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Abstract 

Identifying the way in which the enterprises of related businesses locates in 
proximity occur – the coagglomeration of industries – is a key solution to 
understand the geographic concentration mechanisms of industries. Many 
research in geography and spatial economics have been addressing this issue 
to explain and theorize such mechanism. This paper proposes a new statis-
tical approach that allows extracting coagglomeration patterns of industries 
from available national datasets. The approach takes two steps; the first step 
finds spatial clusters of each industry using the false discovery rate-control-
ling statistical test, and the second step searches for colocation relationships 
among industries through the frequent pattern mining of detected cluster lo-
cation and the Monte Carlo simulation. This approach identifies coagglom-
eration patterns of industries. The proposed new method is applied to the 
500-meter grid data of the 2012 Economic Census for Business Frame of 
Japan, to check its applicability and validity. 
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1. Introduction 

The coagglomeration of industries, namely the phenomenon wherein offices 
and factories of related businesses are located near one another, is one of the 
key issues affecting the mechanisms of geographic concentration of indus-
tries and formation of urban areas. Many researchers in geography and spa-
tial economics have developed various theories to explain these mecha-
nisms, and conducted empirical studies to understand the actual condition 
of this phenomenon (e.g., Ellison and Glaeser, 1999; Duranton and Over-
man, 2005; Ellison et al., 2010). 

Previous empirical studies proposed several indices that quantify the lev-
els of industry coagglomeration; these indices help researchers analyze 
whether a group of industries accumulates in the same regions. However, 
they do not provide locational information where industry coagglomeration 
occurs, and they do not shed light on the combinations of industries which 
comprise industry coagglomeration. 

Using small area statistics on economic activities, this study aims to dis-
cover coagglomeration patterns of industries and obtain information that 
will help pinpoint specific types of neighboring industries at particular loca-
tions. This study proposes an approach composed of two steps: spatial clus-
ter detection of each industry and pattern mining of colocated industrial 
clusters. 

The first procedure finds spatial clusters of each industry based on the 
false discovery rate (FDR)-controlling statistical test, which can avoid mul-
tiple testing problems. Caldas de Castro et al. (2006) first introduced the 
FDR-controlling statistical test to the geographic context, and Brunsdon and 
Charlton (2011) applied it to the spatial cluster detection problem. FDR-
based spatial cluster detection is a powerful statistical method, since it can 
detect multiple clusters without multiple testing problems. 

The second procedure searches for the colocation relationship between 
industries from cluster locations of each industry to discover of coagglom-
eration patterns of industries. The frequent pattern (FP)-growth algorithm 
(Han et al., 2000), one of the fastest frequent pattern mining algorithms, is 
applied to find the possible patterns of agglomerated industries in the same 
region, and the significance of found patterns are tested by the Monte Carlo 
simulation. 

The applicability of proposed approach is tested on 500-meter grid square 
data of the 2012 Economic Census for Business Frame of Japan. 
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2. Previous Empirical Metrics of Agglomeration and 
Coagglomeration of Industries 

Ellison et al. (2010) introduced two indices quantifying the degrees of co-
agglomeration between industries: the Ellison and Glaser (1997) indices 
(hereinafter, referred to as the EG indices) and the Duranton and Overman 
(2005) index (hereinafter, referred to as the DO indices). 

The EG indices use employment statistics aggregated by geographic re-
gions such as states and counties. The EG index that tests the agglomeration 
of industry i is  
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where m indexes geographic regions, smi is the share of industry i’s employ-
ment in region m over industry i’s employment in all regions, xm is the share 
of all employment in region m over all employment in all regions, and Hi is 
the enterprise-level Herfindahl index of industry i. The index value is large 
when industry i clusters. The agglomeration index is expanded to a coag-
glomeration index of a group of I industries, 
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where wi is the industry i’s share of the total employment in the group of I 
industries, sm is the share of employment in the group of I industries in each 

region: m mii I
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 , H is the enterprise-level Herfindahl index of the 

group of I industries: 
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 , and ˆi  is the estimated EG index of 

industry i’s agglomeration. 
A simpler formula of EG index for the industry i’s agglomeration is also 

