Fragment Grammars:
Productivity and Reuse
in Language

Timothy |. O’Donnell

-NESS

Wednesday, November 16, 2011

-NESS

® circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

Wednesday, November 16, 2011

-NESS

® circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

e Adj>N

Wednesday, November 16, 2011

-NESS

® circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

e Adj>N

® grand + -ness

Wednesday, November 16, 2011

-NESS

® circuitousness, grandness, orderliness,
pretentiousness, cheapness, coolness,
warmness, ...

e Adj>N
® grand + -ness

® bHine-scentedness

Wednesday, November 16, 2011

-ity

Wednesday, November 16, 2011

-ty

® verticality, tractability, severity, seniority, inanity,
electricity, ...

Wednesday, November 16, 2011

-ty

® verticality, tractability, severity, seniority, inanity,
electricity, ...

e Adj>N

Wednesday, November 16, 2011

-ty

® verticality, tractability, severity, seniority, inanity,
electricity, ...

e Adj>N

® Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

Wednesday, November 16, 2011

-ty

® verticality, tractability, severity, seniority, inanity,
electricity, ...

e Adj>N

® Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

® The red lantern indicated the ethnicity/
ethnicness of the restaurant

Wednesday, November 16, 2011

-ty

® verticality, tractability, severity, seniority, inanity,
electricity, ...

e Adj>N

® Stress change (e.g., normalness v. normality),
vowel laxing (e.g., inane v. inanity)

® The red lantern indicated the ethnicity/
ethnicness of the restaurant

® *pine-scentedity

Wednesday, November 16, 2011

-ity

Wednesday, November 16, 2011

® But ...

-ity

Wednesday, November 16, 2011

-ty

® But ...

® -ile/-al/-able/-ic/-(i)an

Wednesday, November 16, 2011

-ty

® But ...
® -ile/-al/-able/-ic/-(i)an

® Bayesable

Wednesday, November 16, 2011

-ty

® But ...
® -ile/-al/-able/-ic/-(i)an
® Bayesable

® Bayesability

Wednesday, November 16, 2011

-ty

® But..
® -ile/-al/-able/-ic/-(i)an
® Bayesable
® Bayesability

® COOI’ty ’S nOt tl‘ylng (from Huffington Post)

Wednesday, November 16, 2011

Wednesday, November 16, 2011

-th

® warmth, width, truth, depth, ...

Wednesday, November 16, 2011

-th

® warmth, width, truth, depth, ...
e Adj>N

Wednesday, November 16, 2011

-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

Wednesday, November 16, 2011

-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

® roomth, greenth

Wednesday, November 16, 2011

-th

® warmth, width, truth, depth, ...
e Adj>N

® heallhealth, dead/death, younglyouth, vile/filth,
slow/sloth

® weall/wealth, wroth/wrath, ’merry/mirth

® roomth, greenth

Many enjoy the warmth,Vikings prefer the coolth

5

Wednesday, November 16, 2011

Problem of Productivity

Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

Wednesday, November 16, 2011

Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

® How are such differences in productivity
represented by the adult language user?

Wednesday, November 16, 2011

Problem of Productivity

® Which processes can be used to construct
novel forms (e.g., -ness), which can only be
reused in existing forms (e.g., -th)?

® How are such differences in productivity
represented by the adult language user?

® How are such differences learned by the
child?

Wednesday, November 16, 2011

Qutline

Wednesday, November 16, 2011

Qutline

|. The Proposal.

Wednesday, November 16, 2011

Qutline

|. The Proposal.

2. Five Models of Productivity and Reuse.

Wednesday, November 16, 2011

Qutline

|. The Proposal.
2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

Wednesday, November 16, 2011

Qutline

|. The Proposal.
2. Five Models of Productivity and Reuse.
3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

Qutline

-

|. The Proposal.

2. Five Models of Productivity and Reuse.
3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

The Proposal

The Proposal

|. Formalization of what can be reused.

The Proposal

|. Formalization of what can be reused.

* Subcomputations.

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

Wednesday, November 16, 2011

The Proposal

» |. Formalization of what can be reused.

* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

Wednesday, November 16, 2011

Starting Computational System

S =2 =2 === £ E E

L A A A O R A A

Adj
Adj
Adj
Adj
Adj
Adv
Adv

N

v

Adj
Adv
Adj

Adj
electro-
magnet
dog

N

Adj
re-
agree
count

dis-
V
N
N
tall

Ad
today

-ness
-ity
N

-ify
-126e

Ad
-able

N

T

Ad] -1ty

PN
V ~able

agree

Wednesday, November 16, 2011

Subcomputations

N
/\
Adj 14!,
N
V -able

agree

Subcomputations

N
/\
Ad; -1y
T
V -able

agree

Subcomputations

\

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.

* Subcomputations.

» 2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

Wednesday, November 16, 2011

Bayesian Rational
AnaIYSiS (Anderson, 1992)

® Find subcomputations which provide best
explanation for the data.

® \What evidence is available to the learner?

® Which patterns give rise to productivity, which patterns imply reuse?

Wednesday, November 16, 2011

Subcomputations as Predictions

\

Wednesday, November 16, 2011

Subcomputations as Predictions

Prediction of future reusability
across computations

|7

Wednesday, November 16, 2011

Subcomputations as Predictions

N
Ad -1ty
/\ Prediction of future
V - able reusability of

‘ combination

agree

Wednesday, November 16, 2011

Subcomputations as Predictions

Prediction of
future
novelty/
variability

Wednesday, November 16, 2011

Subcomputations as Predictions

Tradeoff
between

productivity
and reuse

\

20

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.

3. The model from a probabilistic
programming perspective.

21

Wednesday, November 16, 2011

The Proposal

|. Formalization of what can be reused.
* Subcomputations.

