The Evolution of Behavior

Andrew W. Lo Course 9.S915: What Is Intelligence? October 7, 2011

> © 2011 by Andrew W. Lo All Rights Reserved

Motivation

Origins

Theory of Economic Behavior

ENLARGED EDITION

$\begin{array}{lll} & \textbf{Utility Theory} \\ & \textbf{Max} & U(C) & \textbf{s.t.} & C \in \mathcal{B} \\ & & U'(\cdot) > 0 & , & U''(\cdot) < 0 \end{array}$

Motivation

Cognitive and Behavioral Biases

- Loss Aversion
- Probability Matching
- Anchoring
- Framing
- Overconfidence
- Overreaction
- Herding
- Mental Accounting
- etc.

Urn A Contains 100 Balls:

- 50 Red, 50 Black
- Pick A Color, Then Draw A Ball
- If You Draw Your Color, \$10,000 Prize
- What Color Would You Prefer?
- How Much Would You Pay To Play?

Motivation

Urn B Contains 100 Balls:

- Proportion Unknown
- Pick A Color, Then Draw A Ball
- If You Draw Your Color, \$10,000 Prize
- What Color Would You Prefer?
- How Much Would You Pay To Play?

Knight's (1921) Dichotomy of Risk vs. Uncertainty

Infinite-order Theory of Mind

rigin

- A: \$240,000
- B: \$1,000,000 With 25% Probability
 \$0 With 75% Probability

Which Would You <a>Prefer?

- C: -\$ 750,000
- D: -\$1,000,000 With 75% Probability
 \$0 With 25% Probability

Which Would You Prefer?

- A+D: \$240,000 With 25% Probability
 \$760,000 With 75% Probability
- B+C: \$250,000 With 25% Probability
 \$750,000 With 75% Probability

Now Which Would You Prefer?

Consider Repeated Coin-Toss Guessing Game:

- If you're correct, you get \$1, otherwise -\$1
- Suppose coin is biased (75% H, 25% T)
- Actual behavior: HHHTHHHHTTHHHTHHHTH
- Common to ants, fish, pigeons, primates, etc.
- Why? Is it irrational or adaptive?

Literature Review

- Behavorial economics and finance
 - Thaler, Shefrin, Statman, Shiller
- Psychology and cognitive sciences
 - Simon, Tversky, Kahneman
- Evolutionary psychology and sociobiology
 - Wilson, Hamilton, Trivers, Cosmides, Tooby, Gigerenzer
- Evolutionary game theory and economics
 - Malthus, Schumpeter, von Hayek, Maynard Smith, Nowak, Robson, L. Samuelson
- Behavioral ecology and evolutionary biology
 - Darwin, Levin, Clarke

Our Contribution: Evolutionary Origin of Behavior

- How did certain behaviors come to be?
- If they are irrational, why do they persist?
- Are all behaviors created equal?
- Simple framework for answering these questions
 - We derive risk aversion, loss aversion, probability matching, and randomization from evolution!
 - Some behaviors are "rational" from the population perspective, not from the individual's perspective

Our Contribution: Evolutionary Origin of Behavior

- Behavioral "biases" exist for a reason (hard-wired)
- They may not be advantageous in all environments
- Understanding their mechanisms is critical for reconciling efficient markets with behavioral finance (Adaptive Markets Hypothesis)
- Also critical for implementing regulatory reform
- Has implications for intelligence and learning

- Individual lives one period, makes one decision, a or b
- Generates offspring $x = x_a$ or x_b , then dies
- Offspring behaves exactly like parent

- If f = 1, individual always chooses a (offspring too)
- If f = 0, individual always chooses b (offspring too)
- If 0 < f < 1, individual randomizes with prob. f and offspring also randomizes with same f
- Impact of behavior on reproductive success: $\Phi(x_a, x_b)$
 - Summarizes environment and behavioral impact on fitness
 - Links behavior directly to reproductive success
 - Contains all genetic considerations
 - Biological "reduced form"

This is repeated over many generations

Initial population is uniformly distributed on [0,1]

