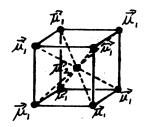
MASSACHUSETTS INSTITUTE OF TECHNOLOGY


Physics of Solids II -6.732

PROBLEM SET #8

Issued: November 21, 2001

Due: November 28, 2001

- 1. (a) Find the <u>diamagnetic</u> contribution to the susceptibility of a mole of hydrogen atoms in the ground state at 300K and 1 atmosphere pressure (assuming that such a system could be prepared).
 - (b) What is the contribution to the diamagnetic susceptibility of a hydrogen atom in a 2s state relative to that in a hydrogen atom in a 1s state?
 - (c) Now find the <u>paramagnetic</u> contribution to the susceptibility of a mole of hydrogen atoms in the ground state at 300K and 1 Atmosphere pressure. This is called "Van Vleck paramagentism".
 - (d) Give a physical reason why one cannot readily prepare a mole of hydrogen atoms in the ground state at 300K and 1 atmosphere pressure.
 - (e) Would you expect molecular hydrogen at room temperature to be diamagnetic or paramagnetic? Why?
 - (f) What is the paramagnetic contribution to the susceptibility for a mole of gaseous helium (⁴He)? If the helium gas is a mixture of 50 atomic % ³He and ⁴He isotopes, what is the paramagnetic contribution to the susceptibility for this helium gas mixture?
- 2. Consider a magnetic moment $\vec{\mu}_2$ at the center of a cube of other magnetic moments $\vec{\mu}_1$ at the cube corners as shown in the diagram below.

Using the dipole–dipole interaction for each pair of magnetic dipoles

$$E = -\vec{\mu}_2 \cdot \frac{3(\vec{\mu}_1 \cdot \vec{r})\vec{r} - r^2\vec{\mu}_1}{r^5},$$

compare the dipole–dipole energy due to the interaction of the central moment with its 8 nearest neighbors for $\vec{\mu}_2 \parallel \hat{x}$ and for

- (a) $\vec{\mu}_1 \parallel \hat{x}$
- (b) $\vec{\mu}_1 \parallel \hat{y}$
- (c) $\vec{\mu}_1 \parallel \hat{z}$
- (d) all $\vec{\mu}_1$ vectors are radially inward.
- (e) Which of these configurations has the lowest energy?

- 3. Consider that a rare earth neodymium ion (which is the key component in a Nd:YAG laser) enters a solid substitutionally as an Nd³⁺ ion with electronic configuration $4f^3$.
 - (a) Using Hund's rule, find s, ℓ, j .
 - (b) Suppose that the Nd³⁺ ion is put into a magnetic field. What is the expected low field Zeeman pattern and energy separation between adjacent magnetic levels associated with the ground state and with the first excited state?
 - (c) How does the low magnetic field pattern change for the case of the Nd^{2+} ion in the ground state?
 - (d) Find the paramagnetic susceptibility of a mole of NdCl₃.
- 4. (a) For angular momentum j = 3/2, there are four possible values for m_j . To what values of θ in the classical limit do these values of m_j correspond?
 - (b) The angular momentum states for right and left circular polarization correspond to $m_j = \pm 1$ and to the spherical harmonics $Y_{1,1}(\theta, \phi)$ and $Y_{1,-1}(\theta, \phi)$. What are the spherical harmonics corresponding to linear polarization along x and y?
 - (c) Compare the total j, s and ℓ values for the ground state of the multiplet for a $2s^22p$ electronic configuration, a $2s2p^2$ configuration and a 2s2p3d configuration.