Fragment Grammars: Productivity and Reuse in Language

Timothy J. O'Donnell

-ness

-ness

- circuitousness, grandness, orderliness, pretentiousness, cheapness, coolness, warmness, ...

-ness

- circuitousness, grandness, orderliness, pretentiousness, cheapness, coolness, warmness, ...
- $\operatorname{Adj}>\mathrm{N}$

-ness

- circuitousness, grandness, orderliness, pretentiousness, cheapness, coolness, warmness, ...
- $\operatorname{Adj}>\mathrm{N}$
- grand + -ness

-ness

- circuitousness, grandness, orderliness, pretentiousness, cheapness, coolness, warmness, ...
- $\operatorname{Adj}>\mathrm{N}$
- grand + -ness
- pine-scentedness

-ity

-ity

- verticality, tractability, severity, seniority, inanity, electricity, ...

-ity

- verticality, tractability, severity, seniority, inanity, electricity, ...
- $\operatorname{Adj}>\mathrm{N}$

-ity

- verticality, tractability, severity, seniority, inanity, electricity, ...
- $\operatorname{Adj}>\mathrm{N}$
- Stress change (e.g., normalness v.normality), vowel laxing (e.g., inane v.inanity)

-ity

- verticality, tractability, severity, seniority, inanity, electricity, ...
- $\operatorname{Adj}>\mathrm{N}$
- Stress change (e.g., normalness v. normality), vowel laxing (e.g., inane v.inanity)
- The red lantern indicated the ethnicity/ ethnicness of the restaurant

-ity

- verticality, tractability, severity, seniority, inanity, electricity, ...
- $\operatorname{Adj}>\mathrm{N}$
- Stress change (e.g., normalness v. normality), vowel laxing (e.g., inane v.inanity)
- The red lantern indicated the ethnicity/ ethnicness of the restaurant
- *pine-scentedity

-ity

-ity

- But ...

-ity

- But ...
- -ile/-al/-able/-ic/-(i)an

-ity

- But ...
- -ile/-al/-able/-ic/-(i)an
- Bayesable

-ity

- But ...
- -ile/-al/-able/-ic/-(i)an
- Bayesable
- Bayesability

-ity

- But ...
- -ile/-al/-able/-ic/-(i)an
- Bayesable
- Bayesability
- Coolity is not trying (from Huffington Post)

-th

-th

- warmth, width, truth, depth, ...

-th

- warmth, width, truth, depth, ... - $\operatorname{Adj}>\mathrm{N}$

-th

- warmth, width, truth, depth, ...
- $\operatorname{Adj}>\mathrm{N}$
- heal/health, dead/death, young/youth, vile/filth, slow/sloth

-th

- warmth, width, truth, depth, ...
- $\operatorname{Adj}>\mathrm{N}$
- heal/health, dead/death, young/youth, vile/filth, slow/sloth
- weal?/wealth, ?wroth/wrath, ?merry/mirth

-th

- warmth, width, truth, depth, ...
- $\operatorname{Adj}>\mathrm{N}$
- heal/health, dead/death, young/youth, vile/filth, slow/sloth
- weal?/wealth, ?wroth/wrath, ?merry/mirth
- roomth,greenth

-th

- warmth, width, truth, depth, ...
- $\operatorname{Adj}>\mathrm{N}$
- heal/health, dead/death, young/youth, vile/filth, slow/sloth
- weal?/wealth, ?wroth/wrath, ?merry/mirth
- roomth, greenth

Many enjoy the warmth,Vikings prefer the coolth

Problem of Productivity

Problem of Productivity

- Which processes can be used to construct novel forms (e.g., -ness), which can only be reused in existing forms (e.g., -th)?

Problem of Productivity

- Which processes can be used to construct novel forms (e.g., -ness), which can only be reused in existing forms (e.g., -th)?
- How are such differences in productivity represented by the adult language user?

Problem of Productivity

- Which processes can be used to construct novel forms (e.g., -ness), which can only be reused in existing forms (e.g., -th)?
- How are such differences in productivity represented by the adult language user?
- How are such differences learned by the child?

Outline

Outline

I. The Proposal.

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.
3. English Derivational Morphology

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.
3. English Derivational Morphology
4. Conclusion

Outline

I. The Proposal.

2. Five Models of Productivity and Reuse.
3. English Derivational Morphology
4. Conclusion

The Proposal

The Proposal

I. Formalization of what can be reused.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

Starting Computational System

W	\longrightarrow	N	
W	\longrightarrow	V	
W	\longrightarrow	Adj	
W	\longrightarrow	Adv	
N	\longrightarrow	Adj	- ness
N	\longrightarrow	Adj	- ity
N	\longrightarrow	electro-	N
N	\longrightarrow	magnet	
N	\longrightarrow	dog	
\ldots			
V	\longrightarrow	N	$-i f y$
V	\longrightarrow	Adj	- ize
V	\longrightarrow	re-	V
V	\longrightarrow	agree	
V	\longrightarrow	count	
\ldots			
Adj	\longrightarrow	dis-	Adj
Adj	\longrightarrow	V	- able
Adj	\longrightarrow	N	$-i c$
Adj	\longrightarrow	N	$-a l$
Adj	\longrightarrow	tall	
\ldots			
Adv	\longrightarrow	Adj	$-l y$
Adv	\longrightarrow	today	

agree
$\longrightarrow \quad$ Adj
\longrightarrow Adv
\longrightarrow Adj
-ity
\rightarrow electro-
$\longrightarrow \quad \operatorname{dog}$
$\longrightarrow \quad \mathrm{N}$
ify
ize
V

Adv \longrightarrow Adj $\quad-l y$
Adv \longrightarrow today

Subcomputations

Subcomputations

Subcomputations

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

Bayesian Rational Analysis (Andeson, 192)

- Find subcomputations which provide best explanation for the data.
- What evidence is available to the learner?
- Which patterns give rise to productivity, which patterns imply reuse?

Subcomputations as Predictions

Subcomputations as Predictions

Subcomputations as Predictions

Prediction of future reusability of combination

Subcomputations as Predictions

Prediction of
future novelty/ variability

agree

Subcomputations as Predictions

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

The Proposal

I. Formalization of what can be reused.

- Subcomputations.

2. Formalization of how decision to reuse versus compute is made.

- Optimal Bayesian inference.