- Assume $\Phi(x_a, x_b)$ is **<u>identical</u>** across individuals
- Assume $\Phi(x_a, x_b)$ is <u>IID</u> across time
- Individuals are "mindless", <u>not</u> strategic optimizers
- Which f survives over many generations?
- In other words, what kind of behavior evolves?
- Evolution is the "process of elimination" (E. Mayr)
- Mathematics: find the *f* that maximizes growth rate
- This *f** will be the behavior that survives and flourishes

Population Arithmetic

Population Arithmetic

- Which type of individuals will grow fastest?
- The f^* that maximizes $\mu(f)$ on [0,1]:

 $f^* \equiv \arg\max_{f} \mu(f) = \arg\max_{f} E[\log(fx_a + (1-f)x_b)]$ $\mu''(f) = -E\left[\frac{(x_a - x_b)^2}{\log^2(fx_a + (1-f)x_b)}\right] < 0$

- $\mu(f)$ is strictly concave on [0,1]; unique maximum
- Three possibilities: $\mu(f)$ **0** f^* **1**

• **Growth-optimal** *f** given by:

$$f^* = \begin{cases} 1 & \text{if } \mathbb{E}[x_a/x_b] > 1 \text{ and } \mathbb{E}[x_b/x_a] < 1 \\ \text{solution to (1)} & \text{if } \mathbb{E}[x_a/x_b] \ge 1 \text{ and } \mathbb{E}[x_b/x_a] \ge 1 \\ 0 & \text{if } \mathbb{E}[x_a/x_b] < 1 \text{ and } \mathbb{E}[x_b/x_a] > 1 \end{cases}$$

$$0 = \mathsf{E}\left[\frac{x_a - x_b}{f^* x_a + (1 - f^*) x_b}\right]$$
(1)

$$\mathsf{E}\left[\frac{x_a}{f^*x_a + (1 - f^*)x_b}\right] = \mathsf{E}\left[\frac{x_b}{f^*x_a + (1 - f^*)x_b}\right]$$

How Does *f*^{*} Persist? By Natural Selection:

$$\left(\frac{n_T^{f'}}{n_T^{f*}}\right)^{1/T} \stackrel{p}{=} \exp\left(\left[\mu(f') - \mu(f^*)\right]\right) \stackrel{p}{\to} 0$$

$$\Rightarrow \quad \frac{n_T^{f'}}{n_T^{f*}} \stackrel{p}{\to} 0$$

- *f** type takes over exponentially fast
- Behavior *f** is optimal for the **population**
- Behavior f* is not necessarily optimal for the individual
- This requires no intention, deliberation, or intelligence
- Contrast this behavior with utility maximization!

Consider Special Case For $\Phi(x_a, x_b)$:

State 1State 2Action(prob.
$$p$$
)(prob. $1-p$) a $x_a = m$ $x_a = 0$ b $x_b = 0$ $x_b = m$

Outcomes x_a and x_b are perfectly out of phase

$$\mu(f) = \log m + p \log f + (1-p) \log(1-f)$$

$$f^* = p$$

- Probability matching!
- This behavior will dominate the population (eventually)

What About the "Optimal" Strategy for the Individual?

- Suppose $p > \frac{1}{2}$; then $\hat{f} = 1$
- The first time x_a = 0, all individuals of this type vanish
- This behavior cannot persist; f* persists
- f* may be interpreted as a primitive version of altruism

When Is Probability Matching Advantageous?

- When two choices are highly negatively correlated
- Diversification improves likelihood of survival
- "Nature Abhors An Undiversified Bet"

Probability Matching Explained

Consider A Simple Ecology with Rain/Shine:

- Decision: build nest in a or b?
- Optimize or randomize?