defined as 
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and a simpler formula of EG index for the coagglomeration of industries i 
and j as 
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The EG indices have advantages in that they can utilize the statistics ag-
gregated by regions, which are easy to obtain, to check the industry agglom-
eration and coagglomeration. However, Duranton and Overman (2005) crit-
icized that the EG indices disregard the agglomeration and coagglomeration 
of industries composed of pairs of enterprises located near each other but 
not in the same region; the EG indices have the modifiable area unit problem 
(MAUP). Then, they proposed the distance-based DO indices. The DO in-
dex of agglomeration of industry i is  
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where n is the number of enterprises in the industry, dij is the Euclidean 
distance between enterprises i and j, and f ( ) is a Gaussian kernel density 
function with bandwidth h. This index takes into account all distances be-
tween pairs of enterprises. If the number of employees at each enterprise is 
known, the agglomeration index can be represented as 
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(2.6)

where e(i) is the number of employees of enterprise i. These DO indices are 
expanded to analyze the coagglomeration of industries, such that 
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where ni and nj are the number of enterprises in industries i and j, respec-
tively. 
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It is worth mentioning that the DO-indices share a similarity with Ripley’s 
K function (Ripley, 1976), namely the analysis of spatial point distribution. 
The definition of the K function at distance d, K(d), is the expected number 
of extra points within distance d of a randomly chosen point over the point 
density:  
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where ̂  is the estimated density, which is the total number of points over 
the total size of the study area, and I( ) is the indicator function. The cross-
K function Kij(d), namely the expansion of the K function to the two point 
processes, is defined as the expected number of type j points within distance 
d of a randomly chosen type i point. The estimator of the cross-K function 
is 
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where î  is the estimated density of point process i, which is the total num-

ber of type i points over the total size of the study area (e.g. Cressie, 1993). 
The DO indices and K functions utilize the detail location information of 

enterprises, which is hard to obtain; they are free from the MAUP. However, 
they have difficulties in analyzing the coagglomeration which consists of 
more than two industries; it is hard to define the proximity of more than two 
points, to search the combinations of more than two points which are located 
in their neighborhood, and to understand the statistical properties of indices 
which is composed of more than three different point processes.  

These EG and DO indices have been applied to many datasets in several 
countries to analyze the agglomeration and coagglomeration of industries. 
However, they suffer two major limitations of analysis, as described below. 

The first limitation is that they cannot indicate the regions where industry 
coagglomeration occurs. The previous indices can judge whether industries 
cluster in their neighborhoods, but do not provide locational information on 
industry coagglomeration. 

The second limitation is that it is difficult to identify the patterns of in-
dustries which have coagglomeration. The EG indices needs to preset a com-
bination of industries to calculate an index value. Since the possible patterns 
of industries, composed of more than two industries, are numerous, discov-
ering coagglomeration patterns of industries is almost impossible without an 
effective search algorithm. 
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This study takes the following two-step approach to overcome limitations 
by the previous methods: i) spatial cluster detection of each industry using 
the false discovery rate (FDR)-controlling method, and ii) pattern mining of 
colocated industrial clusters using the frequent pattern mining algorithm. 
The significance of discovered patterns of industries are tested by the Monte 
Carlo simulation. This approach therefore can discover patterns of industries 
that have similarities in their spatial distributions as well as the regions 
where such industrial patterns are located. 

3. Spatial Cluster Detection of Each Industry Using the 
FDR-Controlling Method 

3.1 Two Major Methods for Multiple Spatial Cluster Detection of 
Point Events 

This study considers the locations of enterprises as point event data and 
searches regions wherein enterprises accumulate using the statistics aggre-
gated by regions. When detecting regions of industry agglomeration, it is 
general to assume that multiple cluster regions exist. Two approaches are 
proposed recently for detection of multiple clusters of point events; Mori 
and Smith (2010) offered a method as an extension of spatial scan statistic 
(e.g., Kulldorff, 1997), and Brunsdon and Charlton (2011) proposed the ap-
plication of the FDR-controlling procedure (Benjamini and Hochberg, 
1995). 