3. The model from a probabilistic programming perspective.

The Formal Model:
 Fragment Grammars

The Formal Model: Fragment Grammars

- Generalization of Adaptor Grammars (Johnson et al., 2007).

The Formal Model: Fragment Grammars

- Generalization of Adaptor Grammars (Johnson et al., 2007).
- Bayesian non-parametric distributions (Pitman-Yor).

The Formal Model: Fragment Grammars

- Generalization of Adaptor Grammars (Johnson et al., 2007).
- Bayesian non-parametric distributions (Pitman-Yor).
- Notion of compiling subcomputations via tools from probabilistic programming (Church language; Goodman et al., 2008).

The Formal Model: Fragment Grammars

- Generalization of Adaptor Grammars (Johnson et al., 2007).
- Bayesian non-parametric distributions (Pitman-Yor).
- Notion of compiling subcomputations via tools from probabilistic programming (Church language; Goodman et al., 2008).
- Stochastic memoization Jobnson eata, 2007) of stochastically lazy/ eager programs.

Languages for probability

- Purposes of a language:
- Makes writing down models easier.
- Makes reasoning about models clearer.
- Supports efficient inference.
- Gives ideas about mental representation.

λ calculus

λ calculus

- Notation:
- Function have parentheses on the wrong side:
- Operators always go at the beginning:

$$
\frac{(\sin x)}{(+x y)}
$$

λ calculus

- Notation:
- Function have parentheses on the wrong side: ($\sin \mathrm{x}$)
- Operators always go at the beginning:

$$
(+x y)
$$

- λ makes functions, define binds values to symbols:
(define double
(λ (x) (+x x)))

λ calculus

- Notation:
- Function have parentheses on the wrong side:
- Operators always go at the beginning:

$$
\frac{(\sin x)}{(+x y)}
$$

- λ makes functions, define binds values to symbols:
(define double
(λ (x) (+ x x))
(double 3) => 6

λ calculus

- Notation:
- Function have parentheses on the wrong side: ($\sin \mathrm{x}$)
- Operators always go at the beginning:

$$
(+x y)
$$

- λ makes functions, define binds values to symbols:
(define double
(λ (x) (+x x)))
(double 3) => 6
(define repeat
(λ (f) (λ (x) ($\mathrm{f}(\mathrm{f} \mathrm{x}))$))

λ calculus

- Notation:
- Function have parentheses on the wrong side: ($\sin \mathrm{x}$)
- Operators always go at the beginning:

$$
(+x y)
$$

- λ makes functions, define binds values to symbols:
(define double
(λ (x) (+x x)))
(double 3) => 6
(define repeat
(λ (f) (λ (x) ($\mathrm{f}(\mathrm{f} \mathrm{x}))$))
((repeat double) 3) $=>12$

λ calculus

- Notation:
- Function have parentheses on the wrong side: (sin x)
- Operators always go at the beginning:
($+\mathrm{x} y$)
- λ makes functions, define binds values to symbols:
(define double
(λ (x) (+x x)))
(double 3) => 6
(define repeat
(λ (f) (λ (x) ($f(f x))$))
((repeat double) 3) $=>12$
(define 2nd-derivative (repeat derivative))

$\psi \lambda$-calculus

- How can we use these ideas to describe probabilities?
- $\Psi \lambda$-calculus: a stochastic variant.
- We introduce a random primitive flip, such that (flip) reduces to a random sample t / f.
- The usual evaluation rules now result in sampled values. This induces distributions.
- This calculus, plus primitive operators and data types, gives the probabilistic programming language Church.

Church

Random primitives:

```
(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)
```

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

(define a (flip 0.3)) => 1
(define b (flip 0.3))
(define c (flip 0.3))
(+a b c)

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

$($ define a (flip 0.3))	$\Rightarrow 1$
$($ define b (flip 0.3))	$\Rightarrow 0$
$($ define c (flip 0.3))	$=1$
$(+$ a b c)	$=2$

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

$\left.\begin{array}{l}(\text { define a (flip 0.3)) }\end{array}\right)=>100$

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Theorem: Any computable distribution can be represented by a Church expression.

Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Church

Random primitives:

Goodman, Mansinghka, Roy, Bonawitz, Tenenabum (2008)

Church

Random primitives:

Conditioning (inference):
(query
(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)
(= (+ a b) 1))
Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Church

Random primitives:

Conditioning (inference):
(query
(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
$(1+\mathrm{a}$ b c) Query
(= (+ ab) 1))
Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Church

Random primitives:

Conditioning (inference):
(query
(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c) Query
$(=(+\mathrm{a} b)$ 1)) Condition, must be true

Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Church

Random primitives:

Conditioning (inference):
(query
(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c) Query
$(=(+\mathrm{a} \mathrm{b}) \mathrm{l}))$ Condition, must be true

Goodman, Mansinghka, Roy, Bonawitz,Tenenabum (2008)

Inference

- Universal inference: an algorithm that does inference for any Church query. (And hopefully is efficient for a wide class.)
- As a modeler, save implementation time: rapid prototyping.
- For cognitive science, shows that the mind could be a universal inference engine.

Example: Bayes Net

Example: Bayes Net

(define flu (flip 0.2))
(define TB (flip 0.01))
(define cough
(if (or flu TB)
(flip 0.8) (flip 0.1)))

Example: Bayes Net.

"Infer the inãice oif fiu, given observed cough."

(define flu (flip 0.2))
(define TB (flip 0.01))
(define cough
(if (or flu TB)
(flip 0.8) (flip 0.1)))

Example: Bayes Net

"Infer the inãacice of fiu, given observed cough."


```
(query
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    cough)
```


Example: Bayes Net

"Infer the inẵice of flu, given observed cough."


```
(query
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    cough)
```


Example: Bayes Net

"Infer the inẵice of flu, given observed cough."


```
(query
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    (and cough TB))
```


Example: Bayes Net.

"Infer the inẵice of flu, given observed cough."


```
(query
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    (and cough TB))
```


Example: Bayes Net

"Infer the inẵice of flu, given observed cough."


```
(quer'y
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    (and cough TB))
```


Example: Bayes Net

"Infer the inẵice of flu, given observed cough."


```
(quer'y
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (flip 0.8) (flip 0.1)))
    flu
    (and cough TB))
```


Example: Bayes Net

"Infer the inẵice of flu, given observed cough."


```
(quer'y
    (define flu (flip 0.2))
    (define TB (flip 0.01))
    (define cough
        (if (or flu TB)
        (Fiip 0.S) (Flip O.lj))
    flu
    (and cough TB))
```


Fragment Grammars via Probabilistic Programming (Church)

Fragment Grammars via Probabilistic Programming (Church)

- Alternative to more standard mathematical formalization (see, O'Donnell, 201I).

