
Fragment Grammars:
Productivity and Reuse

in Language

Timothy J. O’Donnell

1

Wednesday, November 16, 2011

-ness

2

Wednesday, November 16, 2011

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

2

Wednesday, November 16, 2011

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

2

Wednesday, November 16, 2011

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

• grand + -ness

2

Wednesday, November 16, 2011

-ness

• circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

• Adj>N

• grand + -ness

• pine-scentedness

2

Wednesday, November 16, 2011

-ity

3

Wednesday, November 16, 2011

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

3

Wednesday, November 16, 2011

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

3

Wednesday, November 16, 2011

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

3

Wednesday, November 16, 2011

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

• The red lantern indicated the ethnicity/
ethnicness of the restaurant

3

Wednesday, November 16, 2011

-ity

• verticality, tractability, severity, seniority, inanity,
electricity, ...

• Adj>N

• Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

• The red lantern indicated the ethnicity/
ethnicness of the restaurant

• *pine-scentedity
3

Wednesday, November 16, 2011

-ity

4

Wednesday, November 16, 2011

-ity

• But ...

4

Wednesday, November 16, 2011

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

4

Wednesday, November 16, 2011

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

4

Wednesday, November 16, 2011

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

• Bayesability

4

Wednesday, November 16, 2011

-ity

• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

• Bayesability

• Coolity is not trying (from Huffington Post)

4

Wednesday, November 16, 2011

-th

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

• Adj>N

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

• roomth, greenth

5

Wednesday, November 16, 2011

-th

• warmth, width, truth, depth, ...

• Adj>N

• heal/health, dead/death, young/youth, vile/filth,
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

• roomth, greenth

Many enjoy the warmth, Vikings prefer the coolth

5

Wednesday, November 16, 2011

Problem of Productivity

6

Wednesday, November 16, 2011

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

6

Wednesday, November 16, 2011

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

• How are such differences in productivity
represented by the adult language user?

6

Wednesday, November 16, 2011

Problem of Productivity

• Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

• How are such differences in productivity
represented by the adult language user?

• How are such differences learned by the
child?

6

Wednesday, November 16, 2011

Outline

7

Wednesday, November 16, 2011

Outline

7

1. The Proposal.

Wednesday, November 16, 2011

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

Wednesday, November 16, 2011

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

Wednesday, November 16, 2011

Outline

7

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

Outline

8

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

The Proposal

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

9

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

9

Wednesday, November 16, 2011

Starting Computational System

N

Adj

V

agree

-able

-ity

10

Wednesday, November 16, 2011

Subcomputations
N

Adj

V

agree

-able

-ity

11

Wednesday, November 16, 2011

Subcomputations
N

Adj

V

agree

-able

-ity

12

Wednesday, November 16, 2011

Subcomputations
N

Adj

V

agree

-able

-ity

13

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

14

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

14

Wednesday, November 16, 2011

Bayesian Rational
Analysis (Anderson, 1992)

• Find subcomputations which provide best
explanation for the data.

• What evidence is available to the learner?

• Which patterns give rise to productivity, which patterns imply reuse?

15

Wednesday, November 16, 2011

N

Adj

V

agree

-able

-ity

16

Subcomputations as Predictions

Wednesday, November 16, 2011

N

Adj

V

agree

-able

-ity

�

Prediction of future reusability
across computations

17

Subcomputations as Predictions

Wednesday, November 16, 2011

N

Adj

V

agree

-able

-ity

�

Prediction of future
reusability of
combination

18

Subcomputations as Predictions

Wednesday, November 16, 2011

N

Adj

V

agree

-able

-ity

Prediction of
future

novelty/
variability

19

Subcomputations as Predictions

Wednesday, November 16, 2011

N

Adj

V

agree

-able

-ity

Tradeoff
between

productivity
and reuse

20

Subcomputations as Predictions

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

21

Wednesday, November 16, 2011

The Proposal
1. Formalization of what can be reused.

• Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

• Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

21

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools
from probabilistic programming (Church language; Goodman
et al., 2008).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools
from probabilistic programming (Church language; Goodman
et al., 2008).

• Stochastic memoization (Johnson et al., 2007) of stochastically lazy/
eager programs.

