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vowel laxing (e.g., inane v. inanity)
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® But..
® -ile/-al/-able/-ic/-(i)an
® Bayesable
® Bayesability

® COOI’ty ’S nOt tl‘ylng (from Huffington Post)

Wednesday, November 16, 2011



Wednesday, November 16, 2011



-th

® warmth, width, truth, depth, ...

Wednesday, November 16, 2011



-th

® warmth, width, truth, depth, ...
e Adj>N

Wednesday, November 16, 2011



-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth




-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

Wednesday, November 16, 2011



-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

® roomth, greenth

Wednesday, November 16, 2011



-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

® roomth, greenth

Many enjoy the warmth,Vikings prefer the coolth

5

Wednesday, November 16, 2011



Problem of Productivity




Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

Wednesday, November 16, 2011



Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

® How are such differences in productivity
represented by the adult language user?

Wednesday, November 16, 2011



Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

® How are such differences in productivity
represented by the adult language user?

® How are such differences learned by the
child?
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Bayesian Rational
AnaIYSiS (Anderson, 1992)

® Find subcomputations which provide best
explanation for the data.

® \What evidence is available to the learner?

®  Which patterns give rise to productivity, which patterns imply reuse?
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Subcomputations as Predictions

Prediction of future reusability
across computations
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Subcomputations as Predictions

Prediction of
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novelty/
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Subcomputations as Predictions

Tradeoff
between

productivity
and reuse

\
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The Formal Model:
Fragment Grammars

® Generalization of Adaptor Grammars (johnson et al., 2007).

® Bayesian non-parametric distributions (pitman-Yor).

® Notion of compiling subcomputations via tools

from probabilistic programming (Church language; Goodman
et al., 2008).

® Stochastic memoization gomson e, 2007 Of stochastically lazy/
eager programs.

22
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Languages for probability

® Purposes of a language:
® Makes writing down models easier.
® Makes reasoning about models clearer.
e Supports efficient inference.

® Gives ideas about mental representation.
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(double 3)| => 6
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((repeat double) 3) => 12




A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

(double 3)| => 6

(define repeat

(A (£) (A (%) (£ (f x)))))

((repeat double) 3) => 12

(define 2nd-derivative (repeat derivative))
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\PA-calculus

® How can we use these ideas to describe
probabilities?

® PA-calculus: a stochastic variant.

® We introduce a random primitive £1ip, such
that (£1ip) reduces to a random sample t/f£.

® The usual evaluation rules now result in
sampled values. This induces distributions.

® This calculus, plus primitive operators and
data types, gives the probabilistic
programming language Church.
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Church

Random primitives:

(define a (flip 0.3))
(define b (flip 0.3))
(define ¢ (flip 0.3))
(+ a b ¢)

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)
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Random primitives:

(define a (flip 0.3)) |=> 1
(define b (flip 0.3)) |=> 0
(define ¢ (flip 0.3)) |=> 1
(+ a b ¢) => 2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)
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Church

Random primitives:

(define a (flip 0.3))|=> 10
(define b (flip 0.3))|=> 0 0
(define ¢ (flip 0.3)) |=> 1 0
(+ a b ¢) => 20

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)
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Church

Random primitives: >
(define a (flip 0.3))|=> 100 ;é
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 101 3
(+ a b c) => 201..2

0 I 2 3

Theorem: Any computable distribution can
be represented by a Church expression.

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)
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Church

Random primitives: >
(define a (flip 0.3)) => 100 %
(define b (flip 0.3))|=> 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b ¢) => 201 2

Conditioning (inference):

(query g
(define a (flip 0.3)) g
(define b (flip 0.3)) >
(define c¢ (flip 0.3)) => 2
((+ a b ¢) Query ) 5

A
(= (+ ab) 1)) Condition, 0 12

Goodman, Mansinghka, Roy,
. must be true | ponawitz, Tenenabum (2008)
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Inference

® Universal inference: an algorithm that

does inference for any Church query.
(And hopefully is efficient for a wide class.)

® As a modeler, save implementation time:
rapid prototyping.

