Properties

The superconductivity of single crystal YBa2Cu3O7−δ exhibits a distinct dependence on
the magnitude of the magnetic field as well as the field orientation with respect to the
crystalline axes. Similar effects are seen in the other families of high Tc superconductors, e.g.,
La2−xSrxCuO4 and Bi2Sr2CaCu2O8+y. This anisotropy of the superconducting properties is
seen more clearly in plots of the angular dependence of the upper critical field (see Fig. 4.5).
Here, values of the magnetic field at which the resistivity first appears and those at which
it reaches 10, 30, 50% are plotted against the angle θ between the magnetic field and the
c–axis. Because of the extremely high Hc2, especially for H ⊥ c-axis, data of the sort shown
in Fig. 4.5 can be taken for the whole angular range only at temperatures very close to Tc.

The angular dependence of the upper critical field (for all the definitions employed in
Fig. 4.5) follows the relation:

(

Hc2(θ) cos θ

H
‖
c2

)2

+

(

Hc2(θ) sin θ

H⊥
c2

)2

= 1, (4.1)

where θ is the angle between the magnetic field and the c–axis direction and H
‖
c2 and H⊥

c2

are the upper critical fields for H‖ c-axis and that for H ⊥ c-axis, respectively. The dashed
curves in this figure show the good fit of Eq. 4.1 to the experimental points. Although
Eq. 4.1 is applicable to many anisotropic conventional (BCS) superconductors, the main
difference for the high Tc superconductors as mentioned above is the large magnitude of
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Hc2, which makes it difficult to carry out the measurements because of the limitations of
laboratory fields (∼ 30 tesla for dc and ∼ 150 tesla for pulsed fields). The critical fields

H
‖
c2 and H⊥

c2 of Eq. 4.1 are related (see Eqs. 4.2 and 4.3) to the in-plane and the c-axis
coherence lengths, ξab and ξc by

H
‖
c2 =

Φ0

2πξ2ab
(4.2)

H⊥
c2 =

Φ0

2πξabξc
. (4.3)

From these expressions we can expect that as Hc2 increases to very large values, the coher-
ence lengths become small. Small ξ values (ξc ≈ 3Å and ξab ≈ 10Å) and high anisotropy
ratios (ξab/ξc) ∼ 5 are characteristic of high Tc materials. The effective mass model (not
discussed in these lectures) is applicable to the case where the anisotropy is not too large and
the superconductivity can essentially be treated as three-dimensional. The Hc2 anisotropy
is then related to the effective mass anisotropy by

H⊥
c2

H
‖
c2

=
ξab
ξc

=

(

mc

mab

)1/2

(4.4)

where mab and mc are the in–plane and c–axis effective masses, respectively. In the sim-
ple case where the conductivity anisotropy is also determined by the mass anisotropy, the

relation (H⊥
c2/H

‖
c2)

2 ∼ (ρc/ρab) is expected to hold. These relations between the supercon-
ducting and normal state parameters seem to hold well for the YBa2Cu3O7−δ family of high
Tc superconductors, at least, as reported by some workers.

Another phenomenological model for the angular dependence of Hc2(θ) is the Tinkham
model for a thin film superconductor, in which Hc2(θ) is given implicitly by the relation

(

Hc2(θ) sin θ

H⊥
c2

)2

+

∣

∣

∣

∣

Hc2(θ) cos θ

H
‖
c2

∣

∣

∣

∣

= 1. (4.5)

Equation 4.5 was introduced to explain the critical anisotropy for thin film superconductors.
Equation 4.5 seems to be more appropriate than Eq. 4.1 for the more two–dimensional family
of high Tc superconductors BiSr2CaCu2O8+x (Bi-1212) which have a larger anisotropy than
YBa2Cu3O7−δ. A distinct feature of the Tinkham model is that Hc2(θ) shows a cusp at
θ = π/2 (i.e., for ~H ⊥ c–axis). In practice, inhomogeneities in the high Tc samples make it
difficult to identify such features uniquely.