Fragment Grammars via Probabilistic Programming (Church)

- Alternative to more standard mathematical formalization (see, O'Donnell, 2011).
- Highlights relationship between formalisms (PCFGs, Adaptor Grammars, Fragment Grammars).

Fragment Grammars via Probabilistic Programming (Church)

- Alternative to more standard mathematical formalization (see, O'Donnell, 2011).
- Highlights relationship between formalisms (PCFGs, Adaptor Grammars, Fragment Grammars).
- Cross fertilization of ideas from the theory of programming languages.

Fragment Grammars via Probabilistic Programming (Church)

- Alternative to more standard mathematical formalization (see, O'Donnell, 201I).
- Highlights relationship between formalisms (PCFGs, Adaptor Grammars, Fragment Grammars).
- Cross fertilization of ideas from the theory of programming languages.
- Caveat: Church inference algorithms do not work well for these models.

Goals

Goals

I. Get across intuitions.

Goals

I. Get across intuitions.
2. Give flavor of relationships between modeling ideas and programming ideas.
(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
(define adapted-unfold
(PYMem a b
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

$$
G_{\mathrm{pcfg}}^{\mathrm{a}}(d)= \begin{cases}\sum_{\substack{ \\1 \\ 1}} \theta_{r} \prod_{\mathcal{G}: \operatorname{a\rightarrow oot}\left(\hat{d}_{i}\right), \cdots, \operatorname{root}\left(\hat{d}_{k}\right)}^{k} G_{\mathrm{pcfg}}^{\mathrm{root}\left(\hat{d}_{i}\right)}\left(\hat{d}_{i}\right) & \operatorname{root}(d)=\mathrm{a} \in V_{\mathcal{G}} \\ & \operatorname{root}(d)=\mathrm{a} \in T_{\mathcal{G}}\end{cases}
$$

$$
G_{\mathrm{AG}}^{\mathrm{a}}(d)= \begin{cases}\sum_{r \in R_{\mathcal{G}}: \mathrm{a} \rightarrow \operatorname{root}\left(\hat{d}_{i}\right), \cdots, \operatorname{root}\left(\hat{d}_{k}\right)} \theta_{r} \prod_{i=1}^{k} \operatorname{mem}\left\{G_{\mathrm{AG}}^{\mathrm{root}\left(\hat{d}_{i}\right)}\right\}\left(\hat{d}_{i}\right) & \operatorname{root}(d)=\mathrm{a} \in V_{\mathcal{G}} \\ 1 & \operatorname{root}(d)=\mathrm{a} \in T_{\mathcal{G}}\end{cases}
$$

$\operatorname{mem}\left\{G_{\mathrm{AG}}^{\mathrm{A}}\right\} \sim \operatorname{PYP}\left(a^{\mathrm{A}}, b^{\mathrm{A}}, G_{\mathrm{AG}}^{\mathrm{A}}\right)$

$$
\begin{gathered}
L^{\mathrm{A}}(d)=\sum_{r \in R_{\mathcal{G}:}: \mathrm{A} \rightarrow \operatorname{root}\left(\hat{d}_{i}\right), \cdots, \operatorname{root}\left(\hat{d}_{k}\right)} \theta_{r} \prod_{i=1}^{k}\left[\nu_{\hat{d}_{i}} G_{\mathrm{FG}}^{\mathrm{root}\left(\hat{d}_{i}\right)}\left(\hat{d}_{i}\right)+\left(1-\nu_{\hat{d}_{i}}\right) 1\right] \\
G_{\mathrm{FG}}^{\mathrm{a}}(d)= \begin{cases}\sum_{s \in \operatorname{prefix}(d)} \operatorname{mem}\left\{L^{\mathrm{a}}\right\}(s) \prod_{i=1}^{n} G_{\mathrm{FG}}^{\mathrm{root}\left(s_{i}^{\prime}\right)}\left(s_{i}^{\prime}\right) & \operatorname{root}(d)=\mathrm{a} \in V_{\mathcal{G}} \\
1 & \operatorname{root}(d)=\mathrm{a} \in T_{\mathcal{G}}\end{cases} \\
\operatorname{mem}\left\{L^{\mathrm{A}\}} \sim \operatorname{PYP}\left(a^{\mathrm{A}}, b^{\mathrm{A}}, L^{\mathrm{A}}\right)\right.
\end{gathered}
$$

Fragment Grammars via Probabilistic Programming

I. Stochastic computation via unfold
2. Stochastic reuse via memoization
3. Partial computations via stochastic laziness

Context Free Grammars

W	\longrightarrow	N	
W	\longrightarrow	V	
W	\longrightarrow	Adj	
W	\longrightarrow	Adv	
N	\longrightarrow	Adj	-ness
N	\longrightarrow	Adj	-ity
N	\longrightarrow	electro-	N
N	\longrightarrow	magnet	
N	\longrightarrow	dog	
\ldots			
V	\longrightarrow	N	- -ify
V	\longrightarrow	Adj	- -ize
V	\longrightarrow	re-	V
V	\longrightarrow	agree	
V	\longrightarrow	count	
\ldots		dis-	Adj
Adj	\longrightarrow	dis	- able
Adj	\longrightarrow	V	$-i c$
Adj	\longrightarrow	N	N
Adj	\longrightarrow	N	-al
Adj	\longrightarrow	tall	
\ldots			
Adv	\longrightarrow	Adj	-ly
Adv	\longrightarrow	today	