® For cognitive science, shows that the mind
could be a universal inference engine.
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(define flu (flip 0.2))
(define TB (flip 0.01))
(define cough
(Lf (or flu TB)

(flip 0.8) (flip 0.1)))
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E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(def:no TB (£flip 0.01))
(define cough
(Lf (or flu TB)
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Fragment Grammars via

Probabilistic Programming
(Church)

® Alternative to more standard mathematical
formalization (see, O’'Donnell, 201 I).

® Highlights relationship between formalisms

(PCFGs, Adaptor Grammars, Fragment
Grammars).

® Cross fertilization of ideas from the theory
of programming languages.

® Caveat: Church inference algorithms do not
work well for these models.
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Goals

|. Get across intuitions.

2. Give flavor of relationships between

modeling ideas and programming ideas.
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(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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(define adapted-unfold
(PYMem a b
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
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(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))
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Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness




Context Free Grammars
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Declarative Knowledge
of Constituent Structure

Py, W — N

Dw. W — V

Dy W — AdJ

D W — Adv

Py, N — Adj -ness
Dy, N —> Adj -ity
Dy N — electro- N
Dys N —> magnel

Py N — dog

Dv, v — N 'Zf Y
Dy, V —> Adj -12€
Dy Vv — re- v
Dy, V. —> agree

Dy, V — count

Dagj, Ad] —> dis- Adj
Dagj, Adj — V -able
Pagj, Adj —> N -1C
Pagj, Adj — N -al
Dagj, Adj —> tall

Prav, Adv —> Adj -ly
Dadv, Adv —> {today
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Declarative Knowledge
of Constituent Structure

(define sample-rhs
(lambda (nonterminal)
(case nonterminal

((’W) (multinomial (list (list ’N) (list ’V) (list ’Adj) (list ’Adv) ... )
(1ist Py, Pwy Pz Pwyg +-:)))

((°N) (multinomial (list (list ’Adj ’ness) (list ’Adj ’ity) (1list ’electro ’N) (list ’magnet) (list ’dog)
(list PNy, PNo PNy PNy PNg ++2)))

(C°V) (multinomial (list (list ’N ’ify) (list ’Adj ’ize) (list ’re ’V) (list ’agree) (list ’count) ...)
(list pv, Pvy PVs PVy PVs «-:)))

((’Adj) (multinomial (list (list ’dis ’Adj) (list ’V ’able) (list °’N ’ic) (list ’N ’al) (list ’tall) ...)

(1ist P aqj; P adjo P Adjs P Adjs P Adjs ++-)))
((’Adv) (multinomial (list (list ’Adj ’ly) (list ’today) ...)

(list p w, Pug «++2)))))

--)

Wednesday, November 16, 2011



Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))




Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

\

Choose a right-hand side for

symbol:
N — Adj -ity




Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))




Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Recursively apply unfold to
each symbol on right-hand side




Computation Trace

(unfold ‘N)




Computation Trace

(unfold ‘N)

(define unfold
(lambda (symbol)

(if (terminal? symbol)

symbol
(map unfold

(sample-rhs symbol)
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Computation Trace

(unfold ‘N)

(sample-rhs

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol

(map unfold |(sample-rhs symbol)

I:Dq')
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Computation Trace

(unfold ‘N)

(sample-rhs ‘N)




Computation Trace

(unfold ‘N)

(sample-rhs ‘N) N — Adj -ity




Computation Trace

(unfold ‘N)

(sample-rhs ‘N)




Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

TN

(unfold ‘Adj) (unfold ‘1ity)




Computation Trace

(unfold *N)

(sample-rhs °N)

(unfold *Adj) (unfo;; 'ity)
(sample-lhs *Adj) ’iLy
f///////A\\\\\\\\

(unfold V) (unfeld ’able)
(samplelrhs V) ’alle

(unfold ‘agree)

‘agree
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Trace

(unfold °*N)

(sample-rhs °*N)

(unfold *Adj) (unfold *ity)

(sample-rhs *Adj) *ity
(unfold V) (unfeld ’able)
(sample-rhs °V) ‘able

(unfold ‘agree)