The temperature dependence of the resistivity for various values of the magnetic field

are shown in Fig. 4.6 and permit an evaluation of the temperature dependence of H
‖
c2 and

H⊥
c2. Two sets of Hc2 data corresponding to different definitions for Tc are shown in Fig. 4.7.

The circle points associated with the solid curves in Fig. 4.7 are those defined by the zero-
resistance points, and the triangles associated with the dashed curves are those defined by
the mid-points of the resistive transition.

Tinkham and coworkers have fit the resistivity vs. temperature curves in Fig. 4.6 to a
model based on an activation energy, associated with the energy to unpin a vortex bound
to a defect. For practical applications of type II superconductors, strong vortex pinning is
necessary. The technology of solving the flux pinning problem in high Tc superconductors
is a major challenge with regard to practical utilization of these materials. Likewise, the
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Figure 4.6: Temperature dependence of
the ab–plane resistivity at various mag-
netic field values of a YBa2Cu3O7−δ sin-
gle crystal in magnetic fields applied
parallel and perpendicular to the c–
axis (Iye et al., Physica C153–155, 26
(1988)).

54



Figure 4.7: Temperature dependence of H
‖
c2 and H⊥

c2, defined by the zero-resistance points
and the mid-points. These Hc2(T ) data show positive curvature characteristic of many lay-
ered superconductors, but otherwise not generally found. The estimated coherence lengths
are ξab ∼ 25Å and ξc ∼ 6.3Å from the zero-resistance curves, and ξab ∼ 17Å and
ξc ∼ 3.9Å from the mid-point curves (Iye et al., Physica C153–155, 26 (1988)).

technology to produce practical high Tc materials with high current carrying capacity (i.e.,
high jc) is another major challenge.

In the framework of the Ginzburg-Landau (GL) theory, the temperature dependence of
Hc2 is given by the temperature dependence of the coherence length ξ(T ) which has a mean
field form

ξ(T ) ∼ (1− T/Tc)
−1/2. (4.6)

A Taylor expansion of Hc2(T ) about Tc yields a linear temperature dependence of Hc2 near
Tc

H
‖
c2 = |dH

‖
c2/dT |Tc · (Tc − T ), (4.7)

H⊥
c2 = |dH⊥

c2/dT |Tc · (Tc − T ), (4.8)

where |dH‖
c2/dT |Tc and |dH⊥

c2/dT |Tc are the critical field slopes near Tc. Further assumptions
are needed to obtain Hc2(T ) over a wider temperature range.

A method widely employed in deriving the low temperature coherence lengths is to

estimate H
‖
c2(0) and H⊥

c2(0) using the Werthamer-Helfand-Hohenberg (BCS) formula for a
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type II superconductor

Hc2(0) = 0.69

∣

∣

∣

∣

dHc2

dT

∣

∣

∣

∣

Tc

· Tc (4.9)

for both H
‖
c2 and H⊥

c2, where the zero temperature values are deduced from the slope of
the critical field curves near Tc. This formula unfortunately does not work well for layered
conventional superconductors. But since ordinarily available laboratory magnetic fields
are not large enough to probe Hc2 at low temperatures, Eq. 4.9 is used to obtain rough
estimates for Hc2 near T = 0 (recently Hc2 has been measured directly using megagauss
fields available at the University of Tokyo). From Eq. 4.9, the measurements of Hc2 near Tc
can be used to estimate ξab(0) and ξc(0) using Eqs. 4.2 and 4.3. Experiments in YBa2Cu3O7

by Worthington et al. estimated H⊥
c2 ∼ 64 tesla and H

‖
c2 ∼ 400 tesla which correspond to

ξab ∼ 17Å and ξc ∼ 3.5Å.

