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• But ...

• -ile/-al/-able/-ic/-(i)an

• Bayesable

• Bayesability

• Coolity is not trying (from Huffington Post)
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• Adj>N

• heal/health, dead/death, young/youth, vile/filth, 
slow/sloth

• weal?/wealth, ?wroth/wrath, ?merry/mirth

• roomth, greenth

Many enjoy the warmth, Vikings prefer the coolth
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Problem of Productivity

• Which processes can be used to construct 
novel forms (e.g., -ness), which can only be 
reused in existing forms (e.g., -th)? 

• How are such differences in productivity 
represented by the adult language user?

• How are such differences learned by the 
child?
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Bayesian Rational 
Analysis (Anderson, 1992)

• Find subcomputations which provide best 
explanation for the data.  

• What evidence is available to the learner?

• Which patterns give rise to productivity, which patterns imply reuse?
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The Formal Model:
Fragment Grammars

• Generalization of Adaptor Grammars (Johnson et al., 2007).

• Bayesian non-parametric distributions (Pitman-Yor).

• Notion of compiling subcomputations via tools 
from probabilistic programming (Church language; Goodman 
et al., 2008).

• Stochastic memoization (Johnson et al., 2007) of stochastically lazy/
eager programs.
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Languages for probability

• Purposes of a language:

• Makes writing down models easier.

• Makes reasoning about models clearer.

• Supports efficient inference.

• Gives ideas about mental representation.
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λ calculus
• Notation:

• Function have parentheses on the wrong side:

• Operators always go at the beginning:

(sin x)

(+ x y)

(define double
  (λ (x) (+ x x))) (double 3) 

(define repeat 
  (λ (f) (λ (x) (f (f x)))))

((repeat double) 3)

=> 6

=> 12

(define 2nd-derivative (repeat derivative))

• λ makes functions, define binds values to symbols:
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ψλ-calculus
• How can we use these ideas to describe 

probabilities?

•ψλ-calculus: a stochastic variant.

• We introduce a random primitive flip, such 
that (flip) reduces to a random sample t/f.

• The usual evaluation rules now result in 
sampled values. This induces distributions.

• This calculus, plus primitive operators and 
data types, gives the probabilistic 
programming language Church.
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(define a (flip 0.3))
(define b (flip 0.3))
(define c (flip 0.3))
(+ a b c)

Random primitives:

Goodman, Mansinghka, Roy, 
Bonawitz, Tenenabum (2008)
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Theorem:  Any computable distribution can 
be represented by a Church expression. 
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Inference

• Universal inference: an algorithm that 
does inference for any Church query. 
(And hopefully is efficient for a wide class.)

• As a modeler, save implementation time: 
rapid prototyping.

• For cognitive science, shows that the mind 
could be a universal inference engine.
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Example: Bayes Net

 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))

Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

Fragment Grammars via 
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 given observed cough.”
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(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
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Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 66% 

Fragment Grammars via 
Probabilistic Programming
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(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 20%

Fragment Grammars via 
Probabilistic Programming
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 (define flu (flip 0.2))
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(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 20%

1. Stochastic computation via unfold

2. Stochastic reuse via memoization
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(query
 (define flu (flip 0.2))
 (define TB  (flip 0.01))
 (define cough 
  (if (or flu TB) 
      (flip 0.8) (flip 0.1)))
 flu
 (and cough TB))

Example: Bayes Net
Flu

cough

TB
“Infer the chance of flu, 
 given observed cough.”

=> true 20%

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness 

Fragment Grammars via 
Probabilistic Programming
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Fragment Grammars via 
Probabilistic Programming

(Church)

• Alternative to more standard mathematical 
formalization (see, O’Donnell, 2011).

• Highlights relationship between formalisms 
(PCFGs,  Adaptor Grammars, Fragment 
Grammars).

• Cross fertilization of ideas from the theory 
of programming languages. 

• Caveat: Church inference algorithms do not 
work well for these models.
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Goals

1. Get across intuitions.
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Goals

1. Get across intuitions.

2. Give flavor of relationships between 

modeling ideas and programming ideas.