‘agree

as lree

Ad

V

agree

J
~able

-1y
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Reusability for PCFGs

N N N N
Ad ] -1ty /Ad] -NESSs Adj ity Ad] -11Y
Py P P P
V -able V -able V _able V -able

47
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Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness




Memoization




Memoization

® Store outputs of earlier computations in a
table
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Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored
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Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored

® When function is called with new
arguments, then compute and store in table
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Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored

® When function is called with new
arguments, then compute and store in table

® Higher-order function: mem
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Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (£flip 0.5) ‘blue ‘brown)))
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Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (£flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
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Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
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Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue
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Reuse through
Memoization

(define eye-color
(lambda (person)

(if (flip 0.5)

(eye-color
(eye-color
(eye-color
(eye-color

‘bob)
‘bob)
‘bob)
‘bob)

‘blue

‘brown) ))

‘blue
‘brown
‘blue
‘brown
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Reuse through
Memoization

(define eye-color
(lambda (person)

(if (flip 0.5)

(eye-color
(eye-color
(eye-color
(eye-color

‘bob)
‘bob)
‘bob)
‘bob)

‘blue

‘brown) ))

‘blue
‘brown
‘blue
‘brown
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Reuse through
Memoization

(define eye-color
(mem (lambda (person)
(1f (flip 0.5) ‘blue brown))))
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Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same
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Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same

(eye-color ‘bob) => ‘blue
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Reuse through
Memoization

Anywhere in the program

where (eye-color ‘bob)
is used, we will reuse same

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

(eye-color ‘bob) => ‘blue
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Reuse through
Memoization

Anywhere in the program

where (eye-color ‘bob)
is used, we will reuse same

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

(eye-color ‘bob) => ‘blue
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Stochastic Reusability

® Deterministic memoization always returns
same value after first call, but sometimes
we want to probabilistically favor
reuse.
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Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))




Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
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Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
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Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
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Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand
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Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand
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Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))
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Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
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Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
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Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home
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Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)
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Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

55

Wednesday, November 16, 2011



Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be

computed can be stored and reused
probabilistically.

® Memoization distribution: Pitman-Yor
Processes (pitman &Yor, 1995).

55
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Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

® Memoization distribution: Pitman-Yor
Processes (pitman &Yor, 1995).

® Stochastic memoization + PCFGs =
Adaptor Grammars.

55
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Pitman-Yor Process




Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process
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® [wo parameters:
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Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:

® ac0,l]

Wednesday, November 16, 2011



Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
® ac[0l]

® b> -
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Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
® ac[0l]
® b> -
Probability of Reuse

Y — a
N + b




Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac|[0l] observations of value i

® b> -

Probability of Reuse
Yi — a

N +b
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Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac|[0l] observations of value i

N: Total number of observations
® b> -

Probability of Reuse
Yi — a

N +b
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Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac [O,I] observations of value i
N: Total number of observations

® b> -
Probability of Reuse Probability of Novelty
Yi — a a- K+ 0b

N +b N +0b
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Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac [O,I] observations of value i
N: Total number of observations

®b>-a K Total number of values
Probability of Reuse Probability of Novelty
Yi — a a- K+ 0b

N +b N +0b
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(func argl ... argN)




(PYMem a b func)

o O




o O
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v4- (func argl

c.ol)
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Samples: vy
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OO

l—a a-1+b
1+b 1+0b

Samples: vy
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N + b

K=1
l—a a-1+b
1+b 1+b

Samples: vy




Samples: vy




a- KK +0b
N + b

K=1

l—a a-1+b
1+b 1+0b

Samples: vy




OO

l—a a-1+b
1+b 1+0b

Samples: vy
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o | (o)

l—a a-1+b
1+b 1+0b

Samples: vy
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K=1

l—a a-1+b
1+b 1+0b

Samples: vy




K=1

l—a a-1+b
1+b 1+0b

Samples: vy




vi- (func argl

K=1

l—a a-1+b
1+b 1+0b

Samples: vy
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K=2

l—a a-1+b
1+b 1+0b

Samples: vs, vi




y—a a- K40
N N +b

%@

l—a 1—aa-2+0b
240 2406 240

Samples: va vi




a- KK +0b
N + b

/
=2 [0

l—a 1—aa-2+0b
240 2406 240

Samples: va vi
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A[O[O[OF

l—a 1—aa-2+0b
240 2406 240

Samples: va vi
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A[O[O[OF

l—a 1—aa-2+0b
240 2406 240

Samples: va vi
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N L
1T
N W

OIO0F

l—a 1—aa-2+0b
240 2406 240

Samples: v4, vi, v4
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2—a l—aa-24+50b
34+b6 3+0 340

Samples: v4, vi, v4
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Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.




Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.

® Prefers fewer customers/tables/tables-per-
customer.
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Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.

® Prefers fewer customers/tables/tables-per-
customer.

® Prefers to generate novel values
proportional to how often novelty has
been generated in the past.
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Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
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Properties of Adaptor
Grammars
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Grammars

® Reuse previous computations (subtrees).




Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.
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Properties of Adaptor
Grammars
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® Can compute novel items productively using base
system.

® Build new stored trees recursively.
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Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).
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Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).
N

RN

Adj -1ty

/\
V ~able

agree
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Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).

N N
Ad./\f /\
-4 . :
/J\ ’ AdJ 'Zty
V  -able N
| V -able

agree
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Reusability for Adaptor
Grammars

70




Reusability for Adaptor
Grammars

|. Always possible to use base grammar.

70
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Reusability for Adaptor
Grammars

|. Always possible to use base grammar.
2. Fully recursive.

N N N N

Adj -1ty

Adj -N,e85 Ad ] -1ty '\, /Ad] -11Y
| AL V _ -able Vv _able V  -able
agree | | |

agree COUNT agree

70
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Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness




Goal: Represent Partial

Computations
N

N

Adj -1ty

N
V -able




Goal: Represent Partial
Computations

Variables represent
‘¢ 99 . N
delayed” instructions

for later computation /\

Adj -1ty

N
V -able




Lazy and Eager
Evaluation




Lazy and Eager
Evaluation

® Fager Evaluation: Do as much work as early
as possible.




Lazy and Eager
Evaluation

® Fager Evaluation: Do as much work as early
as possible.

® | azy Evaluation: Delay work until it is
absolutely necessary to continue
computation.
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Example

(define add3
(lambda (x y 2)
(t+ Xy 2)))




Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))




Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))




Eager Evaluation

(add3 6 (* 2 4) (- 3 1))




Eager Evaluation

(add3 6 (* 2 4) (- 3 1))




Eager Evaluation

(add3 6 8 (- 3 1))




Eager Evaluation

(add3 6 8 (- 3 1))




Eager Evaluation

(add3 6 8 2)




Eager Evaluation

(define add3

(lambda (x y z)
(+ xy 2)))

(add3 6 8 2)




Eager Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))
5




Eager Evaluation

16




Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))




Lazy Evaluation

(define add3

(lambda (x y z)
(+ xy 2)))

(add3 (+ 1 2 3) (* 2 4) (- 3 1))




Lazy Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))

(+ (+ 1 2 3) (* 2 4) (- 3 1))
—— N =

X 1% Z




Lazy Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))

(+ (+ 1 2 3) (* 2 4) (- 3 1))
—— N =

X 1% Z

\V

Argument expressions are delayed
until their values are needed by
another computation.
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Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

S

Primitive +
procedure forces
evaluation of
arguments.




Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))




Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))




Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))




Lazy Evaluation

(+ 16 8 (- 3 1))




Lazy Evaluation

(+ 16 8 (- 3 1))




Lazy Evaluation

(+ 16 8 2)




Lazy Evaluation

16




A-calculus: Order of
Evaluation




A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.




A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.

® Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.
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A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.

® Normal order (lazy evaluation): copy

arguments into procedure, only evaluate
when needed.

® Church-Rosser theorem: Order doesn’t
matter for deterministic A-calculus.
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A-calculus: Order of
Evaluation

Apbplicative order (eager evaluation): evaluate
arguments first, then apply function.

Normal order (lazy evaluation): copy

arguments into procedure, only evaluate
when needed.

Church-Rosser theorem: Order doesn’t
matter for deterministic A-calculus.