N

agree

Declarative Knowledge of Constituent Structure

$p_{\mathrm{w}_{1}}$	W	\longrightarrow	N	
$p_{\nu_{2}}$	W	\longrightarrow	V	
$p_{W_{3}}$	W	\longrightarrow	Adj	
$p_{W_{4}}$	W	\longrightarrow	Adv	
$p_{\mathrm{N}_{1}}$	N	\longrightarrow	Adj	-ness
$p_{\mathrm{N}_{2}}$	N	\longrightarrow	Adj	-ity
$p_{\mathrm{N}_{3}}$	N	\longrightarrow	electro-	N
$p_{\mathrm{N}_{4}}$	N	\longrightarrow	magnet	
$p_{\mathrm{N}_{5}}$	N	\longrightarrow	dog	
	\ldots			
$p_{\mathrm{V}_{1}}$	V	\longrightarrow	N	-ify
$p_{\mathrm{V}_{2}}$	V	\longrightarrow	Adj	-ize
$p_{\mathrm{V}_{3}}$	V	\longrightarrow	re-	V
$p_{\mathrm{V}_{4}}$	V	\longrightarrow	agree	
$p_{\mathrm{V}_{5}}$	V	\longrightarrow	count	
	\ldots			
$p_{\text {Adj }_{1}}$	Adj	\longrightarrow	dis-	Adj
$p_{\text {Adj }_{2}}$	Adj	\longrightarrow	V	-able
$p_{\text {Adj }_{3}}$	Adj	\longrightarrow	N	-ic
$p_{\text {Adj }_{4}}$	Adj	\longrightarrow	N	-al
$p_{\text {Adj }_{5}}$	Adj	\longrightarrow	tall	
	Adv			-ly
$p_{\text {Adv }_{1}}$	Adv	\longrightarrow	today	-ly

Declarative Knowledge of Constituent Structure

(define sample-rhs
(lambda (nonterminal)
(case nonterminal
(('W) (multinomial (list (list 'N) (list 'V) (list 'Adj) (list 'Adv) ...)
(list $p_{\mathrm{W}_{1}} p_{\mathrm{W}_{2}} p_{\mathrm{W}_{3}} p_{\mathrm{W}_{4}} \ldots$)))
(('N) (multinomial (list (list 'Adj 'ness) (list 'Adj 'ity) (list 'electro 'N) (list 'magnet) (list 'dog) ...) (list $p \mathrm{~N}_{1} p_{\mathrm{N}_{2}} p_{\mathrm{N}_{3}} p_{\mathrm{N}_{4}} p_{\mathrm{N}_{5}} \ldots$))
(('V) (multinomial (list (list 'N 'ify) (list 'Adj 'ize) (list 're 'V) (list 'agree) (list 'count) ...)
(list $p \mathrm{v}_{1} p \mathrm{v}_{2} p \mathrm{v}_{3} p \mathrm{v}_{4} p \mathrm{v}_{5} \ldots$))
(('Adj) (multinomial (list (list 'dis 'Adj) (list 'V 'able) (list 'N 'ic) (list 'N 'al) (list 'tall) ...)
(list $p_{\text {Adj1 }} p_{\text {Adj2 }} p_{\text {Adj3 }} p_{\operatorname{Adj}_{4}} p_{\text {Adj5 }} \ldots$))
(('Adv) (multinomial (list (list 'Adj 'ly) (list 'today) ...)
(list $p_{\mathrm{W}_{1}} p_{\mathrm{W}_{2}} \ldots$)))))

Fundamental Recursive Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol) symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol) symbol
(map unfold (sample-rhs symbol))))) R
Choose a right-hand side for symbol:
$N \rightarrow$ Adj -ty

Fundamental Recursive Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol) symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol) symbol
(map unfold (sample-rhs symbol)))))

Recursively apply unfold to
each symbol on right-hand side

Computation Trace

(unfold ‘N)

Computation Trace

(unfold ‘N)

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Computation Trace

(unfold ‘N)
 (define unfold
 (lambda (symbol)
 (if (terminal? symbol)
 symbol
 (map unfold (sample-rhs symbol)))))
 (sample-rhs 'N)

Computation Trace

(unfold ‘N)
 (sample-rhs 'N)

Computation Trace

Computation Trace

(unfold ‘N)
 (sample-rhs 'N)

Computation Trace

(unfold 'N)

(unfold ‘Adj)
(unfold ‘ity)

Computation Trace

Trace as Tree

agree

Reusability for PCFGs

Fragment Grammars via Probabilistic Programming

I. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Memoization

Memoization

- Store outputs of earlier computations in a table

Memoization

- Store outputs of earlier computations in a table
- When function is called with particular arguments then grab from table if stored

Memoization

- Store outputs of earlier computations in a table
- When function is called with particular arguments then grab from table if stored
- When function is called with new arguments, then compute and store in table

Memoization

- Store outputs of earlier computations in a table
- When function is called with particular arguments then grab from table if stored
- When function is called with new arguments, then compute and store in table
- Higher-order function: mem

Reuse through Memoization

(define eye-color
(lambda (person)

```
(if (flip 0.5) `blue `brown)))
```


Reuse through Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))
(eye-color ‘bob) => ‘blue

Reuse through Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))
(eye-color ‘bob) => ‘blue (eye-color ‘bob) => ‘brown

Reuse through Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue

Reuse through Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))
(eye-color ‘bob) => ‘blue
(eye-color 'bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Reuse through Memoization

(define eye-color
(lambda (person)
(if (flip 0.5) ‘blue ‘brown)))
(eye-color ‘bob) => ‘blue
(eye-color 'bob) => ‘brown
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Reuse through Memoization

(define eye-color
(mem (lambda (person)
(if (flip 0.5) ‘blue brown))))

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value. (if (flip 0.5) ، value. orowir))

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value. (if (flip 0.5) ، value. orown))
(eye-color ‘bob) => ‘blue

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value. (if (flip 0.5) ، value. orowir))
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value. (if (flip 0.5) ، value. orowir))
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value.
(if (flip 0.5) ، value. orowir))
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Reuse through Memoization

Anywhere in the program where (eye-color 'bob)
(define eye-color (mem (lambda (pers value.
(if (flip 0.5) 'value orowir) /)

(eye-color	ob)	=>
(eye-color	' bob)	=>
(eye-color	(bob)	=>
(eye-color	' bob)	=>

Stochastic Reusability

- Deterministic memoization always returns same value after first call, but sometimes we want to probabilistically favor reuse.

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))
(location ‘bob) => ‘UCLA

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))
(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))
(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location 'bob) => 'London

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))
(location ‘bob) => ‘UCLA
(location ‘bob) $=>$ 'Antarctica
(location 'bob) => 'London
(location ‘bob) => ‘Thailand

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))
(location ‘bob) => ‘UCLA
(location 'bob) => ‘Antarctica
(location 'bob) => 'London
(location ‘bob) => ‘Thailand

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
(location 'bob) => 'home

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
(location 'bob) => 'home
(location ‘bob) => 'office

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
(location 'bob) => 'home
(location 'bob) => 'office
(location ‘bob) => ‘home

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
(location 'bob) => 'home
(location 'bob) => 'office
(location ‘bob) => ‘home
(location 'bob) => 'home

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
(location 'bob) => 'home
(location 'bob) => 'office
(location ‘bob) => ‘home
(location 'bob) => 'home

Stochastic Memoization

(Goodman et al., 2008; Johnson et al., 2007)

Stochastic Memoization

 (Goodman et al., 2008; Johnson et al., 2007)- Adaptor Grammars:Anything that can be computed can be stored and reused probabilistically.