(p = 0.75) (1 - p = 0.25) $x_a = 0$ $x_a = 3$ $x_b = 3$ $x_b = 0$

Probability Matching Explained

	Generation	<u><i>f</i></u> = 0.20	<u><i>f</i></u> = 0.50	<u><i>f</i></u> *= 0.75	<u><i>f</i></u> = 0.90	<u>f=1</u>
	1	21	6	12	24	30
$n = 0^{-1}$	75 2	12	6	6	57	90
0 = 0	3	6	12	12	144	270
m = 3	4	18	9	24	387	810
	5	45	18	48	1,020	2,430
	6	96	21	108	2,766	7,290
	7	60	42	240	834	21,870
	8	45	54	528	2,292	65,610
	9	18	87	1,233	690	196,830
	10	9	138	2,712	204	590,490
	11	12	204	6,123	555	1,771,470
	12	36	294	13,824	159	5,314,410
	13	87	462	31,149	435	15,943,230
	14	42	768	69,954	1,155	0
	15	27	1,161	157,122	3,114	0
	16	15	1,668	353,712	8,448	0
	17	3	2,451	795,171	22,860	0
	18	3	3,648	1,787,613	61,734	0
	19	9	5,469	4,020,045	166,878	0
	20	21	8,022	9,047,583	450,672	0
	21	6	12,213	6,786,657	1,215,723	0
	22	0	18,306	15,272,328	366,051	0
	23	0	27,429	34,366,023	987,813	0
	24	0	41,019	77,323,623	2,667,984	0
	25	0	61,131	173,996,290	7,203,495	0

Now Consider a More General $\Phi(x_a, x_b)$

$$\begin{aligned} \mathsf{Prob}(x_a = c_{a1}, x_b = c_{b1}) &= p \in [0, 1] \\ \mathsf{Prob}(x_a = c_{a2}, x_b = c_{b2}) &= 1 - p \equiv q \\ 0 &\leq c_{ij} \ , \ i = a, b \ , \ j = 1, 2 \\ 0 &\neq c_{aj} + c_{bj} \end{aligned}$$

Then the growth-optimal behavior f* depends only on

$$r_j \equiv c_{aj}/c_{bj}$$
 , $j = 1, 2$

Growth-optimal behavior f* given by:

$$f^* = \begin{cases} 1 & \text{if } r_2 \in [q + \frac{pq}{r_1 - p}, \infty) \text{ and } r_1 > p \\\\ \frac{p}{1 - r_2} + \frac{q}{1 - r_1} & \text{if } \begin{cases} r_2 \in \left(\frac{1}{q} - \frac{p}{q}r_1, q + \frac{pq}{r_1 - p}\right) \text{ and } r_1 > p \text{ , or } \\\\ r_2 \in \left(\frac{1}{q} - \frac{p}{q}r_1, \infty\right) \text{ and } r_1 \le p \end{cases} \text{ or } \\\\ 0 & \text{if } r_2 \in [0, \frac{1}{q} - \frac{p}{q}r_1] \end{cases}$$

$$\begin{aligned} f^* &= p \left(1 + \mathcal{O} \left(1/r_1 \right) \; + \; \mathcal{O} \left(r_2 \right) \right) \\ &\approx p \quad \text{if} \quad r_1 \gg 0 \quad , \quad r_2 \ll 1 \end{aligned}$$

Probability Matching Explained

To Study Risk Preferences, Let b Be "Riskless"

$$Prob(x_a = c_{a1}, x_b = c_b) = p \in [0, 1]$$

$$Prob(x_a = c_{a2}, x_b = c_b) = 1 - p \equiv q$$

and $c_{a1} < c_b < c_{a2}$

Parametrize b as a convex combination of a outcomes

$$c_b = \theta c_{a1} + (1 - \theta) c_{a2}$$
, $\theta \in (0, 1)$

 $\theta \approx 0 \Rightarrow$ sure thing close to best risky outcome

heta \approx 1 \Rightarrow sure thing close to worst risky outcome

Risk Preferences

Origins

Growth-optimal behavior f*:

$$f^* = \begin{cases} 1 & \text{if } c_b \in [c_{a1}, c_o) \\ \left(1 - \frac{p}{\theta}\right) \left(1 + \frac{1}{(1 - \theta)(s - 1)}\right) & \text{if } c_b \in (c_o, c_p) \\ 0 & \text{if } c_b \in (c_p, c_{a2}] \end{cases}$$