The former method bases the spatial scan statistic. The spatial scan sta-
tistic is a famous method to detect regions where point events cluster; it 
evaluates the degree of point accumulation in the given area by the likeli-
hood ratio, namely the likelihood of the alternative hypothesis that assumes 
the given area is a cluster region in which the large number of point events 
are located over the likelihood of the null hypothesis that assumes the area 
is not a cluster region. After searching the area with the maximum likelihood 
ratio, its statistical significance is tested through comparison to the distribu-
tion of the maximum likelihood ratio from the random point distribution 
obtained from the Monte Carlo simulation. The spatial scan statistic and its 
derivations are widely used for cluster detection; however, there is a limita-
tion for detecting multiple clusters, since the alternative hypothesis pre-
sumes that a single cluster exists. Although the secondary and other clusters 
can be detected under the condition that the former detected clusters exist at 
the detected locations, this limitation spoils the availability of spatial scan 
statistic-based cluster detection. 
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Mori and Smith (2010) proposed the evaluation of multiple cluster mod-
els as an expansion of the spatial scan statistic using the Bayesian Infor-
mation Criterion (BIC). This method forms “cluster schemes” that set the 
multiple cluster candidates, estimates the density parameters for all candi-
dates in each cluster scheme based on the point distribution assumption, and 
calculates the BICs. After the cluster scheme with the maximum BIC is se-
lected, its significance is tested through the Monte Carlo simulation. Since 
model selection by the BIC can consider the number of clusters as well as 
their locations, it is a promising multiple cluster detection method. However, 
since the numbers of possible cluster schemes are huge and the efficient 
search procedure is not proposed, this method might take excessive time for 
detecting clusters, especially in small area analysis.  

The latter method is based on the FDR-controlling procedure; it can not 
only avoid the multiple testing problem but also achieves greater statistical 
power than family-wise error rate controlling methods, that is, another ap-
proach for multiple testing (e.g. Holm, 1979).  

The multiple testing increases the occurrence of false discoveries (type I 
errors) by chance. Benjamini and Hochberg (1995) defined the FDR as the 
expected value of the proportion of false discoveries to the rejected null hy-
potheses, and proposed a testing procedure that keeps the FDR less than the 
given significance level α. Brunsdon and Charlton (2011) utilized it for clus-
ter detection; the method configures the set of alternative hypotheses that 
each region is a cluster, and tests the null hypotheses according to the FDR-
controlling procedure.  

The latter method is advantageous in that it requires far less calculation 
amount compared to the former method to find cluster regions. This study 
employs the FDR-controlling method to detect regions with each industry’s 
agglomeration.  

3.2 Detection of Industrial Clusters Using the FDR-Controlling 
Method 

Let G denote the area of interest, and suppose G is segmented into subre-
gions. Let Z denote one of the subregions in G, ZC denote a complement 
region of Z in G, Zn denote the count of point events in Z, CZ

n  denote the 

count of point events in ZC, Za  denote the size of Z, and CZ
a  denote the size 

of ZC. The sizes of regions could be defined by their respective areas, or the 
number of enterprises of all industries in the regions. Here, assume that the 
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spatial distributions of points in Z and ZC conform to the Poisson distribu-
tions in which the counts of points in each region are proportional to the 
sizes of the regions. Then, 

   ,  C C CZ Z Z Z Z Z
n Poisson a n Poisson a    (3.1)

where Z  and CZ
 are the density parameters in Z and ZC, respectively. The 

alternative hypothesis, which considers that points are clustered in Z, is 
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H    (3.2)

and its null hypothesis is 
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H   . (3.3)

Now suppose that the observed number of points in G is N. Under the 
condition that N points are located in G, Zn  conforms to the following bi-

nomial distribution 
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If the null hypothesis is true, 
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Then, when the observed point count in Z is n, the p-value of the null 
hypothesis for Z, pz, is 
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After the p-values of the null hypotheses for all subregions are calculated, 
these hypotheses are tested by the FDR-controlling procedure proposed by 
Benjamini and Hochberg (1995). 
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4. Discovery of Colocated Patterns of Industrial Clusters 

A frequent pattern mining algorithm first extracts possible industrial pat-
terns which might constitute coagglomeration. It was first proposed by 
Agrawal and Srikant (1994), and is commonly applied in the analysis of 
consumer buying behavior, to understand which combinations of items are 
bought together. It distinguishes a frequent combination by support, that is, 
the proportion of the number of regions where a combination of industries 
is colocated to the total number of regions in the study area. The support can 
be interpreted as an estimate of occurrence probability of a combination. 
The combinations whose frequencies are more than or equal to the given 
threshold are extracted as the frequent patterns. 

Suppose that Table 1 represents the cluster detection results. Clusters of 
industries A to D, are located in Regions I to V. The support of industry A 
is 60%, as clusters of industry A are located in three regions, namely regions 
I, III, and V, whereas the total number of regions is five. Similarly, the sup-
port of pattern {A, B, C} is 40%, as it is found in regions I and V. When the 
threshold is set to 40%, eight patterns, {A}, {B}, {C}, {A, B}, {A, C}, {B, 
C}, {A, D}, {A, B, C}, are extracted from the results of cluster detection of 
each industry. 