2. Formalization of how decision to reuse
versus compute is made.

 Optimal Bayesian inference.
» 3. The model from a probabilistic
programming perspective.

21

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

® Generalization of Adaptor Grammars (johnson et al., 2007).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

® Generalization of Adaptor Grammars (johnson et al., 2007).

® Bayesian non-parametric distributions (pitman-Yor).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

® Generalization of Adaptor Grammars (johnson et al., 2007).

® Bayesian non-parametric distributions (pitman-Yor).

® Notion of compiling subcomputations via tools

from probabilistic programming (Church language; Goodman
et al., 2008).

22

Wednesday, November 16, 2011

The Formal Model:
Fragment Grammars

® Generalization of Adaptor Grammars (johnson et al., 2007).

® Bayesian non-parametric distributions (pitman-Yor).

® Notion of compiling subcomputations via tools

from probabilistic programming (Church language; Goodman
et al., 2008).

® Stochastic memoization gomson e, 2007 Of stochastically lazy/
eager programs.

22

Wednesday, November 16, 2011

Languages for probability

® Purposes of a language:
® Makes writing down models easier.
® Makes reasoning about models clearer.
e Supports efficient inference.

® Gives ideas about mental representation.

Wednesday, November 16, 2011

A\ calculus

Wednesday, November 16, 2011

A\ calculus

e Notation:

® Function have parentheses on the wrong side:

e Operators always go at the beginning:

Wednesday, November 16, 2011

(sin X)

(+ X ¥)

A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

Wednesday, November 16, 2011

A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

(double 3)| => 6

Wednesday, November 16, 2011

A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

(double 3)| => 6

(define repeat

(A (£) (A (%) (£ (f x)))))

Wednesday, November 16, 2011

A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

Wednesday, November 16, 2011

(define double

(N (%)

(double 3)| => 6

(+ X X)))

(define repeat

(A (£)

(A (x) (£ (f x)))))

((repeat double) 3) => 12

A\ calculus

e Notation:

® Function have parentheses on the wrong side: |(sin x)

e Operators always go at the beginning: (+ X V)

® \ makes functions, define binds values to symbols:

(define double
(A (X) (+ x X)))

(double 3)| => 6

(define repeat

(A (£) (A (%) (£ (f x)))))

((repeat double) 3) => 12

(define 2nd-derivative (repeat derivative))

Wednesday, November 16, 2011

\PA-calculus

® How can we use these ideas to describe
probabilities?

® PA-calculus: a stochastic variant.

® We introduce a random primitive £1ip, such
that (£1ip) reduces to a random sample t/f£.

® The usual evaluation rules now result in
sampled values. This induces distributions.

® This calculus, plus primitive operators and
data types, gives the probabilistic
programming language Church.

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3))
(define b (flip 0.3))
(define ¢ (flip 0.3))
(+ a b ¢)

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3)) |=> 1
(define b (flip 0.3))
(define ¢ (flip 0.3))
(+ a b ¢)

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3)) |=> 1
(define b (flip 0.3)) |=> 0
(define ¢ (flip 0.3))
(+ a b ¢)

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3)) |=> 1
(define b (flip 0.3)) |=> 0
(define ¢ (flip 0.3)) |=> 1
(+ a b ¢)

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3)) |=> 1
(define b (flip 0.3)) |=> 0
(define ¢ (flip 0.3)) |=> 1
(+ a b ¢) => 2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3))|=> 10
(define b (flip 0.3))|=> 0 0
(define ¢ (flip 0.3)) |=> 1 0
(+ a b ¢) => 20

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3))=> 100
(define b (flip 0.3))|=> 00 0
(define ¢ (flip 0.3))|=> 10 1
(+ a b ¢) => 201

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives:

(define a (flip 0.3))=> 100
(define b (flip 0.3)) == 000
(define ¢ (flip 0.3))|=> 101
(+ a b c) => 201.

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 ;é
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 101 3
(+ a b c) => 201..2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 ;é
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 101 3
(+ a b c) => 201..2

0 I 2 3

Theorem: Any computable distribution can
be represented by a Church expression.

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 ;é
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 101 3
(+ a b c) => 201..2

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 %
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b c) => 201..2

Conditioning (inference):

(query
(define a (flip 0.3))

(define b (flip 0.3))
(define ¢ (flip 0.3))
(+ a b ¢)

(= (+ a b) 1))

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 %
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b c) => 201..2

Conditioning (inference):

(query
(define a (flip 0.3))

(define b (flip 0.3))
(define ¢ (flip 0.3))

((+ a b c) Query)
(= (+ ab) 1))

Goodman, Mansinghka, Roy,
Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3))|=> 100 %
(define b (flip 0.3)) => 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b c) => 201..2

Conditioning (inference):

(query
(define a (flip 0.3))

(define b (flip 0.3))
(define ¢ (flip 0.3))
((+ a b c) Query)
(= (+ ab) 1)) Condition,

must be true

Goodman, Mansinghka, Roy,

N y Bonawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Church

Random primitives: >
(define a (flip 0.3)) => 100 %
(define b (flip 0.3))|=> 000 3
(define ¢ (flip 0.3))|=> 1 01 3
(+ a b ¢) => 201 2

Conditioning (inference):

(query g
(define a (flip 0.3)) g
(define b (flip 0.3)) >
(define c¢ (flip 0.3)) => 2
((+ a b ¢) Query) 5

A
(= (+ ab) 1)) Condition, 0 12

Goodman, Mansinghka, Roy,
. must be true | ponawitz, Tenenabum (2008)

Wednesday, November 16, 2011

Inference

® Universal inference: an algorithm that

does inference for any Church query.
(And hopefully is efficient for a wide class.)