22

Wednesday, November 16, 2011

Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.

Wednesday, November 16, 2011

λ calculus

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x)))

• λ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3) => 6

• λ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

=> 6

• λ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

• λ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
 (λ (x) (+ x x))) (double 3)

(define repeat
 (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

(define 2nd-derivative (repeat derivative))

• λ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

ψλ-calculus
• How can we use these ideas to describe

probabilities?

•ψλ-calculus: a stochastic variant.

• We introduce a random primitive flip, such
that (flip) reduces to a random sample t/f.

• The usual evaluation rules now result in
sampled values. This induces distributions.

• This calculus, plus primitive operators and
data types, gives the probabilistic
programming language Church.

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Theorem: Any computable distribution can
be represented by a Church expression.

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:
=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query

Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

Random primitives:

Conditioning (inference):

=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query
Condition,

must be true
Wednesday, November 16, 2011

Church

(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

(query
 (define a (flip 0.3))
 (define b (flip 0.3))
 (define c (flip 0.3))
 (+ a b c)
 (= (+ a b) 1))

=>

Random primitives:

Conditioning (inference):

=> 1

=> 0

=> 1
=> 2

0

0

0
0

0

0

1
1

0 1 2 3

pr
ob

ab
ili

ty
 /

fr
eq

ue
nc

y

..

0 1 2 3
pr

ob
ab

ili
ty

 /
fr

eq
ue

nc
y

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Query
Condition,

must be true
Wednesday, November 16, 2011

Inference

• Universal inference: an algorithm that
does inference for any Church query.
(And hopefully is efficient for a wide class.)

• As a modeler, save implementation time:
rapid prototyping.

• For cognitive science, shows that the mind
could be a universal inference engine.

Wednesday, November 16, 2011

Example: Bayes Net
Flu

cough

TB

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

Example: Bayes Net

 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))

Flu

cough

TB

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

Example: Bayes Net

 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))

Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 cough)

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 cough)

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 66%

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 66%

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 20%

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 20%

1. Stochastic computation via unfold

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 20%

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

(query
 (define flu (flip 0.2))
 (define TB (flip 0.01))
 (define cough
 (if (or flu TB)
 (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu,
 given observed cough.”

=> true 20%

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Fragment Grammars via
Probabilistic Programming

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

• Cross fertilization of ideas from the theory
of programming languages.

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

• Alternative to more standard mathematical
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms
(PCFGs, Adaptor Grammars, Fragment
Grammars).

• Cross fertilization of ideas from the theory
of programming languages.

• Caveat: Church inference algorithms do not
work well for these models.

Wednesday, November 16, 2011

Goals

Wednesday, November 16, 2011

Goals

1. Get across intuitions.

Wednesday, November 16, 2011

Goals

1. Get across intuitions.

2. Give flavor of relationships between

modeling ideas and programming ideas.

Wednesday, November 16, 2011

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

(define adapted-unfold
(PYMem a b
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Wednesday, November 16, 2011

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

35

Ga
pcfg(d) =






�

r∈RG :a→root(d̂i),··· ,root(d̂k)

θr

k�

i=1

Groot(d̂i)
pcfg (d̂i) root(d) = a ∈ VG

1 root(d) = a ∈ TG

Wednesday, November 16, 2011

36

Ga
AG(d) =






�

r∈RG :a→root(d̂i),··· ,root(d̂k)

θr

k�

i=1

mem{Groot(d̂i)
AG }(d̂i) root(d) = a ∈ VG

1 root(d) = a ∈ TG

mem{GA
AG} ∼ pyp(aA, bA, GA

AG)

Wednesday, November 16, 2011

37

Ga
FG(d) =






�

s∈prefix(d)

mem{La}(s)
n�

i=1

G
root(s

�
i)

FG (s
�

i) root(d) = a ∈ VG

1 root(d) = a ∈ TG

LA(d) =
�

r∈RG :A→root(d̂i),··· ,root(d̂k)

θr

k�

i=1

�
νd̂i

Groot(d̂i)
FG (d̂i) + (1− νd̂i

)1
�

mem{LA} ∼ pyp(aA, bA, LA)