Table 1. Example of spatial distribution of clusters 

Regions Clustered industries 
I A, D 
II B 
III A, B, C 
IV ϕ 
V A, B, C, D 

 
Usually a common threshold value is set in a pattern mining analysis; 

however, the common threshold might be too large to find patterns that in-
clude industries with few clustered regions. In the coagglomeration analysis, 
it is meaningful to find the patterns of industries which are located in the 
limited regions but colocated in most of those regions. Thus this study sets 
not only the common threshold but also the threshold on the basis of the 
industry whose clustered regions are the fewest in the pattern. 

When the numbers of industries and regions are large, the frequent pattern 
mining becomes a time consuming process. Several algorithms have been 
proposed to overcome this problem; this study utilizes the FP-growth algo-
rithm, one of the fastest pattern mining algorithms (Han et al. (2000)).  

CUPUM 2015 Extraction of Industry Coagglomeration Patterns from Small... 146-9



After the possible industrial patterns are extracted, their significance is 
tested by the Monte Carlo simulation. If all regions have a uniform cluster 
occurrence probability of each industry, the numbers of cluster-colocated 
regions conform to the Poisson distribution under the null hypotheses that 
assume clusters of each industry are independently distributed. However, as 
most industries, especially service industries, tend to be located in urban 
areas where many people live, it is inappropriate to assume the same cluster 
occurrence probability to regions; this study sets the cluster occurrence 
probability of an industry in each region to be proportional to the number of 
clustered industries in each region. This setting makes difficult to estimate 
the distributions of numbers of cluster-colocated regions under the null hy-
potheses without simulation; this study employs the Monte Carlo simula-
tion. A cluster occurrence of each industry at each region is simulated under 
the given probability, regions where simulated clusters are colocated are 
counted for each possible extracted industrial pattern, and their counts by 
simulation are compared with those by the data to test the significance of 
industrial patterns. 

5. Application 

5.1 Dataset 

The 2009 Economic Census for Business Frame is a dataset covering all 
establishments and enterprises in Japan as of July 1, 2009. This study uses 
the 500-meter grid square statistics which record the number of enterprises 
in each grid square. The industries are classified into 86 major groups as per 
the Japan Standard Industrial Classification, revised on November 12, 2007 
(Ministry of Internal Affairs and Communications, 2007). The total number 
of 500-meter grid squares is 1,515,129 in the entire nation, and the statistics 
contain the records only on 336,646 grid squares wherein at least one enter-
prise is located; it is important to note that this is a zero-truncated dataset. 
The total establishment numbers are 6,009,389.  

5.2 Detection of Clusters of Each Industry 

The cluster detection of each industry was carried out under the condition 
that the upper limit of FDR is 0.01. The cluster detections are conducted 
based on the area density of enterprises. The density estimators are corrected 
considering that the statistics are zero-truncated data (e.g. Cohen, 1960). 
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There are 26,184 grid squares containing at least one industrial cluster, 
amounting to 1.7% of the total grid squares in Japan and 7.8% of industry-
located grid squares. Table 2 shows the top ten industries with the widest 
clustered areas, and Fig. 1 and 2 show examples of cluster detection results 
near Tokyo. The figures clearly show that the retail industries are located in 
central business districts and along railway lines (black thick lines), while 
the manufacturing industries show different spatial distributions.  

Most of the results look adequate; however, the clusters of industry “49. 
Postal activities, including mail delivery,” which consists of delivery sta-
tions, have an issue. The enterprises of postal activities are usually located 
at intervals to provide nationwide services; only two enterprises at maxi-
mum are located in one grid square. The estimated density parameter is very 
small, 0.022 enterprises per square kilometer; that is, 0.0056 enterprises per 
grid square. As a result, all square grids where at least one enterprise is lo-
cated are selected as clustered areas. The Poisson distribution is not an ap-
propriate model for the distribution of this industry and the 500-meter grid 
squares are too small compared to the number of enterprises. This is related 
to the MAUP; it is difficult to decide the appropriate size of spatial units 
used in the analysis. 