Wednesday, November 16, 2011



(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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(define adapted-unfold
(PYMem a b 
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
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(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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1 root(d) = a ∈ TG
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Ga
AG(d) =






�

r∈RG :a→root(d̂i),··· ,root(d̂k)

θr

k�

i=1

mem{Groot(d̂i)
AG }(d̂i) root(d) = a ∈ VG

1 root(d) = a ∈ TG

mem{GA
AG} ∼ pyp(aA, bA, GA

AG)
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37

Ga
FG(d) =






�

s∈prefix(d)

mem{La}(s)
n�

i=1

G
root(s

�
i)

FG (s
�

i) root(d) = a ∈ VG

1 root(d) = a ∈ TG

LA(d) =
�

r∈RG :A→root(d̂i),··· ,root(d̂k)

θr

k�

i=1

�
νd̂i

Groot(d̂i)
FG (d̂i) + (1− νd̂i

)1
�

mem{LA} ∼ pyp(aA, bA, LA)

Wednesday, November 16, 2011



Fragment Grammars via 
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness 
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Context Free Grammars

N

Adj

V

agree

-able

-ity
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Declarative Knowledge
of Constituent Structure
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Declarative Knowledge
of Constituent Structure
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Fundamental Recursive 
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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Fundamental Recursive 
Computation: unfold

Choose a right-hand side for a 
symbol:

N ! Adj -ity 

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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Fundamental Recursive 
Computation: unfold

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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Fundamental Recursive 
Computation: unfold

Recursively apply unfold to 
each symbol on right-hand side

(define unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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Computation Trace

(unfold ‘N)
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Computation Trace

(unfold ‘N)
(define unfold

(lambda (symbol)
(if (terminal? symbol)

symbol
(map unfold (sample-rhs symbol)))))
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Computation Trace

(unfold ‘N)

(sample-rhs ‘N)

(define unfold
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol)))))
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Computation Trace

(unfold ‘N)

(sample-rhs ‘N)
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N ! Adj -ity

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)
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Computation Trace

(unfold ‘N)

(sample-rhs ‘N)
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(unfold ‘Adj) (unfold ‘ity)

Computation Trace

(unfold ‘N)

(sample-rhs ‘N)
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Computation Trace
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Trace as Tree
N

Adj

V

agree

-able

-ity
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Reusability for PCFGs

47

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity
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Fragment Grammars via 
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness 
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Memoization
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Memoization

• Store outputs of earlier computations in a 
table
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Memoization

• Store outputs of earlier computations in a 
table

• When function is called with particular 
arguments then grab from table if stored
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Memoization

• Store outputs of earlier computations in a 
table

• When function is called with particular 
arguments then grab from table if stored

• When function is called with new 
arguments, then compute and store in table
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Memoization

• Store outputs of earlier computations in a 
table

• When function is called with particular 
arguments then grab from table if stored

• When function is called with new 
arguments, then compute and store in table

• Higher-order function: mem
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Reuse through 
Memoization

(define eye-color 
(lambda (person) 
(if (flip 0.5) ‘blue ‘brown)))
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Reuse through 
Memoization

(define eye-color 
(lambda (person) 
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob)  => ‘blue
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Reuse through 
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(define eye-color 
(lambda (person) 
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
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Reuse through 
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(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
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Reuse through 
Memoization

(define eye-color 
(lambda (person) 
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
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Reuse through 
Memoization

(define eye-color 
(lambda (person) 
(if (flip 0.5) ‘blue ‘brown)))

(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘brown
               ...
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Reuse through 
Memoization

(define eye-color 
  (mem (lambda (person) 
   (if (flip 0.5) ‘blue brown))))
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Reuse through 
Memoization

(define eye-color 
  (mem (lambda (person) 
   (if (flip 0.5) ‘blue brown))))

Anywhere in the program 
where (eye-color ‘bob)
is used,  we will reuse same 
value. 
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(define eye-color 
  (mem (lambda (person) 
   (if (flip 0.5) ‘blue brown))))

Anywhere in the program 
where (eye-color ‘bob)
is used,  we will reuse same 
value. 

(eye-color ‘bob)  => ‘blue
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   (if (flip 0.5) ‘blue brown))))
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value. 
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Reuse through 
Memoization

(define eye-color 
  (mem (lambda (person) 
   (if (flip 0.5) ‘blue brown))))

Anywhere in the program 
where (eye-color ‘bob)
is used,  we will reuse same 
value. 