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Wednesday, November 16, 2011

Context Free Grammars

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Declarative Knowledge
of Constituent Structure

Wednesday, November 16, 2011

Declarative Knowledge
of Constituent Structure

Wednesday, November 16, 2011

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Fundamental Recursive
Computation: unfold

Choose a right-hand side for a
symbol:

N ! Adj -ity

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Fundamental Recursive
Computation: unfold

Recursively apply unfold to
each symbol on right-hand side

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)
(define unfold

(lambda (symbol)
(if (terminal? symbol)

symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

(define unfold
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Wednesday, November 16, 2011

N ! Adj -ity

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Wednesday, November 16, 2011

(unfold ‘Adj) (unfold ‘ity)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Wednesday, November 16, 2011

Computation Trace

Wednesday, November 16, 2011

Trace as Tree
N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Reusability for PCFGs

47

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Wednesday, November 16, 2011

Memoization

Wednesday, November 16, 2011

Memoization

• Store outputs of earlier computations in a
table

Wednesday, November 16, 2011

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

Wednesday, November 16, 2011

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

• When function is called with new
arguments, then compute and store in table

Wednesday, November 16, 2011

Memoization

• Store outputs of earlier computations in a
table

• When function is called with particular
arguments then grab from table if stored

• When function is called with new
arguments, then compute and store in table

• Higher-order function: mem

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
 ...

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
 (mem (lambda (person)
 (if (flip 0.5) ‘blue brown))))

Anywhere in the program
where (eye-color ‘bob)
is used, we will reuse same
value.

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
 ...

Wednesday, November 16, 2011

Stochastic Reusability

• Deterministic memoization always returns
same value after first call, but sometimes
we want to probabilistically favor
reuse.

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand

Wednesday, November 16, 2011

Stochastic Reusability
(define location
 (lambda (person)
 (sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand
 ...

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
 (stochastic-mem (lambda (person)
 (sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home
 ...

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

55

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

55

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

• Memoization distribution: Pitman-Yor
Processes (Pitman & Yor, 1995).

55

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

• Memoization distribution: Pitman-Yor
Processes (Pitman & Yor, 1995).

• Stochastic memoization + PCFGs =
Adaptor Grammars.

55

Wednesday, November 16, 2011

Pitman-Yor Process

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

yi: Total number of
 observations of value i

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

N: Total number of observations

yi: Total number of
 observations of value i

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N: Total number of observations

yi: Total number of
 observations of value i

Wednesday, November 16, 2011

Pitman-Yor Process
• Generalization of the Chinese Restaurant

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N: Total number of observations

K: Total number of values

yi: Total number of
 observations of value i

Wednesday, November 16, 2011

(func arg1 ... argN)

Wednesday, November 16, 2011

? ...

1

N=0
K=0

(PYMem a b func)

Wednesday, November 16, 2011

? ...

1

N=0
K=0

Wednesday, November 16, 2011

? ...

1

N=0
K=0

Wednesday, November 16, 2011

? ...

1

N=1
K=0

Wednesday, November 16, 2011

...

1

N=1
K=0

Wednesday, November 16, 2011

v4

v4 ! (func arg1 ...)

...

1

N=1
K=0

Wednesday, November 16, 2011

v4 ...

1

N=1
K=1

Samples: v4

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

yi − a

N + b

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

yi − a

N + b
a ·K + b

N + b

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

a ·K + b

N + b

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

Wednesday, November 16, 2011

...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

Wednesday, November 16, 2011

? ...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4

Wednesday, November 16, 2011

...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4

Wednesday, November 16, 2011

...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4 v1

v1 ! (func arg1 ...)

Wednesday, November 16, 2011

v1 ...N=2 v4

a·1+b
1+b

K=2
1−a
1+b

Samples: v4, v1

Wednesday, November 16, 2011

v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

yi − a

N + b
a ·K + b

N + b

Wednesday, November 16, 2011

v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

a ·K + b

N + b

Wednesday, November 16, 2011

v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

Wednesday, November 16, 2011

v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

Wednesday, November 16, 2011

v1 ...N=3 v4
K=2

Samples: v4, v1, v4

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

Wednesday, November 16, 2011

v1 ...N=3 v4
K=2

Samples: v4, v1, v4

?