® As a modeler, save implementation time:
rapid prototyping.

® For cognitive science, shows that the mind
could be a universal inference engine.

Wednesday, November 16, 2011

Fxamble: Baves Nlet

E,*..mnle Raves Nlet,

(define flu (flip 0.2))
(define TB (flip 0.01))
(define cough
(Lf (or flu TB)

(flip 0.8) (flip 0.1)))

Wednesday, November 16, 2011

E,*..mnle Raves Nlet,

“Infer the cnance oi fiu, \Ji ~ >

given observed cough.”

(define flu (flip 0.2))
(define TB (flip 0.01))
(define cough
(1f (or f£lu TB)

(flip 0.8) (flip 0.1)))

Wednesday, November 16, 2011

E,*..mnle Raves Nlet,

‘ ' e PR @
Infer the cnaince o1 fiy, @ N

given observed cough.”

(query
(define flu (flip 0.2))

(define TB (flip 0.01))
(define cough
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
cough)

Wednesday, November 16, 2011

E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(define TB (flip 0.01))
(define cough
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
cough)

=> true 66%

Wednesday, November 16, 2011

E,*..mnle Raves Nlet,

‘ ' e PR @
Infer the cnaince o1 fiy, @ N

given observed cough.”

(query
(define flu (flip 0.2))

(define TB (flip 0.01))
(define cough => true 66%
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
(and cough TB))

Wednesday, November 16, 2011

E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(define TB (flip 0.01))
(define cough
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
(and cough TB))

=> true 20%

Wednesday, November 16, 2011

E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(define TB (flip 0.01))
(define cough
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
(and cough TB))

=> true 20%

Wednesday, November 16, 2011

E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(def:no TB (£flip 0.01))
(define cough
(Lf (or flu TB)
(flip 0.8) (flip 0.1)))
flu
(and cough TB))

=> true 20%

Wednesday, November 16, 2011

E,*..mnle Raves

“Infer the cnance of fiu,
o b D
given observed cough.

(query
(define flu (flip 0.2))

(def:no TB (£flip 0.01))
(define cough
(Lf (or flu TB)
(Fiip 0.S) (fiip C.13))
flu
(and cough TB))

=> true 20%

Wednesday, November 16, 2011

Fragment Grammars via

Probabilistic Programming
(Church)

Fragment Grammars via

Probabilistic Programming
(Church)

® Alternative to more standard mathematical
formalization (see, O’'Donnell, 201 I).

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

(Church)

® Alternative to more standard mathematical
formalization (see, O’'Donnell, 201 I).

® Highlights relationship between formalisms

(PCFGs, Adaptor Grammars, Fragment
Grammars).

Wednesday, November 16, 2011

Fragment Grammars via

Probabilistic Programming
(Church)

® Alternative to more standard mathematical
formalization (see, O’'Donnell, 201 I).

® Highlights relationship between formalisms

(PCFGs, Adaptor Grammars, Fragment
Grammars).

® Cross fertilization of ideas from the theory
of programming languages.

Wednesday, November 16, 2011

Fragment Grammars via

Probabilistic Programming
(Church)

® Alternative to more standard mathematical
formalization (see, O’'Donnell, 201 I).

® Highlights relationship between formalisms

(PCFGs, Adaptor Grammars, Fragment
Grammars).

® Cross fertilization of ideas from the theory
of programming languages.

® Caveat: Church inference algorithms do not
work well for these models.

Wednesday, November 16, 20

Goals

Wednesday, November 16, 2011

Goals

|. Get across intuitions.

Wednesday, November 16, 2011

Goals

|. Get across intuitions.

2. Give flavor of relationships between

modeling ideas and programming ideas.

Wednesday, November 16, 2011

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

(define adapted-unfold
(PYMem a b
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Wednesday, November 16, 2011

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

Wednesday, November 16, 2011

e 3 0, H G2 (d) root(d) = a € Vg

pcig r€Rg:a—root(d;), - ,root(dy) =1
1 root(d) = a € Tg

35

Wednesday, November 16, 2011

N 0, Hmem{GrOOt(d "V (d;) root(d)=ac Vg

TERg:&—)I‘OOt(CZi),”-,rOOt(d\k) 1=1
1 root(d) =a € 1g

GZG (d) =

\

mem{ G4+ ~ PYP(a*, b", G,¢)

36

Wednesday, November 16, 2011

LA(d) — Z 0, ﬁ {chiG;gOt(d)(AZ) + (1 — Vd.)l}

)
TERQZA-)I‘OOt(CZi),--- ,root(d\k) 1=1

Z mem<{ L?}(s H GrOOt(S) root(d) =a€ Vg

s€prefix(d)
1 root(d) = a €Iy

G?G(d) —

mem{L*} ~ PYP(a*, b*, L")

37

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Context Free Grammars

S =2 =2 =Z2==Z £ E E

L A e A A

Adj
Adj
Adj
Adj
Adj
Adv
Adv

N

v

Adj
Adv
Adj

Adj
electro-
magnet
dog

N

Adj
re-
agree
count

today

-ness
-uty

B Ad] -1ty

Adj

V ~able
. \

agree

Wednesday, November 16, 2011

Declarative Knowledge
of Constituent Structure

Py, W — N

Dw. W — V

Dy W — AdJ

D W — Adv

Py, N — Adj -ness
Dy, N —> Adj -ity
Dy N — electro- N
Dys N —> magnel

Py N — dog

Dv, v — N 'Zf Y
Dy, V —> Adj -12€
Dy Vv — re- v
Dy, V. —> agree

Dy, V — count

Dagj, Ad] —> dis- Adj
Dagj, Adj — V -able
Pagj, Adj —> N -1C
Pagj, Adj — N -al
Dagj, Adj —> tall