(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘blue
(eye-color ‘bob)  => ‘blue
                ...
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Stochastic Reusability 

• Deterministic memoization always returns 
same value after first call, but sometimes 
we want to probabilistically favor 
reuse.
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))

(location ‘bob)  => ‘UCLA
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))

(location ‘bob)  => ‘UCLA
(location ‘bob)  => ‘Antarctica
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))

(location ‘bob)  => ‘UCLA
(location ‘bob)  => ‘Antarctica
(location ‘bob)  => ‘London
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))

(location ‘bob)  => ‘UCLA
(location ‘bob)  => ‘Antarctica
(location ‘bob)  => ‘London
(location ‘bob)  => ‘Thailand
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Stochastic Reusability
(define location 
  (lambda (person) 
   (sample-location-in-world)))

(location ‘bob)  => ‘UCLA
(location ‘bob)  => ‘Antarctica
(location ‘bob)  => ‘London
(location ‘bob)  => ‘Thailand
               ...
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Stochastic Reusability

(define location 
  (stochastic-mem (lambda (person) 
   (sample-location-in-world))))
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Stochastic Reusability

(define location 
  (stochastic-mem (lambda (person) 
   (sample-location-in-world))))

(location ‘bob)  => ‘home
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Stochastic Reusability

(define location 
  (stochastic-mem (lambda (person) 
   (sample-location-in-world))))

(location ‘bob)  => ‘home
(location ‘bob)  => ‘office
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(define location 
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Stochastic Reusability

(define location 
  (stochastic-mem (lambda (person) 
   (sample-location-in-world))))

(location ‘bob)  => ‘home
(location ‘bob)  => ‘office
(location ‘bob)  => ‘home
(location ‘bob)  => ‘home
               ...
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Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

55
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Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be 
computed can be stored and reused 
probabilistically.

55
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Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be 
computed can be stored and reused 
probabilistically.

• Memoization distribution: Pitman-Yor 
Processes (Pitman & Yor, 1995).

55
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Stochastic Memoization
(Goodman et al., 2008; Johnson et al., 2007)

• Adaptor Grammars: Anything that can be 
computed can be stored and reused 
probabilistically.

• Memoization distribution: Pitman-Yor 
Processes (Pitman & Yor, 1995).

• Stochastic memoization + PCFGs = 
Adaptor Grammars.

55
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Pitman-Yor Process
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process
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Process

• Two parameters:
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

yi:  Total number of 
                  observations of value  i
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse

N:  Total number of observations

yi:  Total number of 
                  observations of value  i
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N:  Total number of observations

yi:  Total number of 
                  observations of value  i
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Pitman-Yor Process
• Generalization of the Chinese Restaurant 

Process

• Two parameters:

• a ∈ [0,1]

• b > -a

yi − a

N + b

Probability of Reuse
a ·K + b

N + b

Probability of Novelty

N:  Total number of observations

K:  Total number of values

yi:  Total number of 
                  observations of value  i
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(func arg1 ... argN)
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? ...

1

N=0
K=0

(PYMem a b func)
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1

N=0
K=0
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? ...

1

N=0
K=0
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? ...

1

N=1
K=0
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...

1

N=1
K=0
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v4

v4 ! (func arg1 ...)

...

1

N=1
K=0
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v4 ...

1

N=1
K=1

Samples: v4
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

yi − a

N + b
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

yi − a

N + b
a ·K + b

N + b
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

a ·K + b

N + b
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4
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...N=1 v4 ?

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

Wednesday, November 16, 2011



? ...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4
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...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4
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...N=2 v4

a·1+b
1+b

K=1
1−a
1+b

Samples: v4

v4 v1

v1 ! (func arg1 ...)
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v1 ...N=2 v4

a·1+b
1+b

K=2
1−a
1+b

Samples: v4, v1 
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v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

yi − a

N + b
a ·K + b

N + b
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v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b

a ·K + b

N + b
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v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b
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v1 ...N=2 v4
K=2

Samples: v4, v1

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b
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v1 ...N=3 v4
K=2

Samples: v4, v1, v4

?

1− a

2 + b

1− a

2 + b
a · 2 + b

2 + b
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v1 ...N=3 v4
K=2

Samples: v4, v1, v4

?

2− a

3 + b

1− a

3 + b
a · 2 + b

3 + b

yi − a

N + b
a ·K + b

N + b
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Properties of PYPs
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Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.

Wednesday, November 16, 2011



Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.
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Properties of PYPs

• Rich get richer, concentrates distribution 
on a few values.