Does matter for Y A-calculus!
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Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))




Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))




Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

(same? (flip))




Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

P(true) =1

(same? (flip))




Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

\\\\\\

lazy™ P(true) = 1/2

P(true) =1

(same? (flip))




Tradeoff

® | aziness allows you to delay computation
and, thus, preserve randomness and

variability until the last possible moment.

® Fagerness allows you to determine random
choices early in computation and, thus,
share choices across different parts of a

program.
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Random Evaluation
Order




Random Evaluation
Order

® |dea: Stochastically mix lazy and eager
evaluation in YA-calculus.




Random Evaluation
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® |dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

® Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.




Random Evaluation
Order

|dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Assume eager evaluation strategy and add
delay primitive.
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Random Evaluation
Order

|dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Assume eager evaluation strategy and add
delay primitive.

Apply to unfold (can be applied fully
generally).
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Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))
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Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

Wednesday, November 16, 2011



Computation Trace with Delay

(unfold °*N)

(sample-rhs °*N)

(dealy-or-unfold ‘Adj) (delay-or-unfold *ity)

(unfeld ’Adj) (unfold *ity)

(sample-rhs *Adj) ‘ity

(dealy-or-unfold *V) (dealy-or-unfold ‘able)

(delay (unfold *V)) (unfeld ’able)

‘able
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Computation Trace with Delay

(unfold °*N)

(sample-rhs °*N)

(dealy-or-unfold *Adj) (delay-or-unfold *it

(unfold ’Adj) (unfold 'ity)

(sample-rhs ’Adj) ‘ity

(dealy-or-unfold *V) (dealy-cr-unfold ’able)

(delay (unfold *V)) (unfold ’able)

‘able

V

N

Ad;

~able

-1ty
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Reusing Delayed
Computations




Reusing Delayed
Computations

® Need to be able to reuse partial
evaluations.




Reusing Delayed
Computations

® Need to be able to reuse partial
evaluations.

® Memoize stochastically lazy unfold.




Fragment Grammars

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))
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Fragment Grammar
Reusable Computations

Ad ] 1wy AAdj -NesS Adj ity ~Ad] 1y
V able V able / V ) -able V able

|10




Fragment Grammar
Reusable Computations

|. Always possible to use base grammar.

N N N N
Adj -1ty Adj -ness Adj -1ty ~Ad] -1ty
T T T TN
v -able V -able / V ) -able V -able

|10
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Fragment Grammar
Reusable Computations

|. Always possible to use base grammar.
2. Fully recursive.

N N N N
Ad ] -ty AAd] -NesS Adj -ity~. ~Ad] -1y

T T T TN
v -able V -able / V _able V -able

agree agree count agree

|10
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Qutline

|. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion
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® 4 approaches to productivity and reuse.

112

Wednesday, November 16, 2011



Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.
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Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.

® State-of-the-art probabilistic models.

112
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Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.

® State-of-the-art probabilistic models.

® Allow for variability and learning.
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MDPCFG

Multinomial-Dirichlet Context-Free Grammars
(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free
Grammar (MDPCEFG; Johnson, et al. 20073)

N N N N
Adj -1ty /Ad] -NEeSS Ad ] -ty JAd] -1ty

P T T TN
V -able V -able V _able V -able

agree agree count agree
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MAG

MAP Adaptor Grammars
(Full-entry)

- Store whole form after first use.
- Formalization: Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).

4 N N N

Adj -11Y

Adj -Nn.e85 Ad ] -1ty '\, /Ad] -11Y
| =A0LE V _ -able \ _able V  -able
agree | | |

agree COUNT agree

| 14
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DOPI/GDMN

Data-Oriented Parsing
(Exemplar-based)

- Store dll generalizations consistent with input

- Formalization: Data-Oriented Parsing | (DOPI; Bod, 1998), Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod,
2009)
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FG

Fragment Grammars
(Inference-based)

- Store best set of subcomputations for explaining the data.

- Formalization: Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars
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Qutline

|. The Proposal.