The experimental determination of Hc2(0) and ξ(0) in high Tc superconductors is am-
biguous to some degree because of the broadening of the resistive transition in magnetic
fields (see Fig. 4.7) and the upward curvature of Hc2(T ) (i.e., ∂2Hc2(T )/∂T

2 > 0) near
Tc. The values of the coherence length extracted from the Hc2 measurements appear to
lie in the range, 15 < ξab < 35 Å and 2 < ξc < 7 Å, for YBa2Cu3O7−δ. For such small
values for the c-axis coherence lengths, we see that ξc is comparable to or less than the
corresponding unit cell distances. BiSr2CaCu2O8+x shows a larger Hc2 anisotropy and a
shorter c-axis coherence length compared with YBa2Cu3O7−δ indicating that the former is
more two-dimensional, a result consistent with the resistivity anisotropy data.

4.3 Anisotropic Normal State Transport Properties

A great deal of work has been done on all properties of high Tc materials in normal and
superconducting state: transport, thermal, optical, lattice, magnetic, elastic, microwave, to
mention a few. We briefly discuss transport to give some perspective on the difficulties of
these studies.

The anisotropic superconducting properties arise from anisotropic normal state prop-
erties. An overall view of the temperature dependence of the normal state resistivities of
(La1−xSrx)2CuO4 and YBa2Cu3O7−δ (see Fig. 4.8) show that the ρ values are rather high for
metallic systems but ρ(T ) still exhibits a remarkably large linear T metallic behavior over a
wide temperature range. Figure 4.8 presents a comparison of the temperature dependences
of the normal state resistivity of high Tc compounds with those of a weak electron–phonon
coupling metal (Cu) and a strong electron–phonon coupling metal (V3Si) showing satura-
tion in the resistivity ρ(T ) at high temperatures. The absence of resistivity saturation in
the high Tc superconductors at higher temperatures indicates that the carrier mean free
path is longer than the atomic distance throughout the whole temperature range. From
this result it is concluded that the electron–phonon coupling in high Tc superconductors is
weaker than that in the A15 superconductors which have high Tc values in comparison to
most conventional superconductors.

The first measurement of the normal state resistivity anisotropy in YBa2Cu3O7−δ (made
with electrical contacts at the four corners of a c–axis containing facet of a single crystal
sample) showed a metallic linear T dependence for the ab–plane resistivity, ρab, but the c–
axis resistivity, ρc, showed a semiconductor–like temperature dependence. The anisotropy
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Figure 4.8: Comparison of the temperature
dependence of the resistivity of the high Tc
superconductors with typical metals. The
linear T dependence of the resistivities of
(La1−xSrx)2CuO4 and YBa2Cu3O7−δ are
in marked contrast with the resistivity sat-
uration in the strong electron–phonon cou-
pling metal V3Si. Also note the high values
of ρ for the high Tc materials in the nor-
mal state. The increase in the resistivity
of YBa2Cu3O7−δ above ∼ 600 K is due to
oxygen desorption (M. Gurvitch and A.T.
Fiory, Phys. Rev. Lett. 59, 1337 (1987)).

ratio ρc/ρab was about 30 at room temperature and increased to ∼ 80 at Tc. More detailed
results (K. Murata, K. Hayashi, Y. Honda, M. Tokumoto, H. Ihara, M. Hirabayashi, N.
Terada and Y. Kimura, Jpn. J. Appl. Phys. 26, L1941 (1987)) as shown in Fig 4.9
stimulated a great deal of theoretical interest.

Anderson and Zou (P.W. Anderson and Z. Zou, Phys. Rev. Lett. 60, 132 (1988))
proposed that the ρc data shown in Fig. 4.9 could be fitted to a functional form

ρc(T ) = AT +
B

T
. (4.10)

and claimed that the behavior ρab ∼ T and ρc ∼ 1/T approximately fits the holon–spinon
transport scheme of the “resonating valence bond” (RVB) theory. The scenario for transport
in the RVB model is as follows.