2− a

3 + b

1− a

3 + b
a · 2 + b

3 + b

yi − a

N + b
a ·K + b

N + b

Wednesday, November 16, 2011

Properties of PYPs

Wednesday, November 16, 2011

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

Wednesday, November 16, 2011

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

Wednesday, November 16, 2011

Properties of PYPs

• Rich get richer, concentrates distribution
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

• Prefers to generate novel values
proportional to how often novelty has
been generated in the past.

Wednesday, November 16, 2011

Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Reusability for Adaptor
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Reusability for Adaptor
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.

Wednesday, November 16, 2011

Reusability for Adaptor
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
2. Fully recursive.

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Wednesday, November 16, 2011

Goal: Represent Partial
Computations

Wednesday, November 16, 2011

Goal: Represent Partial
Computations

Variables represent
“delayed” instructions
for later computation

Wednesday, November 16, 2011

Lazy and Eager
Evaluation

Wednesday, November 16, 2011

Lazy and Eager
Evaluation

• Eager Evaluation: Do as much work as early
as possible.

Wednesday, November 16, 2011

Lazy and Eager
Evaluation

• Eager Evaluation: Do as much work as early
as possible.

• Lazy Evaluation: Delay work until it is
absolutely necessary to continue
computation.

Wednesday, November 16, 2011

Example

(define add3
(lambda (x y z)
(+ x y z)))

Wednesday, November 16, 2011

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 8 (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 8 (- 3 1))

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 8 2)

Wednesday, November 16, 2011

Eager Evaluation

(add3 6 8 2)

Wednesday, November 16, 2011

Eager Evaluation

(+ 6 8 2)

x y z

Wednesday, November 16, 2011

Eager Evaluation

16

Wednesday, November 16, 2011

Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }

Wednesday, November 16, 2011

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }
Argument expressions are delayed
until their values are needed by
another computation.

Wednesday, November 16, 2011

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Primitive +
procedure forces

evaluation of
arguments.

Wednesday, November 16, 2011

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ 16 8 (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ 16 8 (- 3 1))

Wednesday, November 16, 2011

Lazy Evaluation

(+ 16 8 2)

Wednesday, November 16, 2011

Lazy Evaluation

16

Wednesday, November 16, 2011

λ-calculus: Order of
Evaluation

Wednesday, November 16, 2011

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

Wednesday, November 16, 2011

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

Wednesday, November 16, 2011

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

• Church-Rosser theorem: Order doesn’t
matter for deterministic λ-calculus.

Wednesday, November 16, 2011

λ-calculus: Order of
Evaluation

• Applicative order (eager evaluation): evaluate
arguments first, then apply function.

• Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

• Church-Rosser theorem: Order doesn’t
matter for deterministic λ-calculus.

• Does matter for Ψλ-calculus!
Wednesday, November 16, 2011

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

Wednesday, November 16, 2011

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

Wednesday, November 16, 2011

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))

Wednesday, November 16, 2011

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))

P(true) = 1eager

Wednesday, November 16, 2011

Ψλ-calculus: Order of
Evaluation

(define same?
(lambda (x)
(equal? x x)))

(same? (flip))

P(true) = 1/2lazy

P(true) = 1eager

Wednesday, November 16, 2011

Tradeoff

• Laziness allows you to delay computation
and, thus, preserve randomness and
variability until the last possible moment.

• Eagerness allows you to determine random
choices early in computation and, thus,
share choices across different parts of a
program.

Wednesday, November 16, 2011

Random Evaluation
Order

Wednesday, November 16, 2011

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

Wednesday, November 16, 2011

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Wednesday, November 16, 2011

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

• Assume eager evaluation strategy and add
delay primitive.

Wednesday, November 16, 2011

Random Evaluation
Order

• Idea: Stochastically mix lazy and eager
evaluation in Ψλ-calculus.

• Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

• Assume eager evaluation strategy and add
delay primitive.

• Apply to unfold (can be applied fully
generally).