• Prefers fewer customers/tables/tables-per-
customer.

• Prefers to generate novel values 
proportional to how often novelty has 
been generated in the past.
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Adaptor Grammars
(Johnson et al., 2007)

(define adapted-unfold
(PYMem a b 
(lambda (symbol)

(if (terminal? symbol)
symbol
(map unfold (sample-rhs symbol))))))
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Properties of Adaptor 
Grammars
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Properties of Adaptor 
Grammars

• Reuse previous computations (subtrees).
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Properties of Adaptor 
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• Can compute novel items productively using base 
system.
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Properties of Adaptor 
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base 
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
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Properties of Adaptor 
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base 
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity

Wednesday, November 16, 2011



Properties of Adaptor 
Grammars

• Reuse previous computations (subtrees).

• Can compute novel items productively using base 
system.

• Build new stored trees recursively.

• Only reuse complete subtrees (on adapted nonterminals).
N

Adj

V

agree

-able

-ity
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Reusability for Adaptor 
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity
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Reusability for Adaptor 
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
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Reusability for Adaptor 
Grammars

70

N

Adj

V

agree

-able

-ness

N

Adj

V

count

-able

-ity

N

Adj

V

agree

-able

-ity

N

Adj

V

agree

-able

-ity

1. Always possible to use base grammar.
2. Fully recursive.
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Fragment Grammars via 
Probabilistic Programming

1. Stochastic computation via unfold

2. Stochastic reuse via memoization

3. Partial computations via stochastic laziness 
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Goal: Represent Partial 
Computations
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Goal: Represent Partial 
Computations

Variables represent 
“delayed” instructions 
for later computation 
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Lazy and Eager 
Evaluation
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Lazy and Eager 
Evaluation

• Eager Evaluation: Do as much work as early 
as possible.
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Lazy and Eager 
Evaluation

• Eager Evaluation: Do as much work as early 
as possible.

• Lazy Evaluation: Delay work until it is 
absolutely necessary to continue 
computation.
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Example

(define add3 
(lambda (x y z)
(+ x y z)))
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Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))
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Eager Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))
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Eager Evaluation

(add3 6 (* 2 4) (- 3 1))
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Eager Evaluation

(add3 6 (* 2 4) (- 3 1))
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Eager Evaluation

(add3 6 8 (- 3 1))
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Eager Evaluation

(add3 6 8 (- 3 1))
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Eager Evaluation

(add3 6 8 2)
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Eager Evaluation

(add3 6 8 2)

Wednesday, November 16, 2011



Eager Evaluation

(+ 6 8 2)

x y z
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Eager Evaluation

16
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Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))
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Lazy Evaluation

(add3 (+ 1 2 3) (* 2 4) (- 3 1))
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Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }
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Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

x y z

} } }
Argument expressions are delayed 
until their values are needed by 
another computation.
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Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))

Primitive + 
procedure forces 

evaluation of 
arguments.
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Lazy Evaluation

(+ (+ 1 2 3) (* 2 4) (- 3 1))
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Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))
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Lazy Evaluation

(+ 16 (* 2 4) (- 3 1))
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Lazy Evaluation

(+ 16 8 (- 3 1))
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Lazy Evaluation

(+ 16 8 (- 3 1))
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Lazy Evaluation

(+ 16 8 2)
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Lazy Evaluation

16
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λ-calculus: Order of 
Evaluation
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λ-calculus: Order of 
Evaluation

• Applicative order (eager evaluation): evaluate 
arguments first, then apply function.
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λ-calculus: Order of 
Evaluation

• Applicative order (eager evaluation): evaluate 
arguments first, then apply function.

• Normal order (lazy evaluation): copy 
arguments into procedure, only evaluate 
when needed.
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λ-calculus: Order of 
Evaluation

• Applicative order (eager evaluation): evaluate 
arguments first, then apply function.

• Normal order (lazy evaluation): copy 
arguments into procedure, only evaluate 
when needed.

• Church-Rosser theorem: Order doesn’t 
matter for deterministic λ-calculus.
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λ-calculus: Order of 
Evaluation

• Applicative order (eager evaluation): evaluate 
arguments first, then apply function.

• Normal order (lazy evaluation): copy 
arguments into procedure, only evaluate 
when needed.

• Church-Rosser theorem: Order doesn’t 
matter for deterministic λ-calculus.

