HST 721 Lecture 4:
Mechanics, electromotility and the cochlear amplifier
Cochlear Mechanics: Measures of Basilar Membrane Motion
Bekesy’s experiments on cadaveric ears 1924-1946
Bekesy’s experiments on cadaveric ears 1924-1946

Is there a “second filter”?:
Wilson and Johnstone, 1975
Cochlear Mechanics: Measures of Basilar Membrane Motion

Passive cochlear Models

Vary mass and spring stiffness systematically from base to apex

Model will generate traveling waves, with resonant peaks like those observed by Bekesy in the dead ear.
Cochlear Mechanics: Measures of Basilar Membrane Motion

BM has a vulnerable, compressive nonlinearity - 1971
Cochlear Mechanics: Measures of Basilar Membrane Motion

BM tuning is as sharp as AN tuning - 1982
Cochlear Mechanics: Measures of Basilar Membrane Motion

Effects of Furosemide:

![Graph showing BM vibration before and after Furosemide treatment.]

Ruggero and Rich, 1991

Effects of Death:

![Graph showing BM vibration before and after death.]

Most manipulations that raise AN thresholds (including death) are reflected in decreased and linearized BM vibration.
Major nonlinearities in AN response are seen in BM vibration: e.g. Distortion Products
Cochlear Mechanics: What is the cochlear amplifier?
Cochlear Mechanics: What is the cochlear amplifier?

Loss of OHCs elevates threshold at CF - 1970
Cochlear Mechanics: What is the cochlear amplifier?

Stimulation of efferents to OHCs raises threshold at CF - 1970
Cochlear Mechanics: What is the cochlear amplifier?

Cochlear echoes: forward and reverse transduction - 1978
Cochlear Mechanics: What is the cochlear amplifier?

Outer Hair Cells show electromotility in vitro - 1985
Electromotility Key Observations:

1. Seen in OHCs only

2. Survives total replacement of cell cytoplasm: Holley and Ashmore 1988

3. Motors present all along OHC supranuclear wall: Hallworth et al. 1993

Cochlear Mechanics: What is the cochlear amplifier?
Cochlear Mechanics: What is the cochlear amplifier?

More Key Observations:

4. Charge flow during OHC movement suggests gating current (1990)

5. Charge flow (dq) from voltage step (dV) depends on starting voltage: i.e. nonlinear capacitance
Cochlear Mechanics: What is the cochlear amplifier?

More Key Observations:

Cochlear Mechanics: What is the cochlear amplifier?

Identifying the motor protein: Anatomical Observations
Cochlear Mechanics: What is the cochlear amplifier?

The molecular biology approach: Zheng et al. 2000

• isolate IHCs and OHCs

• purify RNA from each and make cDNA

• enrich for OHC-specific products by subtractive hybridization

• sequence and choose candidates

• express genes in cell system and assess electromotility
Cochlear Mechanics: What is the cochlear amplifier?

The structure of Prestin

The model
Cochlear Mechanics: What is the cochlear amplifier?

Targeted Deletion: making a “knockout” mouse

Recombination Construct from Cloned Gene

1 cM = 1 Mb
Cochlear Mechanics: What is the cochlear amplifier?

Targeted Deletion: making a “knockout” mouse

Knockout Mouse F1 is a hybrid strain:
C57Bl/6 + 129/SvJ
Cochlear Mechanics: What is the cochlear amplifier?

The prestin knockout

Assess function in vitro and in vivo
Cochlear Mechanics: What is the cochlear amplifier?

The prestin knockout:

In vitro, OHCs from “knockout” mouse have no electromotility

In vivo, “knockout” mouse shows 40 - 60 dB threshold elevation by ABR
Cochlear Mechanics: What is the cochlear amplifier?

Is stereocilia motility important?

Other candidates for cochlear amplifiers include the motor which drives the spontaneous oscillations in hair bundles from non-mammalian vertebrates.

Martin, Mehta and Hudspeth, 2000.
Cochlear Mechanics: What is the cochlear amplifier?

The prestin-mediated electromotility must form part of a feedback loop enhancing BM vibrations. Neely, 1993

Most details of cochlear micromechanics are still unclear.
Cochlear Micro-mechanics: from BM motion to HC excitation
Cochlear Micro-mechanics: from BM motion to HC excitation
Cochlear Micro-mechanics: from BM motion to HC excitation

Resonant TM
Cochlear Micro-mechanics: from BM motion to HC excitation

Cochlear Amplification
Tallest row of OHC stereocilia appear firmly embedded in TM in all mammals and all cochlear regions.

IHC stereocilia appear more loosely attached, especially in apical turns.
At some frequencies and in some cochlear regions, the phase of response of IHCs is 90 degrees ahead of OHCs - consistent with displacement vs. velocity as the key to excitation.

These differences in TM attachment inspired the view that displacement might be key to excitation in OHCs, whereas velocity might be key in IHCs.
Cochlear Micro-mechanics: from BM motion to HC excitation

Data from AN fibers suggests a very complicated relation between phases of BM displacement/velocity and AN excitation