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Computation Trace with Delay

Wednesday, November 16, 2011

Computation Trace with Delay

Wednesday, November 16, 2011

Reusing Delayed
Computations

Wednesday, November 16, 2011

Reusing Delayed
Computations

• Need to be able to reuse partial
evaluations.

Wednesday, November 16, 2011

Reusing Delayed
Computations

• Need to be able to reuse partial
evaluations.

• Memoize stochastically lazy unfold.

Wednesday, November 16, 2011

Fragment Grammars

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Fragment Grammar
Reusable Computations

110

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Fragment Grammar
Reusable Computations

110

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.

Wednesday, November 16, 2011

Fragment Grammar
Reusable Computations

110

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
2. Fully recursive.

Wednesday, November 16, 2011

Outline

111

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

Five Models

112

Wednesday, November 16, 2011

Five Models

• 4 approaches to productivity and reuse.

112

Wednesday, November 16, 2011

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

112

Wednesday, November 16, 2011

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

• State-of-the-art probabilistic models.

112

Wednesday, November 16, 2011

Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the
literature.

• State-of-the-art probabilistic models.

• Allow for variability and learning.

112

Wednesday, November 16, 2011

MDPCFG
Multinomial-Dirichlet Context-Free Grammars

(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free
Grammar (MDPCFG; Johnson, et al. 2007a)

113

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

MAG
MAP Adaptor Grammars

(Full-entry)

- Store whole form after first use.

- Formalization: Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).

114

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

DOP1/GDMN
Data-Oriented Parsing

(Exemplar-based)

- Store all generalizations consistent with input

- Formalization: Data-Oriented Parsing 1 (DOP1; Bod, 1998), Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod,
2009)

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

115

Wednesday, November 16, 2011

FG
Fragment Grammars

(Inference-based)

- Store best set of subcomputations for explaining the data.

- Formalization: Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars

116

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011

Outline

117

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

English Derivational
Morphology

Productive +ness (goodness),
+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

118

Wednesday, November 16, 2011

Simulations

• Words from CELEX.

• Extensive heuristic parsing/hand correction.

• Input format.

• No phonology or semantics.

119

Wednesday, November 16, 2011

Derivational Inputs

120

Wednesday, November 16, 2011

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix sequences.

121

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

Wednesday, November 16, 2011

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix combinations.

122

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

Wednesday, November 16, 2011

Productivity

• No gold-standard dataset or measure.

• E.g., Large databases of wug-tests or
naturalness judgments.

• Analyses.

1. Examples of highly productive affixes.

2. Convergence with other theoretical
measures.

123

Wednesday, November 16, 2011

How is Productivity
Represented?

• Relative probability of fragments with or
without variables.

V.

wide

124

Wednesday, November 16, 2011

Productivity Analyses

1. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

125

Wednesday, November 16, 2011

MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)

126

Top 5 Most Productive Suffixes

Wednesday, November 16, 2011

MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)

127

Top 5 Most Productive Suffixes

Wednesday, November 16, 2011

MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)

128

Top 5 Most Productive Suffixes

Wednesday, November 16, 2011

Productivity Analyses

1. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

129

Wednesday, November 16, 2011

Baayen’s Corpus-Based
Measures

• Baayen’s / (e.g., Baayen, 1992)

• : Prob(NOVEL | SUFFIX) i.e. rate of
growth of forms with suffix

• : Prob(SUFFIX | NOVEL) i.e. rate of
growth of vocabulary due to suffix

P

P P∗

P∗

130

Wednesday, November 16, 2011

Productivity Correlations
(values from Hay & Baayen, 2002)

MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

P/P∗

131

Wednesday, November 16, 2011

English Derivational
Morphology

1. Individual suffix
productivity differences
(-ness/-ity/-th).

2. Suffix combinations.

132

Productive
+ness (goodness),

+ly (quickly)

Semi-productive

Unproductive

+ity (ability),
+or (operator)

+th (width)

Wednesday, November 16, 2011

Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.

133

Wednesday, November 16, 2011

Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.

134

Wednesday, November 16, 2011

Suffix Ordering

• Derivational morphology hierarchical and
recursive.

• Multiple suffixes can appear in a word.