• Does matter for Ψλ-calculus!
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Ψλ-calculus: Order of 
Evaluation

(define same? 
(lambda (x)
(equal? x x)))
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(same? (flip))
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Ψλ-calculus: Order of 
Evaluation

(define same? 
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Ψλ-calculus: Order of 
Evaluation

(define same? 
(lambda (x)
(equal? x x)))

(same? (flip))

P(true) = 1/2lazy

P(true) = 1eager
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Tradeoff

• Laziness allows you to delay computation 
and, thus, preserve randomness and 
variability until the last possible moment.

• Eagerness allows you to determine random 
choices early in computation and, thus, 
share choices across different parts of a 
program.
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Random Evaluation 
Order

• Idea: Stochastically mix lazy and eager 
evaluation in Ψλ-calculus.

• Ultimately allow learning of which 
computations should be performed in 
advance and which should be delayed.

• Assume eager evaluation strategy and add 
delay primitive.

• Apply to unfold (can be applied fully 
generally).
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Stochastic Lazy 
unfold

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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Stochastic Lazy 
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))
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Stochastic Lazy 
unfold

(define delay-or-unfold
(lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))
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Computation Trace with Delay
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Reusing Delayed 
Computations
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Reusing Delayed 
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• Need to be able to reuse partial 
evaluations.
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Reusing Delayed 
Computations

• Need to be able to reuse partial 
evaluations.

• Memoize stochastically lazy unfold.
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Fragment Grammars

(define delay-or-unfold
(PYMem a b (lambda (symbol)
(if (flip)
(delay (stochastic-lazy-unfold symbol))
(stochastic-lazy-unfold symbol)))))

(define stochastic-lazy-unfold
(lambda (symbol)
(if (terminal? symbol)
symbol
(map delay-or-unfold (sample-rhs symbol)))))

Wednesday, November 16, 2011



Fragment Grammar 
Reusable Computations
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Reusable Computations
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1. Always possible to use base grammar.
2. Fully recursive.
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Outline
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1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion
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Five Models

• 4 approaches to productivity and reuse.

• Capture historical proposals from the 
literature.

• State-of-the-art probabilistic models.

• Allow for variability and learning.

112
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MDPCFG
Multinomial-Dirichlet Context-Free Grammars

(Full-Parsing)

- All generalizations are productive

- Formalization: Multinomial-Dirichlet Probabilistic Context-free 
Grammar (MDPCFG; Johnson, et al. 2007a)
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MAG
MAP Adaptor Grammars

(Full-entry)

- Store whole form after first use.

- Formalization:  Adaptor Grammars (AG; Johnson, et al. 2007).

- Always possible to compute productively with small 
probability; Fully recursive.

- Formalizes classic lexicalist theories (e.g., Jackendoff, 1975).
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DOP1/GDMN
Data-Oriented Parsing

(Exemplar-based)

- Store all generalizations consistent with input

- Formalization: Data-Oriented Parsing 1 (DOP1; Bod, 1998),  Data-
Oriented Parsing: Goodman Estimator (GDMN; Goodman, 2003)

- Recently proposed as models of syntax (e.g., Snider, 2009; Bod, 
2009)
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FG
Fragment Grammars

(Inference-based)

- Store best set of subcomputations for explaining the data. 

- Formalization:  Fragment Grammars (FG; O’Donnell, et al. 2009)

- Generalization of Adaptor Grammars
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Outline
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1. The Proposal.

2. Five Models of Productivity and Reuse.

3. English Derivational Morphology

4. Conclusion
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English Derivational 
Morphology

Productive +ness (goodness), 
+ly (quickly)

Semi-productive

Unproductive

+ity (ability), 
+or (operator)

+th (width)
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Simulations

• Words from CELEX.

• Extensive heuristic parsing/hand correction.

• Input format.

• No phonology or semantics.

119
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Derivational Inputs
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix sequences.

121

Productive
+ness (goodness), 
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix combinations.

122

Productive
+ness (goodness), 

+ly (quickly)

Semi-productive

Unproductive

+ity (ability), 
+or (operator)

+th (width)
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Productivity 

• No gold-standard dataset or measure.

• E.g., Large databases of wug-tests or 
naturalness judgments.

• Analyses.

1. Examples of highly productive affixes.

2. Convergence with other theoretical 
measures.

123
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How is Productivity 
Represented?