Stochastic Memoization

 (Goodman et al., 2008; Johnson et al., 2007)- Adaptor Grammars:Anything that can be computed can be stored and reused probabilistically.
- Memoization distribution: Pitman-Yor Processes (Pitman \& Yor, 1995).

Stochastic Memoization

 (Goodman et al., 2008; Johnson et al., 2007)- Adaptor Grammars:Anything that can be computed can be stored and reused probabilistically.
- Memoization distribution: Pitman-Yor Processes (Pitman \& Yor, 1995).
- Stochastic memoization + PCFGs $=$ Adaptor Grammars.

Pitman-Yor Process

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
- $b>-a$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
- $b>-a$

Probability of Reuse

$$
\frac{y_{i}-a}{N+b}
$$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
y_{i} : Total number of observations of value i
- $b>-a$

Probability of Reuse $\frac{y_{i}-a}{N+b}$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
- $b>-a$
y_{i} : Total number of observations of value i
N : Total number of observations

Probability of Reuse

$$
\frac{y_{i}-a}{N+b}
$$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
- $b>-a$

Probability of Reuse

$$
\frac{y_{i}-a}{N+b}
$$

y_{i} : Total number of observations of value i
N : Total number of observations

Probability of Novelty

$$
\frac{a \cdot K+b}{N+b}
$$

Pitman-Yor Process

- Generalization of the Chinese Restaurant Process
- Two parameters:
- $a \in[0, I]$
- $b>-a$

Probability of Reuse

$$
\frac{y_{i}-a}{N+b}
$$

y_{i} : Total number of observations of value i
N : Total number of observations
K : Total number of values
Probability of Novelty

$$
\frac{a \cdot K+b}{N+b}
$$

(func argl ... argN)

(PYMem a b func)

$\mathrm{N}=0$
$\mathrm{~K}=0$

$v_{4} \sim(f u n c$ arg1 ...)

Samples: v_{4}

$$
\underset{\frac{\mathrm{N}=\mathrm{I}}{\mathrm{~K}=\mathrm{I}} \uparrow \substack{\mathrm{v}_{4}}}{\substack{1-a \\ \frac{a \cdot 1+b}{1+b}}}
$$

Samples: v_{4}

$$
\begin{aligned}
& \frac{y_{i}-a}{N+b} \\
& \substack{\mathrm{~N}=1 \\
\mathrm{~K}=1} \\
& \underbrace{\mathrm{v}_{4}}_{\frac{1-a}{1+b}} \frac{a \cdot 1+b}{1+b} \cdots \cdots
\end{aligned}
$$

Samples: v_{4}

Samples: v_{4}

$$
\begin{aligned}
& a \cdot K+b \\
& N+b
\end{aligned}
$$

Samples: v_{4}

$$
\underset{\frac{\mathrm{N}=\mathrm{I}}{\mathrm{~K}=\mathrm{I}} \uparrow \substack{\mathrm{v}_{4}}}{\substack{1-a \\ \frac{a \cdot 1+b}{1+b}}}
$$

Samples: v_{4}

$$
\begin{aligned}
& \mathrm{N}=\mathrm{I} \\
& \mathrm{~K}=\mathrm{I} \\
& \frac{\mathrm{v}_{4}}{1+b} \frac{a \cdot 1+b}{1+b}
\end{aligned}
$$

Samples: v_{4}

$$
\underset{\frac{\mathrm{N}}{\mathrm{~N}=2} \mathrm{~K}=1}{\substack{1-a \\ \frac{1}{1+b}}}
$$

Samples: v_{4}

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathrm{~K}=\mathrm{I}
\end{aligned}
$$

Samples: v_{4}

$\mathrm{v}_{1} \sim($ func arg1 ...)

$$
\underset{\frac{\mathrm{N}=2}{\mathrm{~K}=1} \downarrow \overbrace{\frac{1-a}{1+b}} \frac{a \cdot 1+b}{1+b}}{\mathrm{v}_{4}}
$$

Samples: v_{4}

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathrm{~K}=2 \\
& \frac{\mathrm{v}_{4}}{1+b} \frac{a \cdot 1+b}{1+b}
\end{aligned}
$$

Samples: $\mathbf{v}_{4}, \mathbf{v}_{1}$

Samples: $\mathrm{v}_{4}, \mathrm{v}_{1}$

Samples: $\mathbf{v}_{4}, \mathbf{v}_{1}$

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathrm{~K}=2
\end{aligned}
$$

Samples: $\mathrm{v}_{4}, \mathrm{v}_{1}$

$$
\begin{aligned}
& \mathrm{N}=2 \\
& \mathrm{~K}=2
\end{aligned}
$$

Samples: $\mathrm{v}_{4}, \mathrm{v}_{1}$

Samples: $\mathbf{v}_{4}, \mathbf{v}_{1}, \mathbf{v}_{4}$

Samples: $\mathbf{v}_{4}, \mathbf{v}_{1}, \mathbf{v}_{4}$

Properties of PYPs

Properties of PYPs

- Rich get richer, concentrates distribution on a few values.

Properties of PYPs

- Rich get richer, concentrates distribution on a few values.
- Prefers fewer customers/tables/tables-percustomer.

Properties of PYPs

- Rich get richer, concentrates distribution on a few values.
- Prefers fewer customers/tables/tables-percustomer.
- Prefers to generate novel values proportional to how often novelty has been generated in the past.

Adaptor Grammars (Johnson et al., 2007)

(define adapted-unfold
(PYMem a b
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Properties of Adaptor Grammars

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).
- Can compute novel items productively using base system.

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).
- Can compute novel items productively using base system.
- Build new stored trees recursively.

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).
- Can compute novel items productively using base system.
- Build new stored trees recursively.
- Only reuse complete subtrees (on adapted nonterminals).

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).
- Can compute novel items productively using base system.
- Build new stored trees recursively.
- Only reuse complete subtrees (on adapted nonterminals).