The spin degrees of freedom in the two-dimensional CuO2 network are carried by
Fermion excitations called spinons. Chemical doping produces a hole which introduces
a spin 1/2 and a charge +1 into the system. These charge and spin degrees of freedom are
decoupled in the RVB model to yield a spinon and a positively charged Boson called a holon.
Transport current within each CuO2 plane is carried by holons. The dominant scatterers for
a holon are thermally excited spinons. The number of thermally excited spinons is propor-
tional to T , from which the linear T dependence of the in–plane resistivity arises. On the
other hand, transport along the c–axis involves interlayer tunneling of electrons. Because a
holon is an entity only meaningful within each CuO2 layer, the interlayer tunneling requires
real holes. The tunneling process therefore occurs by

• creation of a real hole by the temporary union of a holon and a spinon

• interlayer tunneling of the real hole

• dissociation of the hole to a holon and a spinon in the new layer.
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Figure 4.9: Temperature dependence of ρab and ρc of three single crystals (A, B, C) of
YBa2Cu3O7−δ . The ρc(T ) curves show an upturn near Tc. The right hand side of the figure
shows the ρcT versus T 2 plot which was interpreted to support the validity of Anderson’s
RVB relation ρc = AT +B/T (Hagen et al., Phys. Rev. B37, 7928 (1988)).

The probability of the interlayer tunneling is determined by the frequency at which a holon
encounters a spinon, and therefore is proportional to the number of available spinons. Thus,
for the transport along the c–axis, the conductivity rather than the resistivity is proportional
to T .

Figure 4.10 shows more recent experimental results by Iye et al. of ρab and ρc for
two different single crystal samples of YBa2Cu3O7−δ. These results clarify previous work.
Whether the intrinsic ρc(T ) is metallic or semiconducting is extremely important, because
the latter result strongly suggests the RVB transport mechanism. The current experimental
situation of the anisotropic resistivity of YBa2Cu3O7−δ may be summarized as follows:

• There is general consensus on the following two points:

1. ρab increases linearly with temperature from Tc up to ∼ 600 K. The behavior
above ∼ 600 K is related to oxygen desorption and therefore depends on the
ambient oxygen pressure and diffusion kinetics. The linear T dependence ex-
trapolation to T = 0 gives a very small intercept for good samples.

2. ρc of an oxygen-deficient sample is semiconductor–like. In the case of a highly
oxygen-deficient non–superconducting sample, both ρab and ρc are of course semi-
conducting.

• The controversial point is whether the ρc(T ) of an ideally oxygenated sample is metal-
lic or semiconductor–like.

1. Those who regard the semiconductor–like behavior of ρc as intrinsic attribute the
metallic behavior observed by others to electrical shorting by ρab components due
to imperfect crystallinity.

2. Those who think that the intrinsic ρc is metallic, regard the semiconductor–like
data as a sign of presence of a microcrack and/or a poorly oxygenated interior
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Figure 4.10: Temperature dependence of ρab and ρc for two single crystal samples of
YBa2Cu3O7−δ with different oxygen stoichiometries. Sample A is a fully oxygenated sam-
ple, while sample B is a somewhat oxygen-deficient sample. The fully oxygenated sample
shows a metallic ρab and ρc. The right hand side of the figure illustrates the electrode
configuration for the measurements of various transport coefficients (Iye et al., Physica

C153–155, 26 (1988)).
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region of a single crystal.

The disparity of the experimental data among different groups obviously stems from
the strong dependence of electronic properties on the oxygen stoichiometry and from the
difficulty of preparing defect–free large single crystals with controlled oxygen stoichiome-
try. Because the oxygen diffusion kinetics in single crystals is many orders of magnitude
slower than in the case of sintered polycrystals, it is necessary to exercise great care when
processing a single crystal by oxygen annealing to ensure uniform oxygen concentration.
An oxygen concentration gradient from surface to interior of a single crystal can severely
distort transport measurements.