• Relative probability of fragments with or 
without variables. 

V.

wide

124

Wednesday, November 16, 2011



Productivity Analyses 

1. Examples of highly productive suffixes.

2. Convergence with other theoretical 
measures.

125
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MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)
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Top 5 Most Productive Suffixes
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MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)
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Top 5 Most Productive Suffixes
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MAG (Full-listing)MDPCFG (Full-Parsing)

FG (Inference-based)

GDMN (Exemplar)DOP1 (Exemplar)
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Top 5 Most Productive Suffixes
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Productivity Analyses 

1. Examples of highly productive suffixes.

2. Convergence with other theoretical 
measures.

129
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Baayen’s Corpus-Based 
Measures

• Baayen’s    /       (e.g., Baayen, 1992)

•    :   Prob(NOVEL | SUFFIX) i.e. rate of 
growth of forms with suffix

•    : Prob(SUFFIX | NOVEL) i.e. rate of 
growth of vocabulary due to suffix

P

P P∗

P∗
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Productivity Correlations
(         values from Hay & Baayen, 2002)

MDPCFG
(Full-parsing)

MAG
(Full-listing)

DOP1
(Exemplar-based)

GDMN
(Exemplar-based)

FG
(Inference-based)

P/P∗
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English Derivational 
Morphology

1. Individual suffix 
productivity differences 
(-ness/-ity/-th).

2. Suffix combinations.
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Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.
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Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.
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Suffix Ordering

• Derivational morphology hierarchical and 
recursive.

• Multiple suffixes can appear in a word.
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Suffix Combinations

136

Wednesday, November 16, 2011



Suffix Combinations

• Many, many combinations of suffixes do not 
appear in words (even taking into account 
categories).
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Suffix Combinations

• Many, many combinations of suffixes do not 
appear in words (even taking into account 
categories).

• Fabb (1988).

- 43 suffixes.
- 663 possible pairs.
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Suffix Combinations

• Many, many combinations of suffixes do not 
appear in words (even taking into account 
categories).

• Fabb (1988).

- 43 suffixes.
- 663 possible pairs.
- Only 50 exist.
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Complexity-Based 
Ordering (Hay, 2002)

On average, more productive suffixes 
appear after (outside of) less 
productive suffixes.
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Measuring Ordering

• Examine attested orderings in corpus.

• Mean rank of each affix (Plag and Baayen, 2009).

• Graph-theoretic statistic.

• Measures degree to which each suffix tends 
to occur after other suffixes (on average).

• Compute log odds of suffix appearing 
second versus first for each model.
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Mean Rank 
Correlations

139
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Suffix Combinations

1. Suffix Ordering.

2. Generalization of Suffix Combinations.
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Generalizable Combinations

Frozen Combinations
Generalizable 
Combinations

141

Wednesday, November 16, 2011



Generalizable Combinations

Frozen Combinations
Generalizable 
Combinations
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-ity v. -ness

• -ness more productive than -ity.

• -ity more productive than -ness after:           
-ile, -able, -(i)an, -ic.                                 
(Anshen & Aronoff, 1981; Aronoff & Schvaneveldt, 1978; Cutler, 1980)
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Two Frequent Combinations:

-ivity v. -bility

• -ive + -ity: -ivity (e.g., selectivity).

• Speaker prefer to use -ness with novel words       
(Aronoff & Schvaneveldt, 1978).

• depulsiveness > depulsivity.

• -ble + -ity: -bility (e.g., sensibility).

• Speakers prefer to use -ity with novel words         
(Anshen & Aronoff, 1981).

• remortibility > remortibleness.
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Predicted MDPCFG
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MAG
(Full-listing)

DOP1
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GDMN
(Exemplar-based)
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(Inference-based)

-ivity v. -bility
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FG
(Inference-based)
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Discussion

• Inference-based approach able to correctly ignore 
high token frequency of -ivity because it balances a 
tradeoff.

• Other models use type or token frequencies.
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1. The Proposal.

2. Five Models of Productivity and Reuse.

3. Empirical Evaluation 

The English Past Tense

English Derivational Morphology

4. Conclusion

Outline
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Conclusion

• View productivity and reuse as an inference.

• Link between theory of programming languages 
and Bayesian models.

• Able to capture dominant patterns without 
semantic and phonological structure.

• Future work...
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Thanks!
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