Properties of Adaptor Grammars

- Reuse previous computations (subtrees).
- Can compute novel items productively using base system.
- Build new stored trees recursively.
- Only reuse complete subtrees (on adapted nonterminals).

Reusability for Adaptor Grammars

Reusability for Adaptor Grammars

I. Always possible to use base grammar.

Reusability for Adaptor Grammars

I. Always possible to use base grammar.
2. Fully recursive.

Fragment Grammars via Probabilistic Programming

I. Stochastic computation via unfold
2. Stochastic reuse via memoization
3. Partial computations via stochastic laziness

Goal: Represent Partial Computations

Goal: Represent Partial Computations

Variables represent "delayed" instructions for later computation

Adj -ity $\widehat{\mathrm{V}}-\mathrm{able}$

Lazy and Eager Evaluation

Lazy and Eager Evaluation

- Eager Evaluation: Do as much work as early as possible.

Lazy and Eager Evaluation

- Eager Evaluation: Do as much work as early as possible.
- Lazy Evaluation: Delay work until it is absolutely necessary to continue computation.

Example

(define add3
(lambda (x y z)
(+ x y z))

Eager Evaluation

(add3 (+ 123) (* 24) (-31)

Eager Evaluation

(add3 (+ 123) (* 24) (-3 1))

Eager Evaluation

(add3 6 (* 24) (- 3 1))

Eager Evaluation

(add3 6 (* 24) (- 3 1))

Eager Evaluation

(add3 68 (- 3 1))

Eager Evaluation

(add3 68 (- 3 1))

Eager Evaluation

(add3 68 2)

Eager Evaluation

(define add3

Eager Evaluation

(define add3

Eager Evaluation

16

Lazy Evaluation

(add3 (+ 123) (* 24) (- 31))

Lazy Evaluation

(define add3

Lazy Evaluation

(define add 3
(lambda (x y z)

$$
(+ \text { x y z))) }
$$

Lazy Evaluation

(define add3
(lambda (x y z)

$$
(+x \text { y } z)))
$$

$(+\underbrace{\left.\begin{array}{lll}\left.\begin{array}{lll}1 & 2 & 3\end{array}\right) & (\underbrace{\begin{array}{ll}* & 2\end{array}}_{\mathrm{Y}} 4\end{array}\right)}_{\mathrm{x}}(\underbrace{\begin{array}{lll}-3 & 1\end{array}}_{\mathrm{z}})$
Argument expressions are delayed until their values are needed by another computation.

Lazy Evaluation

$$
\left(\begin{array}{cc}
+ & 1 \\
\text { Primitive }+ \\
\text { Procedure forces } \\
\text { evaluation of } \\
\text { arguments. }
\end{array}\right.
$$

Lazy Evaluation

$$
\text { (+ (+ } 123 \text {) (* } 24 \text {) (- } 3 \text { 1)) }
$$

Lazy Evaluation

$$
(+16 \text { (* } 24)(-31))
$$

Lazy Evaluation

$$
(+16 \text { (* } 24)(-31))
$$

Lazy Evaluation

$$
(+168(-31))
$$

Lazy Evaluation

$$
(+168(-31))
$$

Lazy Evaluation

$$
(+1682)
$$

Lazy Evaluation

16

λ-calculus: Order of

 Evaluation
λ-calculus: Order of

Evaluation

- Applicative order (eager evaluation): evaluate arguments first, then apply function.

λ-calculus: Order of

Evaluation

- Applicative order (eager evaluation): evaluate arguments first, then apply function.
- Normal order (lazy evaluation): copy arguments into procedure, only evaluate when needed.

λ-calculus: Order of

Evaluation

- Applicative order (eager evaluation): evaluate arguments first, then apply function.
- Normal order (lazy evaluation): copy arguments into procedure, only evaluate when needed.
- Church-Rosser theorem: Order doesn't matter for deterministic λ-calculus.

λ-calculus: Order of

Evaluation

- Applicative order (eager evaluation): evaluate arguments first, then apply function.
- Normal order (lazy evaluation): copy arguments into procedure, only evaluate when needed.
- Church-Rosser theorem: Order doesn't matter for deterministic λ-calculus.
- Does matter for $\Psi \lambda$-calculus!

$\Psi \lambda$-calculus: Order of Evaluation

 Evaluation}
(define same?
(lambda (x)
(equal? x x)))

$\Psi \lambda$-calculus: Order of Evaluation

 Evaluation}
(define same?
(lambda (x)
(equal? x x)))

$\Psi \lambda$-calculus: Order of

Evaluation

(define same?

(lambda (x)
(equal? x x)))
(same? (flip))

$\Psi \lambda$-calculus: Order of

Evaluation

(define same?

(lambda (x)
(equal? x x)))
$\underset{\text { eager }}{ } P($ true $)=1$
(same? (flip))

$\Psi \lambda$-calculus: Order of

Evaluation

(define same?
(lambda (x)
(equal? x x)))
(same? (flip))
lazy $P($ true $)=1 / 2$

Tradeoff

- Laziness allows you to delay computation and, thus, preserve randomness and variability until the last possible moment.
- Eagerness allows you to determine random choices early in computation and, thus, share choices across different parts of a program.

Random Evaluation Order

Random Evaluation Order

- Idea: Stochastically mix lazy and eager evaluation in $\Psi \lambda$-calculus.

Random Evaluation Order

- Idea: Stochastically mix lazy and eager evaluation in $\Psi \lambda$-calculus.
- Ultimately allow learning of which computations should be performed in advance and which should be delayed.

Random Evaluation Order

- Idea: Stochastically mix lazy and eager evaluation in $\Psi \lambda$-calculus.
- Ultimately allow learning of which computations should be performed in advance and which should be delayed.
- Assume eager evaluation strategy and add delay primitive.

Random Evaluation Order

- Idea: Stochastically mix lazy and eager evaluation in $\Psi \lambda$-calculus.
- Ultimately allow learning of which computations should be performed in advance and which should be delayed.
- Assume eager evaluation strategy and add delay primitive.
- Apply to unfold (can be applied fully generally).

Stochastic Lazy

 unfold

 unfold}
(define stochastic-lazy-unfold (lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Stochastic Lazy

 unfold

 unfold}
(define stochastic-lazy-unfold (lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Stochastic Lazy

 unfold

 unfold}
(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol)) (stochastic-lazy-unfold symbol))))

Stochastic Lazy

 unfold

 unfold}
(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))

Computation Trace with Delay

Computation Trace with Delay

Reusing Delayed Computations

Reusing Delayed Computations

- Need to be able to reuse partial evaluations.