2. Five Models of Productivity and Reuse.

-

3. English Derivational Morphology

4. Conclusion
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English Derivational
Morphology

Productive

+ness (goodness),
+|)’ (quickly)

Semi-productive

+it)’ (ability),
+Or (operator)

Unproductive

+th width)

|18
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Simulations

® VWords from CELEX.

® Extensive heuristic parsing/hand correction.
® |nput format.

® No phonology or semantics.
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Derivational Inputs

N
/\
Adj -1ty
V/\-able
aglree
N
/\
V -10M
V/\-ate
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English Derivational

Productive

+Nness (goodness),
+|)’ (quickly)

Semi-productive

+ity (ability),
+Or (operator)

Morphology

Unproductive

+th (width)

. Individual suffix

productivity differences
(-ness/-ity/-th).

. Suffix sequences.
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English Derivational
Morphology

+Nness (goodness),

Productive |
+ |)’ (quickly) -

|. Individual suffix

+ity (ability), Frod/q::?il/hi;:y differences
-ness/-ity/-th).

Semi-productive

+Or (operator) 1
2. Suffix combinations.

Unproductive +th (width)
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Productivity

® No gold-standard dataset or measure.

® E.g, Large databases of wug-tests or
naturalness judgments.

® Analyses.
|. Examples of highly productive affixes.

2. Convergence with other theoretical
measures.
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How is Productivity
Represented!?

® Relative probability of fragments with or
without variables.

N N

P V. Adj  -th
Adj -ness |

wide
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Productivity Analyses

» |. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

125
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Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

1on:V>N Tegression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N Teqgression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N  development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv  quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N  tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Teqgression : 10n:V>N Tegression
er:V>N talker ly:Adj>Adv quickly
ment:N>N  development ment:VN>N  development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate
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Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

1on:V>N Tegression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N Teqgression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N  development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv  quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N _ tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Teqgression : 10n:V>N Tegression
er:V>N talker ly:Adj>Adv quickly
ment:N>N  development ment:VN>N  development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate
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Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

son:V>N reqression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N reqression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N  development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv  quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N  tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Tegression : 1on:V>N Tegression
er:-V>N talker ly:Adj>Adv quickly
ment:N>N  development ment:VN>N  development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate
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Productivity Analyses

|. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

=
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Baayen’s Corpus-Based
Measures

® Baayen’s P/ P* (eg.Bazyen, 1992)

® P: Prob(NOVEL | SUFFIX) i.e. rate of
growth of forms with suffix

® P Prob(SUFFIX | NOVEL) i.e. rate of
growth of vocabulary due to suffix

130




Productivity Correlations

(P/P*values from Hay & Baayen, 2002)

Model

FG

(Inference-based)

MDPCFG

(Full-parsing)

MAG

(Fulllisting)

DOPI

(Exemplar-based)

GDMN

(Exemplar-based)

P*

0.907
0.662

-0.0003
0.480

131

0.692

0.068

0.346
0.402

0.143
0.500
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English Derivational

Productive

+Nness (goodness),

+ |)’ (quickly)

Semi-productive

+ity (ability),
+Or (operator)

Unproductive

+th (width)

132

Morphology

. Individual suffix

productivity differences
(-ness/-ity/-th).

. Suffix combinations.
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Suffix Combinations

|. Suffix Ordering.

2. Generalization of Suffix Combinations.
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Suffix Combinations

» |. Suffix Ordering.

2. Generalization of Suffix Combinations.
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Suffix Ordering

® Derivational morphology hierarchical and
recursive.

® Multiple suffixes can appear in a word.

N
W Sty ] /\-
V/\-able
|

agree aﬁ%rm
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Suffix Combinations
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Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).
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Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

e Fabb (1988).
= 43 suffixes.
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Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

® Fabb (1988).

- 43 suffixes.
- 663 possible pairs.
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Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

® Fabb (1988).

- 43 suffixes.
- 663 possible pairs.

= Only 50 exist.
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Complexity-Based
O rderin g (Hay,2002)

On average, more productive suffixes
appear after (outside of) less
productive suffixes.
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Measuring Ordering

® Examine attested orderings in corpus.

® Mean rank of each affix (Plag and Baayen, 2009).
® Graph-theoretic statistic.