Prav, Adv —> Adj -ly
Dadv, Adv —> {today

Wednesday, November 16, 2011

Declarative Knowledge
of Constituent Structure

(define sample-rhs
(lambda (nonterminal)
(case nonterminal

((’W) (multinomial (list (list ’N) (list ’V) (list ’Adj) (list ’Adv) ...)
(1ist Py, Pwy Pz Pwyg +-:)))

((°N) (multinomial (list (list ’Adj ’ness) (list ’Adj ’ity) (1list ’electro ’N) (list ’magnet) (list ’dog)
(list PNy, PNo PNy PNy PNg ++2)))

(C°V) (multinomial (list (list ’N ’ify) (list ’Adj ’ize) (list ’re ’V) (list ’agree) (list ’count) ...)
(list pv, Pvy PVs PVy PVs «-:)))

((’Adj) (multinomial (list (list ’dis ’Adj) (list ’V ’able) (list °’N ’ic) (list ’N ’al) (list ’tall) ...)

(1ist P aqj; P adjo P Adjs P Adjs P Adjs ++-)))
((’Adv) (multinomial (list (list ’Adj ’ly) (list ’today) ...)

(list p w, Pug «++2)))))

--)

Wednesday, November 16, 2011

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

\

Choose a right-hand side for

symbol:
N — Adj -ity

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Fundamental Recursive
Computation: unfold

(define unfold
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))

Recursively apply unfold to
each symbol on right-hand side

Computation Trace

(unfold ‘N)

Computation Trace

(unfold ‘N)

(define unfold
(lambda (symbol)

(if (terminal? symbol)

symbol
(map unfold

(sample-rhs symbol)

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

(sample-rhs

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol

(map unfold |(sample-rhs symbol)

I:Dq')

Wednesday, November 16, 2011

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N) N — Adj -ity

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

TN

(unfold ‘Adj) (unfold ‘1ity)

Computation Trace

(unfold *N)

(sample-rhs °N)

(unfold *Adj) (unfo;; 'ity)
(sample-lhs *Adj) ’iLy
f///////A\\\\\\\\

(unfold V) (unfeld ’able)
(samplelrhs V) ’alle

(unfold ‘agree)

‘agree

Wednesday, November 16, 2011

Trace

(unfold °*N)

(sample-rhs °*N)

(unfold *Adj) (unfold *ity)

(sample-rhs *Adj) *ity
(unfold V) (unfeld ’able)
(sample-rhs °V) ‘able

(unfold ‘agree)

‘agree

as lree

Ad

V

agree

J
~able

-1y

Wednesday, November 16, 2011

Reusability for PCFGs

N N N N
Ad] -1ty /Ad] -NESSs Adj ity Ad] -11Y
Py P P P
V -able V -able V _able V -able

47

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Memoization

Memoization

® Store outputs of earlier computations in a
table

Wednesday, November 16, 2011

Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored

Wednesday, November 16, 2011

Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored

® When function is called with new
arguments, then compute and store in table

Wednesday, November 16, 2011

Memoization

® Store outputs of earlier computations in a
table

® When function is called with particular
arguments then grab from table if stored

® When function is called with new
arguments, then compute and store in table

® Higher-order function: mem

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (£flip 0.5) ‘blue ‘brown)))

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (£flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)
(1f (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘brown
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)

(if (flip 0.5)

(eye-color
(eye-color
(eye-color
(eye-color

‘bob)
‘bob)
‘bob)
‘bob)

‘blue

‘brown)))

‘blue
‘brown
‘blue
‘brown

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(lambda (person)

(if (flip 0.5)

(eye-color
(eye-color
(eye-color
(eye-color

‘bob)
‘bob)
‘bob)
‘bob)

‘blue

‘brown)))

‘blue
‘brown
‘blue
‘brown

Wednesday, November 16, 2011

Reuse through
Memoization

(define eye-color
(mem (lambda (person)
(1f (flip 0.5) ‘blue brown))))

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program
where (eye-color ‘bob)

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

is used, we will reuse same

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program

where (eye-color ‘bob)
is used, we will reuse same

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Reuse through
Memoization

Anywhere in the program

where (eye-color ‘bob)
is used, we will reuse same

(define eye-color
(mem (lambda (pers
(1f (flip 0.5)

(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue
(eye-color ‘bob) => ‘blue

(eye-color ‘bob) => ‘blue

Wednesday, November 16, 2011

Stochastic Reusability

® Deterministic memoization always returns
same value after first call, but sometimes
we want to probabilistically favor
reuse.

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(lambda (person)
(sample-location-in-world)))

(location ‘bob) => ‘UCLA
(location ‘bob) => ‘Antarctica
(location ‘bob) => ‘London
(location ‘bob) => ‘Thailand

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Reusability

(define location
(stochastic-mem (lambda (person)
(sample-location-in-world))))

(location ‘bob) => ‘home
(location ‘bob) => ‘office
(location ‘bob) => ‘home
(location ‘bob) => ‘home

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

55

Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

55

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be

computed can be stored and reused
probabilistically.

® Memoization distribution: Pitman-Yor
Processes (pitman &Yor, 1995).

55

Wednesday, November 16, 2011

Stochastic Memoization
(Goodman et al,, 2008; Johnson et al., 2007)

® Adaptor Grammars: Anything that can be
computed can be stored and reused
probabilistically.

® Memoization distribution: Pitman-Yor
Processes (pitman &Yor, 1995).

® Stochastic memoization + PCFGs =
Adaptor Grammars.