An accurate determination of the anisotropy ratio ρc/ρab is very difficult experimen-
tally. The two–dimensionality of the transport phenomena would seem to require a larger
anisotropy than has yet been reported (e.g., ρc/ρab > 104 would strongly suggest 2D be-
havior). The anisotropies reported to date suggest that the high Tc superconductors are all
anisotropic 3D materials as far as their normal state properties are concerned.

Let us now briefly review the results on other cuprates. While large single crystals of
the undoped material La2CuO4 are available, high quality single crystals of the Sr doped
materials La2−xSrxCuO4 are difficult to grow. The anisotropic resistivity of superconducting
single crystals of La2−xSrxCuO4−y (x ∼ 0.08) were measured and the data show an upturn
of ρc at lower temperatures and the anisotropy of ρc/ρab ∼ 10. A few studies on the
resistivity anisotropy of Bi2Sr2CaCu2O8+x single crystals were recently published and were
reported to both show metallic behavior with an extremely large anisotropy ratio (∼ 105).
However other experimentalists disagree, so the case of Bi2Sr2CaCu2O8+x is similar to that
of YBa2Cu3O7−δ where significant experimental questions remain to be resolved.

A number of optical experiments have been made on high Tc superconductors. A scaling
between Tc and the plasma frequency is shown in Fig. 4.11. These results show a clear
correlation between Tc and ω2

p, which in turn depends on the hole concentration.

4.4 The Hall Effect in High Tc Materials

Hall effect measurements have been helpful in distinguishing between the carrier density
and mobility contributions to the electrical conductivity and in determining the sign of the
dominant carrier type. Because of the high anisotropy of the transport properties, single
crystal samples are needed to obtain definitive information (see Fig. 4.12).

Early measurements of the Hall constant RH with Sr doped La2−xSrxCuO4 showed
a positive sign of RH and the functional dependence 1/RH ∼ x which contradicted the
prediction of the band model and suggested that electron correlation is essential in under-
standing the electronic structure of the present system. Similar conclusions were reached by
studies of the variation of the Hall constant with oxygen-deficiency δ in the YBa2Cu3O7−δ

system.

The ab–plane Hall coefficient of YBa2Cu3O7−δ has the following features:

1. The sign of the Hall coefficient RH is positive, i.e., hole–like.

2. RH is very sensitive to the oxygen stoichiometry and increases rapidly with increasing
oxygen-deficiency δ.
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Figure 4.11: The plasmon dependence of
Tc. The points labeled BiSC refer to
Bi2Sr2CaCu2O8+x, those labeled YBC re-
fer to YBa2Cu3O7−δ, while those labeled
LSC refer to La2−xSrxCuO4.
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Figure 4.12: Temperature dependence of the anisotropic Hall coefficient RH of the same
two single crystals of YBa2Cu3O7−δ as in Fig. 4.10. The Hall coefficient for ~H ‖ ab–plane
and ~H ‖ c–axis show a striking difference in sign and temperature dependence. The insert
shows the characteristic linear T behavior of 1/RH of YBa2Cu3O7−δ for two crystals with
widely different carrier concentrations (Iye et al., Physica C153–155, 26 (1988)).
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3. RH exhibits a striking temperature dependence. For well oxygenated samples (90 K
superconductors) the temperature dependence is such that the apparent carrier den-
sity 1/eRH varies linearly with T extrapolating to nearly zero at T = 0.

The Hall coefficient of polycrystalline samples essentially reflects that of single crystals for
the experimental configuration ~j ‖ ab–plane and ~H ‖ c–axis.

The insert figures in Fig. 4.12 demonstrate the linear T dependence of 1/eRH . Normally,
RH for metals has a linear T dependence. The unusual temperature dependence of Fig. 4.12
is commonly observed in YBa2Cu3O7−δ samples, including samples with very different
magnitudes of the Hall constant (due to different oxygen contents). A linear temperature
dependence for 1/eRH would imply a diminishing carrier concentration at low temperatures,
a strange occurrence for a metallic system. Moreover, essential constancy of the carrier
concentration has been established by the penetration depth measurements by the muon
spin rotation technique. Therefore, different interpretations have been proposed for the
linear T dependence of 1/eRH .