Risk Preferences

Origins

Growth-optimal behavior f*:

• For s \approx 1, choice is deterministic, but not when s >> 1

Define risky outcomes relative to riskless outcome

$$c_{a1} \equiv c_b - d$$

$$c_{a2} \equiv c_b + u , \quad u, d > 0$$

Suppose p = ½ and f* = ½ (indifferent between a and b)

$$u = d + \frac{d^2}{c_b - d}$$
$$\pi \equiv u - d = \frac{d^2}{c_b - d}$$

Risk Aversion

- π can be viewed as an evolutionary risk premium
- Due to Jensen's Inequality:

$\exp(\mathsf{E}[\log(x)]) \leq \mathsf{E}[x]$

- Risk aversion is "hard-wired" into survivors
- Equilibrium is not necessary to determine π

Two Key Observations:

- 1. Must translate fecundity into financial wealth
- 2. Total wealth is what matters, not increments
- Define a reproduction function c(w) that maps financial wealth w into number of offspring c(w):

(A3) c(w) is a continuous non-decreasing function of wealth w.

(A4) c(w) = 0 for all levels of wealth w below a subsistence level w_o .

(A5) c(w) is bounded above by some finite number $\overline{c} > 0$.

Loss Aversion

Origins

Proposition 5 If c(w) satisfies (A1)-(A5) and is twice continuously differentiable, then c(w) is concave for sufficiently large values of w and convex for sufficiently small values of w. If c(w) is not continuously differentiable, then a slightly weaker result holds.

But What About the "Reference Point"?

- Has to do with <u>incremental</u> vs. absolute reward
 - Experimenter offers incremental payoff
 - Preferences shaped by absolute payoff (x)
- Explains why experiments yield inconsistent findings
- For simplicity, suppose c(w) = w

Natural Selection Yields The Following Behaviors:

- Probability matching ("Herrnstein's Law")
- Randomization
- Risk aversion and risk-sensitive foraging behavior
- Loss aversion, anchoring, framing

What If (x_a, x_b) Are Not Identical Across Individuals?

Suppose fecundity is IID across individuals and time

$$x_i^f = I_i^f x_{a,i} + (1 - I_i^f) x_{b,i} , \quad I_i^f \equiv \begin{cases} 1 & \text{with probability } f \\ 0 & \text{with probability } 1 - f \end{cases}$$

Systematic vs. Idiosyncratic Risk

•

$$n_{t}^{f} = \sum_{i=1}^{n_{t-1}^{f}} x_{i,t}^{f} \neq \left(\sum_{i=1}^{n_{t-1}^{f}} I_{i,t}^{f}(x_{a,t}) + \left(\sum_{i=1}^{n_{t-1}^{f}} (1 - I_{i,t}^{f})(x_{b,t}) + n_{t}^{f}\right) \right)$$

$$n_{t}^{f} = \sum_{i=1}^{n_{t-1}^{f}} x_{i,t}^{f} = \left(\sum_{i=1}^{n_{t-1}^{f}} I_{i,t}^{f} x_{a,i,t}\right) + \left(\sum_{i=1}^{n_{t-1}^{f}} (1 - I_{i,t}^{f}) x_{b,i,t}\right)$$

$$n_{t}^{f} \stackrel{p}{=} n_{t-1}^{f} (f\mu_{a} + (1 - f)\mu_{b})$$

$$n_{T}^{f} \stackrel{p}{=} \prod_{t=1}^{T} (f\mu_{a} + (1 - f)\mu_{b}) = \exp\left(\sum_{t=1}^{T} \log(f\mu_{a} + (1 - f)\mu_{b})\right)$$

$$\frac{1}{T} \log n_{T}^{f} \stackrel{p}{=} \frac{1}{T} \sum_{t=1}^{T} \log(f\mu_{a} + (1 - f)\mu_{b})$$
Non-stochastic!
$$\stackrel{p}{\to} \mu(f) \equiv \mathbb{Z}[\log(f\mu_{a} + (1 - f)\mu_{b})]$$

Growth-Optimal Behavior With Idiosyncratic Risk:

$$f^* = \begin{cases} 1 & \text{if } \mu_a > \mu_b \\ 0 & \text{if } \mu_a \le \mu_b \end{cases}$$

- In this case, no difference between individually optimal and growth-optimal behavior
- No "behavioral biases"; no risk aversion; everyone behaves "rationally" (*Homo economicus*)
- Behavior can be identical because environment is not
- If environment is identical, behavior cannot be
- "Nature abhors an undiversified bet"!