55

Wednesday, November 16, 2011

Pitman-Yor Process

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:

® ac0,l]

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
® ac[0l]

® b> -

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
® ac[0l]
® b> -
Probability of Reuse

Y — a
N + b

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac|[0l] observations of value i

® b> -

Probability of Reuse
Yi — a

N +b

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac|[0l] observations of value i

N: Total number of observations
® b> -

Probability of Reuse
Yi — a

N +b

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac [O,I] observations of value i
N: Total number of observations

® b> -
Probability of Reuse Probability of Novelty
Yi — a a- K+ 0b

N +b N +0b

Wednesday, November 16, 2011

Pitman-Yor Process

® (Generalization of the Chinese Restaurant
Process

® [wo parameters:
Yi. Total number of

® ac [O,I] observations of value i
N: Total number of observations

®b>-a K Total number of values
Probability of Reuse Probability of Novelty
Yi — a a- K+ 0b

N +b N +0b

Wednesday, November 16, 2011

(func argl ... argN)

(PYMem a b func)

o O

o O

Wednesday, November 16, 2011

o O

Wednesday, November 16, 2011

Wednesday, November 16, 2011

Wednesday, November 16, 2011

v4- (func argl

c.ol)

Wednesday, November 16, 2011

Samples: vy

Wednesday, November 16, 2011

OO

l—a a-1+b
1+b 1+0b

Samples: vy

Wednesday, November 16, 2011

N + b

K=1
l—a a-1+b
1+b 1+b

Samples: vy

Samples: vy

a- KK +0b
N + b

K=1

l—a a-1+b
1+b 1+0b

Samples: vy

OO

l—a a-1+b
1+b 1+0b

Samples: vy

Wednesday, November 16, 2011

o | (o)

l—a a-1+b
1+b 1+0b

Samples: vy

Wednesday, November 16, 2011

K=1

l—a a-1+b
1+b 1+0b

Samples: vy

K=1

l—a a-1+b
1+b 1+0b

Samples: vy

vi- (func argl

K=1

l—a a-1+b
1+b 1+0b

Samples: vy

Wednesday, November 16, 2011

K=2

l—a a-1+b
1+b 1+0b

Samples: vs, vi

y—a a- K40
N N +b

%@

l—a 1—aa-2+0b
240 2406 240

Samples: va vi

a- KK +0b
N + b

/
=2 [0

l—a 1—aa-2+0b
240 2406 240

Samples: va vi

Wednesday, November 16, 2011

A[O[O[OF

l—a 1—aa-2+0b
240 2406 240

Samples: va vi

Wednesday, November 16, 2011

A[O[O[OF

l—a 1—aa-2+0b
240 2406 240

Samples: va vi

Wednesday, November 16, 2011

N L
1T
N W

OIO0F

l—a 1—aa-2+0b
240 2406 240

Samples: v4, vi, v4

Wednesday, November 16, 2011

2—a l—aa-24+50b
34+b6 3+0 340

Samples: v4, vi, v4

Wednesday, November 16, 2011

Properties of PYPs

Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.

Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.

® Prefers fewer customers/tables/tables-per-
customer.

Wednesday, November 16, 2011

Properties of PYPs

® Rich get richer, concentrates distribution
on a few values.

® Prefers fewer customers/tables/tables-per-
customer.

® Prefers to generate novel values
proportional to how often novelty has
been generated in the past.

Wednesday, November 16, 2011

Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b
(lambda (symbol)
(1f (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).
N

RN

Adj -1ty

/\
V ~able

agree

Wednesday, November 16, 2011

Properties of Adaptor
Grammars

® Reuse previous computations (subtrees).

® Can compute novel items productively using base
system.

® Build new stored trees recursively.

® Only reuse complete subtrees (on adapted nonterminals).

N N
Ad./\f /\
-4 . :
/J\ ’ AdJ 'Zty
V -able N
| V -able

agree

Wednesday, November 16, 2011

Reusability for Adaptor
Grammars

70

Reusability for Adaptor
Grammars

|. Always possible to use base grammar.

70

Wednesday, November 16, 2011

Reusability for Adaptor
Grammars

|. Always possible to use base grammar.
2. Fully recursive.

N N N N

Adj -1ty

Adj -N,e85 Ad] -1ty '\, /Ad] -11Y
| AL V _ -able Vv _able V -able
agree | | |

agree COUNT agree

70

Wednesday, November 16, 2011

Fragment Grammars via
Probabilistic Programming

|. Stochastic computation via unfold
2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness

Goal: Represent Partial

Computations
N

N

Adj -1ty

N
V -able

Goal: Represent Partial
Computations

Variables represent
‘¢ 99 . N
delayed” instructions

for later computation /\

Adj -1ty

N
V -able

Lazy and Eager
Evaluation

Lazy and Eager
Evaluation

® Fager Evaluation: Do as much work as early
as possible.

Lazy and Eager
Evaluation

® Fager Evaluation: Do as much work as early
as possible.

® | azy Evaluation: Delay work until it is
absolutely necessary to continue
computation.

Wednesday, November 16, 2011

Example

(define add3
(lambda (x y 2)
(t+ Xy 2)))

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 (* 2 4) (- 3 1))

Eager Evaluation

(add3 6 8 (- 3 1))

Eager Evaluation

(add3 6 8 (- 3 1))

Eager Evaluation

(add3 6 8 2)

Eager Evaluation

(define add3

(lambda (x y z)
(+ xy 2)))

(add3 6 8 2)

Eager Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))
5

Eager Evaluation

16

Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(define add3

(lambda (x y z)
(+ xy 2)))

(add3 (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))

(+ (+ 1 2 3) (* 2 4) (- 3 1))
—— N =

X 1% Z

Lazy Evaluation

(define add3

(lambda (x y z)

(+ xy 2)))

(+ (+ 1 2 3) (* 2 4) (- 3 1))
—— N =

X 1% Z

\V

Argument expressions are delayed
until their values are needed by
another computation.

