MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Applications of Group Theory to the Physics of Solids—6.734 J & 8.510 J PROBLEM SET #~2

Issued: February 15, 2002 Due: February 22, 2002

- 1. (a) Explain the symmetry operations pertaining to each class of the point group D_{3h} . You may find the stereograms in Fig. 3.2 useful.
 - (b) Prove that the following irreducible representations are orthonormal:
 - E_1 and E_2 in the group D_5 (see Table 3.27).
 - F_{2g} and G_u in the group I_h (see Table 3.39).
 - (c) Given the group T (see Table 3.32), verify that the equality

$$\sum_{i} \ell_j^2 = h$$

is satisfied. What is the meaning of the two sets of characters given for the two-dimensional irreducible representation E? Are they orthogonal to each other or are they part of the same irreducible representation?

- (d) Which symmetry operation results from multiplying the operations σ_v and σ_d in group C_{4v} ? Can you obtain this information from the character table? If so, how?
- 2. Make stereographic sketches for groups C_5 , C_{5v} , D_{5h} , and D_{5d} , such as are given in Fig. 3.2.

- 3. (a) What are the symmetry operations of a regular hexagon?
 - (b) Find the classes. Why are not all the 2-fold axes in the same class?
 - (c) Find the self-conjugate subgroups, if any.
 - (d) Identify the appropriate character table.
 - (e) For some representative cases (two cases are sufficient), check the validity of the "Wonderful Orthogonality and Second Orthogonality Theorems" on character, using the character table in (d).
- 4. Consider the hypothetical molecule CH_4 where the four H atoms are at the corners of a square $(\pm a,0,0)$ and $(0,\pm a,0)$ while the C atom is at (0,0,z), where $z\ll a$. What are the symmetry elements? (See problem #2 in Problem Set #1.)

- (a) Identify the appropriate character table.
- (b) Using the basis functions in the character table, write down a set of (2×2) matrices which provide a representation for the two-dimensional irreducible representation of this group.
- (c) Find the 4 linear combinations of the four H orbitals (assume identical s-functions at each H site) that transform as the irreducible representations of the group. What are their symmetry types?
- (d) What are the basis functions that generate the irreducible representations in (c)?
- (e) Check that xz forms a proper basis function for the two dimensional representation of this point group and find its partner.
- (f) What are the irreducible representations and partners of the following basis functions in the point group (the hydrogens lie in the xy plane): (i) xyz, (ii) x^2y , (iii) x^2z , (iv) x+iy?
- (g) What additional symmetry operations result in the limit that all H atoms are coplanar with atom C? What is now the appropriate group and character table? (The stereograms in Table 3.2 of the class notes may be useful.)