Reusing Delayed Computations

- Need to be able to reuse partial evaluations.
- Memoize stochastically lazy unfold.

Fragment Grammars

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

Fragment Grammar Reusable Computations

Fragment Grammar Reusable Computations

I. Always possible to use base grammar.

Fragment Grammar Reusable Computations

I. Always possible to use base grammar.
2. Fully recursive.

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.
3. English Derivational Morphology
4. Conclusion

Five Models

Five Models

- 4 approaches to productivity and reuse.

Five Models

- 4 approaches to productivity and reuse.
- Capture historical proposals from the literature.

Five Models

- 4 approaches to productivity and reuse.
- Capture historical proposals from the literature.
- State-of-the-art probabilistic models.

Five Models

- 4 approaches to productivity and reuse.
- Capture historical proposals from the literature.
- State-of-the-art probabilistic models.
- Allow for variability and learning.

MDPCFG

Multinomial-Dirichlet Context-Free Grammars
 (Full-Parsing)

- All generalizations are productive
- Formalization: Multinomial-Dirichlet Probabilistic Context-free Grammar (MDPCFG; Johnson, et al. 2007a)

113

MAG

MAP Adaptor Grammars

(Full-entry)

- Store whole form after first use.
- Formalization: Adaptor Grammars (AG; Johnson, et al. 2007).
- Always possible to compute productively with small probability; Fully recursive.
- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).

114

DOPI/GDMN

Data-Oriented Parsing

(Exemplar-based)

- Store all generalizations consistent with input
- Formalization: Data-Oriented Parsing I (DOPI;Bod, I998), DataOriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)
- Recently proposed as models of syntax (e.g., Snider, 2009; Bod, 2009)

FG

Fragment Grammars (Inference-based)

- Store best set of subcomputations for explaining the data.
- Formalization: Fragment Grammars (FG; O’Donnell, et al. 2009)
- Generalization of Adaptor Grammars

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.
3. English Derivational Morphology
4. Conclusion

English Derivational Morphology

Productive	+ness (goodness), +ly (quickly)
Semi-productive	+ity (ability), +or (operator)
Unproductive	+th (width)

Simulations

- Words from CELEX.
- Extensive heuristic parsing/hand correction.
- Input format.
- No phonology or semantics.

Derivational Inputs

English Derivational Morphology

Productive	+ness (goodness), + +ly (quickly)
Semi-productive	+ity (ability), +or (operator)
Unproductive	+th (width)

I. Individual suffix productivity differences (-ness/-ity/-th).
2. Suffix sequences.

English Derivational Morphology

Productive	+ness (goodness), +ly (quickly)
Semi-productive	+ity (ability), +or (operator)
Unproductive	+th (width)

I. Individual suffix productivity differences (-ness/-ity/-th).
2. Suffix combinations.

Productivity

- No gold-standard dataset or measure.
- E.g., Large databases of wug-tests or naturalness judgments.
- Analyses.
I. Examples of highly productive affixes.

2. Convergence with other theoretical measures.

How is Productivity Represented?

- Relative probability of fragments with or without variables.

Productivity Analyses

I. Examples of highly productive suffixes.
2. Convergence with other theoretical measures.

Top 5 Most Productive Suffixes

MDPCFG (Full-Parsing)

Suffix	Example
ion $: \mathrm{V}>\mathrm{N}$	regression
ly:Adj $>$ Adv	quickly
ate: $\mathrm{BND}>\mathrm{V}$	segregate
ment $: \mathrm{V}>\mathrm{N}$	development
er: $\mathrm{V}>\mathrm{N}$	talker

DOP| (Exemplar)

Suffix	Example
ion $: \mathrm{V}>\mathrm{N}$	regression
er $: \mathrm{V}>\mathrm{N}$	talker
ment $: \mathrm{V}>\mathrm{N}$	development
ate: $\mathrm{BND}>\mathrm{V}$	segregate
ly:Adj $>$ Adv	quickly

MAG (Full-listing)

Suffix	Example
$l y: A d j>A d v$	quickly
ion $: \mathrm{V}>\mathrm{N}$	regression
$e r: \mathrm{V}>\mathrm{N}$	talker
$l y: \mathrm{V}>$ Adv	bitingly
$y: \mathrm{N}>$ Adj	mousey

GDMN (Exemplar)

Suffix	Example
ion: $\mathrm{V}>\mathrm{N}$	regression
ly:Adj $>\mathrm{Adv}$	quickly
ment $: \mathrm{V}>\mathrm{N}$	development
er: $\mathrm{V}>\mathrm{N}$	talker
ate: $\mathrm{BND}>\mathrm{V}$	segregate

Top 5 Most Productive Suffixes

MDPCFG (Full-Parsing)

Suffix	Example
ion $: \mathrm{V}>\mathrm{N}$	regression
ly:Adj $>$ Adv	quickly
ate: $\mathrm{BND}>\mathrm{V}$	segregate
ment $: \mathrm{V}>\mathrm{N}$	development
er: $\mathrm{V}>\mathrm{N}$	talker

DOP

(Exemplar)	
Suffix	Example
ion: $\mathrm{V}>\mathrm{N}$	regression
er: $>\mathrm{N}$	talker
ment: $>\mathrm{N}$	development
ate: $\mathrm{BND}>\mathrm{V}$	segregate
ly:Adj $>$ Adv	quickly

MAG (Full-listing)

Suffix	Example
$l y: A d j>A d v$	quickly
ion $: \mathrm{V}>\mathrm{N}$	regression
$e r: \mathrm{V}>\mathrm{N}$	talker
$l y: \mathrm{V}>$ Adv	bitingly
$y: \mathrm{N}>$ Adj	mousey

GDMN (Exemplar)

Suffix	Example
ion: $\mathrm{V}>\mathrm{N}$	regression
ly:Adj $>$ Adv	quickly
ment $: \mathrm{V}>\mathrm{N}$	development
er $: \mathrm{V}>\mathrm{N}$	talker
ate:BND $>\mathrm{V}$	segregate

Top 5 Most Productive Suffixes

MDPCFG (Full-Parsing)