Using a two–band model, the resistivity and the Hall mobility are expressed in terms of
the densities ne and nh and mobilities µe and µh of electrons and holes:

ρ =
1

(nh|e|µh + ne|e|µe)
(4.11)

RH =
(nhµ

2
h − neµ

2
e)

|e|c(nhµh + neµe)2
(4.12)

In this model the temperature dependence of RH reflects a temperature dependent com-
pensation between electrons and holes. It is not generally possible to uniquely determine
the values of the parameters ne, nh, µe and µh from experimental data of RH(T ) and ρ(T ).
It has been recognized that in order to reproduce the RH ∼ 1/T and ρ ∼ T behavior in
terms of the two–band model one has to assume a very unusual special relation among the
parameters. The lack of a pressure dependence of RH poses a further constraint on the
simple two–band model. At present, the Hall effect data for YBa2Cu3O7−δ remain to be
fully elucidated.

Temperature dependent Hall measurements have also been observed in La2−xSrxCuO4

and Bi2Sr2CaCu2O8+x, though the temperature dependence of RH is much weaker than
for YBa2Cu3O7−δ and what is more important, the unusual behavior of 1/RH ∼ T is not
observed. Since the 1/RH ∼ T behavior may be specific to YBa2Cu3O7−δ, it is concluded
that this effect probably does not have a direct relation to the mechanism of high tempera-
ture superconductivity. It may be that the 1/RH ∼ T behavior is common to many high Tc
compounds and is a sign of the unconventional normal state from which high temperature
superconductivity emerges. Whether this unusual T dependence of the Hall constant can
be explained within the framework of relatively conventional models or requires an exotic
conduction mechanism (e.g., RVB) remains to be clarified.

Our current knowledge of the anisotropy of the Hall effect in YBa2Cu3O7−δ may be
summarized as follows:

1. The Hall effect for ~H ‖ c–axis is positive and 1/eRH varies linearly with temperature.

2. RH for ~H ‖ ab–plane is much smaller than that for ~H ‖ c–axis, which is the reason
why the Hall data on ceramic samples essentially reflect the latter.
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Figure 4.13: Temperature dependence of the anisotropic thermoelectric power of single crys-
tal samples of YBa2Cu3O7−δ. Note the qualitative difference in the temperature dependence
for the two directions of heat flow.

3. RH for ~H ‖ ab–plane is negative and seems to have a temperature dependence quite
different from that for ~H ‖ c–axis.

Such a complicated dependence of the Hall effect on the magnetic field orientation implies
a complicated Fermi surface topology, or may provide evidence for an exotic transport
mechanism along with the unusual temperature dependence.

The anisotropy of the thermoelectric power of YBa2Cu3O7−δ has been measured by a
few groups (Ong et al., Physica C153–155, 1072 (1988)), but the results are not in good
agreement from one group to another. Some authors show a positive thermopower for both
Sab and Sc (see Fig. 4.13) while other authors show Sab < 0 and Sc > 0. There is however
agreement that the functional form of the temperature dependence Sab(T ) is very different
from Sc(T ).

Thermal conductivity experiments have also been carried out on both single crystal and
polycrystalline of oxygen-deficient La2CuO4−y samples (see Fig. 4.14), showing interesting
magnon contributions to the thermal conductivity and a high degree of anisotropy.
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Figure 4.14: Thermal conductivity of
single crystal La2CuO4−y for the heat
flow Q ‖[001] (top , closed circles),
Q ‖[221] (middle, open circles) and
Q ‖[110](bottom, triangles). The dashed
line represents results on a polycrystalline
sintered sample. The inset shows a
schematic diagram of La2CuO4−y in terms
of the tetragonal coordinate system used
(D.T. Morelli, J. Heremans, G.L. Doll, P.J.
Picone, H.P. Jenssen and M.S. Dressel-
haus, Phys. Rev. B39, 804 (1989)).
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