Wednesday, November 16, 2011

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

S

Primitive +
procedure forces
evaluation of
arguments.

Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))

Lazy Evaluation

(+ 16 8 (- 3 1))

Lazy Evaluation

(+ 16 8 (- 3 1))

Lazy Evaluation

(+ 16 8 2)

Lazy Evaluation

16

A-calculus: Order of
Evaluation

A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.

A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.

® Normal order (lazy evaluation): copy
arguments into procedure, only evaluate
when needed.

Wednesday, November 16, 2011

A-calculus: Order of
Evaluation

® Applicative order (eager evaluation): evaluate
arguments first, then apply function.

® Normal order (lazy evaluation): copy

arguments into procedure, only evaluate
when needed.

® Church-Rosser theorem: Order doesn’t
matter for deterministic A-calculus.

Wednesday, November 16, 2011

A-calculus: Order of
Evaluation

Apbplicative order (eager evaluation): evaluate
arguments first, then apply function.

Normal order (lazy evaluation): copy

arguments into procedure, only evaluate
when needed.

Church-Rosser theorem: Order doesn’t
matter for deterministic A-calculus.

Does matter for Y A-calculus!

Wednesday, November 16, 2011

Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

(same? (flip))

Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

P(true) =1

(same? (flip))

Y \-calculus: Order of
Evaluation

(define same?
(lambda (X)
(equal? x xX)))

\\\\\\

lazy™ P(true) = 1/2

P(true) =1

(same? (flip))

Tradeoff

® | aziness allows you to delay computation
and, thus, preserve randomness and

variability until the last possible moment.

® Fagerness allows you to determine random
choices early in computation and, thus,
share choices across different parts of a

program.

Wednesday, November 16, 2011

Random Evaluation
Order

Random Evaluation
Order

® |dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

Random Evaluation
Order

® |dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

® Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Random Evaluation
Order

|dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Assume eager evaluation strategy and add
delay primitive.

Wednesday, November 16, 2011

Random Evaluation
Order

|dea: Stochastically mix lazy and eager
evaluation in YA-calculus.

Ultimately allow learning of which
computations should be performed in
advance and which should be delayed.

Assume eager evaluation strategy and add
delay primitive.

Apply to unfold (can be applied fully
generally).

Wednesday, Nove

mber 16, 20

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define delay-or-unfold
(lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

Wednesday, November 16, 2011

Stochastic Lazy
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

Wednesday, November 16, 2011

Computation Trace with Delay

(unfold °*N)

(sample-rhs °*N)

(dealy-or-unfold ‘Adj) (delay-or-unfold *ity)

(unfeld ’Adj) (unfold *ity)

(sample-rhs *Adj) ‘ity

(dealy-or-unfold *V) (dealy-or-unfold ‘able)

(delay (unfold *V)) (unfeld ’able)

‘able

Wednesday, November 16, 2011

Computation Trace with Delay

(unfold °*N)

(sample-rhs °*N)

(dealy-or-unfold *Adj) (delay-or-unfold *it

(unfold ’Adj) (unfold 'ity)

(sample-rhs ’Adj) ‘ity

(dealy-or-unfold *V) (dealy-cr-unfold ’able)

(delay (unfold *V)) (unfold ’able)

‘able

V

N

Ad;

~able

-1ty

Wednesday, November 16, 2011

Reusing Delayed
Computations

Reusing Delayed
Computations

® Need to be able to reuse partial
evaluations.

Reusing Delayed
Computations

® Need to be able to reuse partial
evaluations.

® Memoize stochastically lazy unfold.

Fragment Grammars

(define stochastic-lazy-unfold
(lambda (symbol)
(Lf (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(1f (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

Wednesday, November 16, 2011

Fragment Grammar
Reusable Computations

Ad] 1wy AAdj -NesS Adj ity ~Ad] 1y
V able V able / V) -able V able

|10

Fragment Grammar
Reusable Computations

|. Always possible to use base grammar.

N N N N
Adj -1ty Adj -ness Adj -1ty ~Ad] -1ty
T T T TN
v -able V -able / V) -able V -able

|10

Wednesday, November 16, 2011

Fragment Grammar
Reusable Computations

|. Always possible to use base grammar.
2. Fully recursive.

N N N N
Ad] -ty AAd] -NesS Adj -ity~. ~Ad] -1y

T T T TN
v -able V -able / V _able V -able

agree agree count agree

|10

Wednesday, November 16, 2011

Qutline

|. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion

Wednesday, November 16, 2011

Five Models

112

Wednesday, November 16, 2011

Five Models

® 4 approaches to productivity and reuse.

112

Wednesday, November 16, 2011

Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.

112

Wednesday, November 16, 2011

Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.

® State-of-the-art probabilistic models.

112

Wednesday, November 16, 2011

Five Models

® 4 approaches to productivity and reuse.

® Capture historical proposals from the
literature.

® State-of-the-art probabilistic models.

® Allow for variability and learning.

112

Wednesday, November 16, 2011

MDPCFG

Multinomial-Dirichlet Context-Free Grammars
(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free
Grammar (MDPCEFG; Johnson, et al. 20073)

N N N N
Adj -1ty /Ad] -NEeSS Ad] -ty JAd] -1ty

P T T TN
V -able V -able V _able V -able

agree agree count agree

113

Wednesday, November 16, 2011

MAG

MAP Adaptor Grammars
(Full-entry)

- Store whole form after first use.
- Formalization: Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).

