- Course Logistics
 - o Instructors:
 - Prof. Sanjoy K. Mitter (mitter@mit.edu): Off Hrs (TBA)
 - Prof. Devavrat Shah (devavrat@mit.edu): Off Hrs (TBA)
 - Ourse TA:
 - Mukul Agarwal (magar@mit.edu): Off Hrs (TBA)
 - o Course Admin.
 - Rachel Cohen (rcohen@mit.edu)
 - Staff email-list (goes to all four of us)
 - sp06-6.976-staff@mit.edu

- Lectures
 - Monday & Wednesday, 1-2:30 pm in Room 66-154
- Recitation
 - Friday, 2-3:30 pm in Room 66-154
- Most important information: course web-site
 - o http://web.mit.edu/6.976/www/
 - o All course related information and material will be available here
 - → No handouts will be given in the class (to save papers), but will be available at the home-page the night-before!
- Course mailing list: 6.976-students@mit.edu
 - All important announcements will be sent on this list
 - o To add yourself: send email to rcohen@mit.edu
 - With email-subject Add to 6.976 List

Grading Policy

- \circ 4 homeworks (10% each) = 40%
- \circ extended midterm (1st week of May) = 55%
- \circ scribe notes (once during semester) = 5%
 - You will need to use prescribed LATeX format for scribing
 - Necessary LATeX files and detailed help is available at the course homepage
 - → Feel free to contact us, if required

Course Text

- None, class notes and recitations will be sufficient
- Reference books are reserved in Barker Library
- Details are available at the course homepage.

- Course Objective
 - Teach quantitative principles of system design
 Specifically, we will focus on
 - modeling
 - architecture design & control
 - performance analysis
 - Course will emphasize concepts
 - use of mathematics, but details will be omitted
 - Throughout the course, concepts taught will be supported via examples drawn from Internet.
 - This course will be followed up by an advance course on Principles of system design.

- Focus will be on three essential components of system design
 - (1) Modeling
 - faithful mathematical description of a system behavior
 - allows one to employ mathematical tools for design & performance analysis
 - (2) Architecture, Design & Control
 - governed by desired system utility
 - methods of design and control lead to good architecture
 - (3) Performance Analysis
 - quantifies the utility of system
 - \rightarrow Learn above in the context of Internet.

- The following is outline of topics that will be covered in the course
 - L Architecture
 - Design philosophy
 - Interplay: Theory & architecture
 - Internet architecture
 - II. Internet: Routing
 - Modeling, algorithms & analysis
 - Broad implications
 - III. Internet: Congestion control
 - Modeling, algorithms & analysis
 - Broad implications

- IV. Internet: Security
 - Issues and solutions (?)
 - Broad implications
- V. Miscellaneous
 - Web-server scheduling
 - Modeling, algorithms & analysis
 - Broad implications
 - Simulation methods, etc.