Suffix	Example
ion $: \mathrm{V}>\mathrm{N}$	regression
ly $: \mathrm{Adj}>\mathrm{Adv}$	quickly
ate $: \mathrm{BND}>\mathrm{V}$	segregate
ment $\mathrm{V}>\mathrm{N}$	development
er: $\mathrm{V}>\mathrm{N}$	talker

		$\begin{gathered} \text { Suffix } \\ \text { ly:Adj }>\text { Adv } \end{gathered}$	Example quickly
		ion: $\mathrm{V}>\mathrm{N}$	regression
FG (Inference-based)		$\begin{gathered} e r: \mathrm{V}>\mathrm{N} \\ l y: \mathrm{V}>\mathrm{Adv} \end{gathered}$	talker bitingly
Suffix Example $l y:$ Adj $>$ Adv quickly er: $\mathrm{V}>\mathrm{N}$ talker ness:Adj $>\mathrm{N}$ tallness $y: \mathrm{N}>$ Adj mousey er: $\mathrm{N}>\mathrm{N}$ prisoner		$y: N>A d j$	mousey
		GDMN	(Exemplar)
		Suffix	Example
		ion:V $>\mathrm{N}$	regression
		$\begin{gathered} \text { ly:Adj>Adv } \\ \text { ment: } \mathrm{V}>\mathrm{N} \\ e r: \mathrm{V}>\mathrm{N} \\ \text { ate: } \mathrm{BND}>\mathrm{V} \end{gathered}$	quickly development talker segregate

Productivity Analyses

I. Examples of highly productive suffixes.
2. Convergence with other theoretical measures.

Baayen’s Corpus-Based Measures

- Baayen's $\mathcal{P} / \mathcal{P}^{*}$ (e.g., Baayen, 1992)
- $\mathcal{P}: \operatorname{Prob}($ NOVEL | SUFFIX) i.e. rate of growth of forms with suffix
- \mathcal{P}^{*} : Prob(SUFFIX | NOVEL) i.e. rate of growth of vocabulary due to suffix

Productivity Correlations

($\mathcal{P} / \mathcal{P}^{*}$ values from Hay \& Baayen, 2002)

Model	FG (Inference-based)	MDPCFG (Full-parsing)	MAG (Full-listing)	$\underset{\text { (Evemplarbosed) }}{\text { DOPI }}$	GDEMND
\mathcal{P}	0.907	-0.0003	0.692	0.346	0.143
\mathcal{P}^{*}	0.662	0.480	0.568	0.402	0.500

English Derivational Morphology

Productive	+ness (goodness), + +ly (quickly)
Semi-productive	+ity (ability), +or (operator)
Unproductive	+th (width)

I. Individual suffix productivity differences (-ness/-ity/-th).
2. Suffix combinations.

Suffix Combinations

I. Suffix Ordering.

2. Generalization of Suffix Combinations.

Suffix Combinations

I. Suffix Ordering.
2. Generalization of Suffix Combinations.

Suffix Ordering

- Derivational morphology hierarchical and recursive.
- Multiple suffixes can appear in a word.

Suffix Combinations

Suffix Combinations

- Many, many combinations of suffixes do not appear in words (even taking into account categories).

Suffix Combinations

- Many, many combinations of suffixes do not appear in words (even taking into account categories).
- Fabb (1988).

Suffix Combinations

- Many, many combinations of suffixes do not appear in words (even taking into account categories).
- Fabb (1988).
- 43 suffixes.

Suffix Combinations

- Many, many combinations of suffixes do not appear in words (even taking into account categories).
- Fabb (1988).
- 43 suffixes.
- 663 possible pairs.

Suffix Combinations

- Many, many combinations of suffixes do not appear in words (even taking into account categories).
- Fabb (1988).
- 43 suffixes.
- 663 possible pairs.
- Only 50 exist.

Complexity-Based Ordering (Hay, 2002)

On average, more productive suffixes appear after (outside of) less productive suffixes.

Measuring Ordering

- Examine attested orderings in corpus.
- Mean rank of each affix (Plag and Bayen, 2009).
- Graph-theoretic statistic.
- Measures degree to which each suffix tends to occur after other suffixes (on average).
- Compute log odds of suffix appearing second versus first for each model.

Mean Rank Correlations

Model	FG (Inference-based)	MDPCFG (Full-parsing)	MAG (Full-listing)	DOPI	$\underset{(E \text { EEemplarbosesed) }}{\text { GDMN }}$
Mean Rank	0.568	0.275	0.424	0.452	0.431

Suffix Combinations

I. Suffix Ordering.
2. Generalization of Suffix Combinations.

Generalizable Combinations

Frozen Combinations

Generalizable
Combinations

Generalizable Combinations

Frozen Combinations
Generalizable
Combinations

-ity v. -ness

- -ness more productive than -ity.
- -ity more productive than -ness after:
-ile, -able, -(i)an, -ic.
(Anshen \& Aronoff, I98I;Aronoff \& Schvaneveldt, I978; Cutler, I980)

Two Frequent Combinations:

-ivity v. -bility

- -ive + -ity: -ivity (e.g., selectivity).
- Speaker prefer to use -ness with novel words (Aronoff \& Schvaneveldt, 1978).
- depulsiveness $>$ depulsivity.
- -ble + -ity: -bility (e.g., sensibility).
- Speakers prefer to use -ity with novel words (Anshen \& Aronoff, 198I).
- remortibility $>$ remortibleness.
-ivity v. -bility

-ivity v. -bility

-ivity v. -bility

-ivity v. -bility

MDPCFG
Leive

MAG

(Exemplar-based)

152

GDMN

(Exemplar-based)

153

FG
(Inference-based)

Discussion

- Inference-based approach able to correctly ignore high token frequency of -ivity because it balances a tradeoff.
- Other models use type or token frequencies.

Outline

I. The Proposal.
2. Five Models of Productivity and Reuse.
3. Empirical Evaluation

The English Past Tense
English Derivational Morphology
4. Conclusion

Conclusion

Conclusion

- View productivity and reuse as an inference.

Conclusion

- View productivity and reuse as an inference.
- Link between theory of programming languages and Bayesian models.

Conclusion

- View productivity and reuse as an inference.
- Link between theory of programming languages and Bayesian models.
- Able to capture dominant patterns without semantic and phonological structure.

Conclusion

- View productivity and reuse as an inference.
- Link between theory of programming languages and Bayesian models.
- Able to capture dominant patterns without semantic and phonological structure.
- Future work...

Thanks!

