

Learning to Walk

Massachusetts Institute of Technology, 2004

Learning flapping flight

Learning flapping flight

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Nodes represent feasible configurations Edges represent feasible trajectories

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Rapidly Exploring Random Trees (RRTs)

- Steve LaValle, I998; LaValle and Kuffner, I999-200I

Example: LittleDog Bounding Over Terrain

- Accurate dynamic model

Example: LittleDog Bounding Over Terrain

- Accurate dynamic model
- Plan in the space of "halfbound" primitives

Dynamic Invariant Sets Around Trajectories

Dynamic Invariant Sets Around Trajectories

- Effectively solve many funnels along the trajectory (making sure that one dumps into the other) [Tobenkin IO].

Dynamic Invariant Sets Around Trajectories

- Effectively solve many funnels along the trajectory (making sure that one dumps into the other) [Tobenkinl0].

Dynamic Invariant Sets Around Trajectories

- Effectively solve many funnels along the trajectory (making sure that one dumps into the other) [Tobenkin IO].
- Stability not required (finite-time analysis)

Dynamic Invariant Sets Around Trajectories

- Effectively solve many funnels along the trajectory (making sure that one dumps into the other) [Tobenkin IO].
- Stability not required (finite-time analysis)

- Optimizing volume is more complex.

Pendulum "Funnels"

Pendulum "Funnels"

Erdmann, Mason, Rizzi, Koditschek

Pendulum "Funnels"

Erdmann, Mason, Rizzi, Koditschek

The "LQR-Trees" Algorithm

The "LQR-Trees" Algorithm

The "LQR-Trees" Algorithm

The "LQR-Trees" Algorithm

Probabilistic Feedback Coverage

Probabilistic Feedback Coverage

- Probabilistically covers reachable space with stabilizing controller

Probabilistic Feedback Coverage

- Probabilistically covers reachable space with stabilizing controller
- Any finite measure region in the controllable set that is not in a funnel will be sampled and added to the tree

Probabilistic Feedback Coverage

- Probabilistically covers reachable space with stabilizing controller
- Any finite measure region in the controllable set that is not in a funnel will be sampled and added to the tree