Simon's Notion of "Satisficing":

- Heuristics, not optimization
- Develop mental models to simplify decisions
- Impact on AI, but not on economics
- How do we know what is "good enough"?

Answer \Rightarrow We Don't! Our Heuristics Evolve

In our framework, let state variable z be correlated to x and observable at some cost c

Consider Getting Dressed:

- 5 Jackets, 10 Pants, 20 Ties, 10 Shirts, 10 Pairs of Socks, 4 Pairs of Shoes, 5 Belts
- 2,000,000 Possible Outfits!
- Takes 1 Second To Evaluate Each Outfit
- How Long To Get Dressed?
- 23.1 Days!

How Do We Get Dressed So Quickly?

 \Rightarrow Evolution of Heuristics

Bounded Rationality and Intelligence

What Is Intelligence? An **Evolutionary** Definition:

- Behavior that confers reproductive advantage
- Hawkins memory/prediction model fits this definition

What Is Stupidity?

Behavior that is counterproductive to survival

Bounded Rationality and Intelligence

Origins

• 100101011...111011001
 • 110111010...011011001
 • 10111110...000011011
 • 110111010...011011001
 • 111101001...011111001
 • 100001111...010010001

Evolution At The Speed of Thought

- Behavioral plasticity
- Hierarchy of behaviors (Herrnstein vs. Heimlich)
- Implications for neurophysiology

Other Extensions

- Sexual reproduction
- Iteroparity
- Multivariate multi-stage choice problems
- Resource constraints, strategic interactions, population equilibrium
- Time-varying and nonstationary $\Phi(x_a, x_b)$
 - Environmental shocks yield punctuated equilibria
 - Group selection
 - "Complex adaptive systems"

Irigin

The Challenge

Can We Construct a Complete Theory of Human Behavior?

Consilience (E.O. Wilson, 1998):

- The Consilience of Inductions takes place when an Induction, obtained from one class of facts, coincides with an Induction, obtained from another different class. This Consilience is a test of the truth of the Theory in which it occurs.
- William Whewell, 1840, *Philosophy of the Inductive Sciences*, 1840.

The Challenge

- Framework for modeling the evolution of behavior
 - Abstracts from underlying genetics
 - Biological "reduced form" model
- Simplicity implies behaviors are primitive and ancient
- Mathematical basis of the Adaptive Markets Hypothesis
 - Evolution determines individual behavior
 - Evolution also determines aggregate dynamics
 - Efficiency and irrationality are both adaptive
 - The key is how environment is related to behavior

Origins

Instead of:

"It's the economy stupid!"

We Should Say:

"It's the environment, stupid!"

Thank You!

Preferences Under Certainty:

- Non-Satiation
- Transitivity
- Completeness
- Diminishing Marginal Utility

Finance Theory Is Complete

Preferences Under Uncertainty:

- Utility of a random variable
- Difficult to evaluate
- Requires strong assumptions
- Von Neumann and Morganstern
- Expected Utility Theory (EUT)

Modern Economics and Finance Are Built on EUT

G2 and G3:

Probability	G1	G2	G3
50%	\$50,000	\$50,000	???
50%	(\$10,000)	???	(\$10,000)
Certainty	X1	X2	X3
Equivalent:	???	???	???

Motivation

Estimated Utility Function

Origins

Denote By U(x) Your Utility Function

- U(\$50,000) = 1, U(-\$10,000) = 0
- Consider three gambles, G1, G2, G3:

G1: \$50,000 With 50% Probability -\$10,000 With 50% Probability

What is the most you would pay for G1?