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Tedrake, 2004
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Learning flapping flight
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Rapidly Exploring Random Trees (RRTs)

• Steve LaValle, 1998;  LaValle and Kuffner, 1999-2001
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Nodes represent feasible configurations
Edges represent feasible trajectories
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Example: LittleDog Bounding Over Terrain

• Accurate dynamic model
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Example: LittleDog Bounding Over Terrain

• Accurate dynamic model

• Plan in the space of “half-
bound” primitives
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Dynamic Invariant Sets Around Trajectories
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Dynamic Invariant Sets Around Trajectories
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• Effectively solve many funnels along the trajectory (making sure that one 
dumps into the other)  [Tobenkin10] .  
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• Effectively solve many funnels along the trajectory (making sure that one 
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• Stability not required (finite-time analysis)
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Dynamic Invariant Sets Around Trajectories

−1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

−1 0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

g

!

m

l

• Effectively solve many funnels along the trajectory (making sure that one 
dumps into the other)  [Tobenkin10] .  

• Stability not required (finite-time analysis)

• Optimizing volume is more complex.  
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Pendulum “Funnels”
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The “LQR-Trees” Algorithm
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Probabilistic Feedback Coverage
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Probabilistic Feedback Coverage

• Probabilistically covers reachable space with stabilizing controller
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Probabilistic Feedback Coverage

• Probabilistically covers reachable space with stabilizing controller

• Any finite measure region in the controllable set that is not in a funnel 
will be sampled and added to the tree
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Probabilistic Feedback Coverage

• Probabilistically covers reachable space with stabilizing controller

• Any finite measure region in the controllable set that is not in a funnel 
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