135

Wednesday, November 16, 2011

Suffix Combinations

136

Wednesday, November 16, 2011

Suffix Combinations

• Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

136

Wednesday, November 16, 2011

Suffix Combinations

• Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

• Fabb (1988).

136

Wednesday, November 16, 2011

Suffix Combinations

• Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

• Fabb (1988).

- 43 suffixes.

136

Wednesday, November 16, 2011

Suffix Combinations

• Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

• Fabb (1988).

- 43 suffixes.
- 663 possible pairs.

136

Wednesday, November 16, 2011

Suffix Combinations

• Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

• Fabb (1988).

- 43 suffixes.
- 663 possible pairs.
- Only 50 exist.

136

Wednesday, November 16, 2011

Complexity-Based
Ordering (Hay, 2002)

On average, more productive suffixes
appear after (outside of) less
productive suffixes.

137

Wednesday, November 16, 2011

Measuring Ordering

• Examine attested orderings in corpus.

• Mean rank of each affix (Plag and Baayen, 2009).

• Graph-theoretic statistic.

• Measures degree to which each suffix tends
to occur after other suffixes (on average).

• Compute log odds of suffix appearing
second versus first for each model.

138

Wednesday, November 16, 2011

Mean Rank
Correlations

139

MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

Wednesday, November 16, 2011

Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.

140

Wednesday, November 16, 2011

Generalizable Combinations

Frozen Combinations
Generalizable
Combinations

141

Wednesday, November 16, 2011

Generalizable Combinations

Frozen Combinations
Generalizable
Combinations

142

Wednesday, November 16, 2011

-ity v. -ness

• -ness more productive than -ity.

• -ity more productive than -ness after:
-ile, -able, -(i)an, -ic.
(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)

143

Wednesday, November 16, 2011

Two Frequent Combinations:

-ivity v. -bility

• -ive + -ity: -ivity (e.g., selectivity).

• Speaker prefer to use -ness with novel words
(Aronoff & Schvaneveldt, 1978).

• depulsiveness > depulsivity.

• -ble + -ity: -bility (e.g., sensibility).

• Speakers prefer to use -ity with novel words
(Anshen & Aronoff, 1981).

• remortibility > remortibleness.

144

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

145

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

146

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preference for -ness

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

147

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preference for -ity

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

148

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preceding suffix -ive

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

-ivity v. -bility

149

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Parsing

(MDPCFG)
Full-Listing
(Adaptor Grammars)

Exemplar
(DOP1)

Exemplar
(GDMN)

Inference
(Fragment Grammars)

Preceding suffix -ble

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

MDPCFG
(Full-parsing)

150

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Full-Listing

(Adaptor Grammars)
Exemplar

(DOP1)
Exemplar

(GDMN)
Inference

(Fragment Grammars)

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

151

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble Exemplar

(DOP1)
Exemplar

(GDMN)
Inference

(Fragment Grammars)

MAG
(Full-listing)

Wednesday, November 16, 2011

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

152

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

DOP1
(Exemplar-based)

Wednesday, November 16, 2011

FG
(Inference-based)

153

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

GDMN
(Exemplar-based)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

Wednesday, November 16, 2011

154

−5
0

5{
{

-ness

-ity

ive ive ive ive ive iveble ble ble ble ble ble

-ive
-ble

FG
(Inference-based)

Predicted MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

Wednesday, November 16, 2011

Discussion

• Inference-based approach able to correctly ignore
high token frequency of -ivity because it balances a
tradeoff.

• Other models use type or token frequencies.

155

Wednesday, November 16, 2011

1. The Proposal.

2. Five Models of Productivity and Reuse.

3. Empirical Evaluation

The English Past Tense

English Derivational Morphology

4. Conclusion

Outline

156

Wednesday, November 16, 2011

Conclusion

157

Wednesday, November 16, 2011

Conclusion

• View productivity and reuse as an inference.

157

Wednesday, November 16, 2011

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

157

Wednesday, November 16, 2011

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

• Able to capture dominant patterns without
semantic and phonological structure.

157

Wednesday, November 16, 2011

Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages
and Bayesian models.

• Able to capture dominant patterns without
semantic and phonological structure.

• Future work...

157

Wednesday, November 16, 2011

158

Thanks!

Wednesday, November 16, 2011