4 N N N

Adj -11Y

Adj -Nn.e85 Ad] -1ty '\, /Ad] -11Y
| =A0LE V _ -able \ _able V -able
agree | | |

agree COUNT agree

| 14

Wednesday, November 16, 2011

DOPI/GDMN

Data-Oriented Parsing
(Exemplar-based)

- Store dll generalizations consistent with input

- Formalization: Data-Oriented Parsing | (DOPI; Bod, 1998), Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod,
2009)

Wednesday, November 16, 2011

FG

Fragment Grammars
(Inference-based)

- Store best set of subcomputations for explaining the data.

- Formalization: Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars

Wednesday, November 16, 2011

Qutline

|. The Proposal.

2. Five Models of Productivity and Reuse.

-

3. English Derivational Morphology

4. Conclusion

117

Wednesday, November 16, 2011

English Derivational
Morphology

Productive

+ness (goodness),
+|)’ (quickly)

Semi-productive

+it)’ (ability),
+Or (operator)

Unproductive

+th width)

|18

Wednesday, November 16, 2011

Simulations

® VWords from CELEX.

® Extensive heuristic parsing/hand correction.
® |nput format.

® No phonology or semantics.

119

Wednesday, November 16, 2011

Derivational Inputs

N
/\
Adj -1ty
V/\-able
aglree
N
/\
V -10M
V/\-ate

120

English Derivational

Productive

+Nness (goodness),
+|)’ (quickly)

Semi-productive

+ity (ability),
+Or (operator)

Morphology

Unproductive

+th (width)

. Individual suffix

productivity differences
(-ness/-ity/-th).

. Suffix sequences.

121

Wednesday, November 16, 2011

English Derivational
Morphology

+Nness (goodness),

Productive |
+ |)’ (quickly) -

|. Individual suffix

+ity (ability), Frod/q::?il/hi;:y differences
-ness/-ity/-th).

Semi-productive

+Or (operator) 1
2. Suffix combinations.

Unproductive +th (width)

122

Wednesday, November 16, 2011

Productivity

® No gold-standard dataset or measure.

® E.g, Large databases of wug-tests or
naturalness judgments.

® Analyses.
|. Examples of highly productive affixes.

2. Convergence with other theoretical
measures.

123

Wednesday, November 16, 2011

How is Productivity
Represented!?

® Relative probability of fragments with or
without variables.

N N

P V. Adj -th
Adj -ness |

wide

124

Productivity Analyses

» |. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

125

Wednesday, November 16, 2011

Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

1on:V>N Tegression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N Teqgression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Teqgression : 10n:V>N Tegression
er:V>N talker ly:Adj>Adv quickly
ment:N>N development ment:VN>N development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate

126

Wednesday, November 16, 2011

Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

1on:V>N Tegression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N Teqgression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N _ tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Teqgression : 10n:V>N Tegression
er:V>N talker ly:Adj>Adv quickly
ment:N>N development ment:VN>N development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate

127

Wednesday, November 16, 2011

Top 5 Most Productive Suffixes

MDPCFG (Full-parsing) MAG (Fullisting)
Suffix Example Suffix Example

son:V>N reqression ly:Adj>Adv quickly
ly:Adj>Adv quickly 10n:V>N reqression

er:-V>N talker
ly:V>Adv bitingly

ate:BND>V segregate
ment:NG>N development

FG (Inference-based)

er:V>N talker Suffix Example y:N>Ad}] mousey
ly:Adj>Adv quickly
er:V>N talker

DOPI (Exemplar) ness:Adj>N tallness GDMN (Exemplar)

y:N>Ad] mousey

Suffix Example erNSN prisoner Suffix Example
1on:V>N Tegression : 1on:V>N Tegression
er:-V>N talker ly:Adj>Adv quickly
ment:N>N development ment:VN>N development
ate:BND>V segregate er:-V>N talker
ly:Adj>Adv quickly ate:BND>V segregate

128

Wednesday, November 16, 2011

Productivity Analyses

|. Examples of highly productive suffixes.

2. Convergence with other theoretical
measures.

=

129

Wednesday, November 16, 2011

Baayen’s Corpus-Based
Measures

® Baayen’s P/ P* (eg.Bazyen, 1992)

® P: Prob(NOVEL | SUFFIX) i.e. rate of
growth of forms with suffix

® P Prob(SUFFIX | NOVEL) i.e. rate of
growth of vocabulary due to suffix

130

Productivity Correlations

(P/P*values from Hay & Baayen, 2002)

Model

FG

(Inference-based)

MDPCFG

(Full-parsing)

MAG

(Fulllisting)

DOPI

(Exemplar-based)

GDMN

(Exemplar-based)

P*

0.907
0.662

-0.0003
0.480

131

0.692

0.068

0.346
0.402

0.143
0.500

Wednesday, November 16, 2011

English Derivational

Productive

+Nness (goodness),

+ |)’ (quickly)

Semi-productive

+ity (ability),
+Or (operator)

Unproductive

+th (width)

132

Morphology

. Individual suffix

productivity differences
(-ness/-ity/-th).

. Suffix combinations.

Wednesday, November 16, 2011

Suffix Combinations

|. Suffix Ordering.

2. Generalization of Suffix Combinations.

133

Suffix Combinations

» |. Suffix Ordering.

2. Generalization of Suffix Combinations.

|34

Suffix Ordering

® Derivational morphology hierarchical and
recursive.

® Multiple suffixes can appear in a word.

N
W Sty] /\-
V/\-able
|

agree aﬁ%rm

Wednesday, November 16, 2011

Suffix Combinations

136

Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

136

Wednesday, November 16, 2011

Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

® Fabb (1988).

136

Wednesday, November 16, 2011

Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

e Fabb (1988).
= 43 suffixes.

136

Wednesday, November 16, 2011

Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

® Fabb (1988).

- 43 suffixes.
- 663 possible pairs.