® Measures degree to which each suffix tends
to occur after other suffixes (on average).

® Compute log odds of suffix appearing
second versus first for each model.
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Mean Rank
Correlations

Model (,nferigased) MDPCFG MAG DOPI GDMN

(Full-parsing) (Full-listing) (Exemplar-based) (Exemplar-based)

Mean Rank @ 0.568 0.275 0.424 0.452 0.431
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Suffix Combinations

|. Suffix Ordering.

»2. Generalization of Suffix Combinations.
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Generalizable Combinations

Generalizable

Frozen Combinations L.
Combinations

N

N
J -y
V/\-ate N

ﬁil V -able
ajjirin

141




Generalizable Combinations

Generalizable

Frozen Combinations L.
Combinations

N

N
J -y
V/\-ate ' /\bl
V -able
aﬁfnlrm
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-Ity V. -ness

® -ness more productive than -ity.
® -ity more productive than -ness after:

-ile, -able, -(i)an, -ic.

(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)
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Two Frequent Combinations:

-ivity v. -bility

® -ive + -ity: =ivity (e.g., selectivity).

® Speaker prefer to use -ness with novel words
(Aronoff & Schvaneveldt, 1978).

® depulsiveness > depulsivity.

® -ble + -ity: =bility (e.g., sensibility).

® Speakers prefer to use -ity with novel words
(Anshen & Aronoff, 1981).

® remortibility > remortibleness.

| 44

Wednesday, November 16, 2011



-ivity v. -bility

M -ive Predicted
- _ble redicte

-ness {
o _ ble
-ty
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-ivity v. -bility

&l -ive Predicted
- _ble redicte

-ness Preference for -ness

ble

-ty

|46
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-ivity v. -bility

M -ive Predicted
- _ble redicte

-ness {
o _ ble
1y N . Preference for -ity

|47
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-ivity v. -bility

- -ive Predicted
B -ble

-ness { | |
~ Preceding suffix -ive
o _ ble
-ty i
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-ivity v. -bility

M -ive Predicted
- _ble redicte

-NESS

ble

° - Preceding suffix -ble

-ty
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MDPCFG

(Full-parsing)

B -ive

Predicted : MDPCFG
- - b I e . (Full-parsing)
-NESS

ble . ble ive

T . N

150

Wednesday, November 16, 2011



MAG

(Full-listing)
B -ive . .
Predicted . MDPCFG . MAG
- - b I e . (Full-parsing) : (Full-listing)

-NESS

_ | bl ble ive
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DOPI

(Exemplar-based)
B -ive : . .
Predicted . MDPCFG . MAG . DORPI
- - b I e N (Full-parsing) : (Full-listing) : (Exemplar-based)

-NESS

bl - ble i M ble i - ble i
O] e beve ;I G oble e
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GDMN

(Exemplar-based)
B -ive : : : :
Predicted . MDPCFG . MAG . DOPlI . GDMN
- - b I e N (Full-parsing) : (Full-listing) . (Exemplar-based) (Exemplar-based)
Lr) —
-NESS
el ©  ble ive - . ble ive - ble ive
O . - . . .
-1t
Y g .
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FG

(Inference-based)

l. -ive : ; : ; ;
Predicted . MDPCFG : MAG : DOPI : GDMN : FG
[l -ble '

(Full-parsing) : (Full-listing) . (Exemplar-based) 7 (Exemplar-based) .  (Inference-based)

-NESS

bl - bleive - N¥ - ble i - ble i - bl
o e : e lve : : e lve : e lve : e
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Discussion

® |nference-based approach able to correctly ignore
high token frequency of -ivity because it balances a
tradeoff.

® Other models use type or token frequencies.
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Qutline

|. The Proposal.
2. Five Models of Productivity and Reuse.

3. Empirical Evaluation
The English Past Tense

English Derivational Morphology

-

4. Conclusion

\_
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Conclusion
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® View productivity and reuse as an inference.
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Conclusion

® View productivity and reuse as an inference.

® Link between theory of programming languages
and Bayesian models.

® Able to capture dominant patterns without
semantic and phonological structure.

® [uture work...
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Thanks!
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