136

Wednesday, November 16, 2011

Suffix Combinations

® Many, many combinations of suffixes do not
appear in words (even taking into account
categories).

® Fabb (1988).

- 43 suffixes.
- 663 possible pairs.

= Only 50 exist.

136

Wednesday, November 16, 2011

Complexity-Based
O rderin g (Hay,2002)

On average, more productive suffixes
appear after (outside of) less
productive suffixes.

137

Measuring Ordering

® Examine attested orderings in corpus.

® Mean rank of each affix (Plag and Baayen, 2009).
® Graph-theoretic statistic.

® Measures degree to which each suffix tends
to occur after other suffixes (on average).

® Compute log odds of suffix appearing
second versus first for each model.

138

Wednesday, November 16, 2011

Mean Rank
Correlations

Model (,nferigased) MDPCFG MAG DOPI GDMN

(Full-parsing) (Full-listing) (Exemplar-based) (Exemplar-based)

Mean Rank @ 0.568 0.275 0.424 0.452 0.431

139

Wednesday, November 16, 2011

Suffix Combinations

|. Suffix Ordering.

»2. Generalization of Suffix Combinations.

140

Generalizable Combinations

Generalizable

Frozen Combinations L.
Combinations

N

N
J -y
V/\-ate N

ﬁil V -able
ajjirin

141

Generalizable Combinations

Generalizable

Frozen Combinations L.
Combinations

N

N
J -y
V/\-ate ' /\bl
V -able
aﬁfnlrm

142

-Ity V. -ness

® -ness more productive than -ity.
® -ity more productive than -ness after:

-ile, -able, -(i)an, -ic.

(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)

143

Wednesday, November 16, 2011

Two Frequent Combinations:

-ivity v. -bility

® -ive + -ity: =ivity (e.g., selectivity).

® Speaker prefer to use -ness with novel words
(Aronoff & Schvaneveldt, 1978).

® depulsiveness > depulsivity.

® -ble + -ity: =bility (e.g., sensibility).

® Speakers prefer to use -ity with novel words
(Anshen & Aronoff, 1981).

® remortibility > remortibleness.

| 44

Wednesday, November 16, 2011

-ivity v. -bility

M -ive Predicted
- _ble redicte

-ness {
o _ ble
-ty

145

Wednesday, November 16, 2011

-ivity v. -bility

&l -ive Predicted
- _ble redicte

-ness Preference for -ness

ble

-ty

|46

Wednesday, November 16, 2011

-ivity v. -bility

M -ive Predicted
- _ble redicte

-ness {
o _ ble
1y N . Preference for -ity

|47

Wednesday, November 16, 2011

-ivity v. -bility

- -ive Predicted
B -ble

-ness { | |
~ Preceding suffix -ive
o _ ble
-ty i

148

Wednesday, November 16, 2011

-ivity v. -bility

M -ive Predicted
- _ble redicte

-NESS

ble

° - Preceding suffix -ble

-ty

149

Wednesday, November 16, 2011

MDPCFG

(Full-parsing)

B -ive

Predicted : MDPCFG
- - b I e . (Full-parsing)
-NESS

ble . ble ive

T . N

150

Wednesday, November 16, 2011

MAG

(Full-listing)
B -ive . .
Predicted . MDPCFG . MAG
- - b I e . (Full-parsing) : (Full-listing)

-NESS

_ | bl ble ive

151

Wednesday, November 16, 2011

DOPI

(Exemplar-based)
B -ive : . .
Predicted . MDPCFG . MAG . DORPI
- - b I e N (Full-parsing) : (Full-listing) : (Exemplar-based)

-NESS

bl - ble i M ble i - ble i
O] e beve ;I G oble e

152

Wednesday, November 16, 2011

GDMN

(Exemplar-based)
B -ive : : : :
Predicted . MDPCFG . MAG . DOPlI . GDMN
- - b I e N (Full-parsing) : (Full-listing) . (Exemplar-based) (Exemplar-based)
Lr) —
-NESS
el © ble ive - . ble ive - ble ive
O . - . . .
-1t
Y g .

153

Wednesday, November 16, 2011

FG

(Inference-based)

l. -ive : ; : ; ;
Predicted . MDPCFG : MAG : DOPI : GDMN : FG
[l -ble '

(Full-parsing) : (Full-listing) . (Exemplar-based) 7 (Exemplar-based) . (Inference-based)

-NESS

bl - bleive - N¥ - ble i - ble i - bl
o e : e lve : : e lve : e lve : e

|54

Wednesday, November 16, 2011

Discussion

® |nference-based approach able to correctly ignore
high token frequency of -ivity because it balances a
tradeoff.

® Other models use type or token frequencies.

155

Wednesday, November 16, 2011

Qutline

|. The Proposal.
2. Five Models of Productivity and Reuse.

3. Empirical Evaluation
The English Past Tense

English Derivational Morphology

-

4. Conclusion

_

156

Wednesday, November 16, 2011

Conclusion

|57

Wednesday, November 16, 2011

Conclusion

® View productivity and reuse as an inference.

|57

Wednesday, November 16, 2011

Conclusion

® View productivity and reuse as an inference.

® Link between theory of programming languages
and Bayesian models.

|57

Wednesday, November 16, 2011

Conclusion

® View productivity and reuse as an inference.

® Link between theory of programming languages
and Bayesian models.

® Able to capture dominant patterns without
semantic and phonological structure.

|57

Wednesday, November 16, 2011

Conclusion

® View productivity and reuse as an inference.

® Link between theory of programming languages
and Bayesian models.

® Able to capture dominant patterns without
semantic and phonological structure.

® [uture work...

|57

Wednesday, November 16, 2011

Thanks!

158

Wednesday, November 16, 2011