Table 2. Top ten industries with broad clustered areas 

Industrial categories 
Number of grid squares  
detected as clusters 

60 Miscellaneous retail trade 7,569 
76 Eating and drinking places 7,563 
78 Laundry, beauty, and bath services 7,431 
58 Retail trade (food and beverage) 7,116 
69 Real estate lessors and managers 5,452 
83 Medical and other health services 4,423 
49 Postal activities, including mail delivery 3,682 

7 
Construction work by specialist contractor,  
except equipment installation work 

2,545 

57 
Retail trade 
(dry goods, apparel, and apparel accessories) 

2,545 

6 
Construction work (general),  
including public and private construction work 

2,441 
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Fig. 1. Clusters of “60. Miscellaneous retail trade” 
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Fig. 2. Clusters of “24. Manufacture of fabricated metal products” 
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5.3 Extraction of Coagglomeration Patterns of Industries 

The thresholds for possible pattern extraction are set to the 0.25% of grid 
squares where at least one industry accumulates as the common threshold 
and the 1% of clusters of industry whose clusters are the fewest in the pat-
tern. The frequent pattern mining algorithm extracted 137,799 patterns, and 
3,338 patterns that are not a subset of others. 

Then the Monte Carlo simulation tests the significance of extracted pat-
terns; the simulation is repeated 999 times, and the significance of patterns 
is decided under the condition that the upper limit of FDR is 0.01, as this 
process causes also multiple testing problem. The simulation rejects the pat-
terns whose subsets are non-significant patterns; 22,787 patterns are judged 
as significant, 1,342 patterns not a subset of others. 

The patterns with the largest number of industries are shown in Table 3. 
Checked industry categories indicate industries included in the patterns. 
Most of the industries in the larger patterns are service industries, and the 
grid squares show that these industries are colocated in the central business 
district of Japan. Fig 3 shows the location of pattern #1. 

The analysis reveals that 45 industries are not colocated with any other 
industries. Most of them have less than five hundred cluster grid squares; 
however, “49. Postal activities, including mail delivery”, “75. Accommoda-
tions”, and “11. Manufacture of textile mill products” are have more than a 
thousand clustered grid squares but does not have any coagglomeration. 

 

Table 3. Industries identified in the largest patterns 

Patterns #1 #2 #3 
39 Information services    
57 Retail trade (dry goods, apparel, and apparel accessories)    
58 Retail trade (food and beverage)    
60 Miscellaneous retail trade    
68 Real estate agencies    
72 Professional services, n.e.c.    
74 Technical services, n.e.c.    
76 Eating and drinking places    
78 Laundry, beauty, and bath services    
79 Miscellaneous living-related and personal services    
82 Miscellaneous education, learning support    
83 Medical and other health services    
92 Miscellaneous business services    

Number of observed grid squares 247 225 220 
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Fig. 3. Location of coagglomeration pattern #1 

μ
0 20 4010

km

CUPUM 2015 Extraction of Industry Coagglomeration Patterns from Small... 146-15



5.4 Discussion 

The advantages of the proposed approach are as follows: 
1. It can indicate regions where industry coagglomeration is observed. 
2. Each industrial clusters are detected with the FDR-controlling 

statistical test, which can detect multiple clusters by avoiding multiple 
testing problems. 

3. The possible coagglomeration patterns of industries are discovered by 
the data mining algorithm; since the algorithm has scalability, it is 
applicable to the analysis even when the numbers of regions and 
industry classifications are large. 

4. The significance of coagglomeration patterns of industries is tested by 
the Monte Carlo simulation. The simulation considers that the 
industries tend to be located in urban areas, and finds the significant 
patterns which are not occur by chance. 

The proposed approach has some disadvantages and possible aspects to 
improve: 

1. The results of the proposed approach reveal a significantly large 
number of patterns of industries; it is hard to interpret the results, as 
1,342 industrial patterns are extracted. It is, thus, necessary to 
summarize and visualize the relationships of industries extracted from 
the analysis of the locations of each industry. 

2. The proposed approach remains true to the principles of the 
agglomeration and coagglomeration indices proposed/used by 
previous studies. However, the output of proposed approach does not 
give any information about the manner in which the coagglomeration 
of industries occurs. It only reveals that certain industrial patterns are 
colocated. Further analyses are needed to better understand the 
mechanism of coagglomeration of industries. 

3. As is similar to the Ellison and Glaser (1997) indices, the proposed 
approach uses statistics aggregated by geographic regions. It has the 
MAUP; the results will change if the regions used for aggregation are 
different. 

6. Concluding Remarks 

This study proposed an approach to discover coagglomeration patterns of 
industries through point event cluster detection and pattern mining of colo-
cated industrial clusters. Compared to previous indices, the proposed ap-
proach is advantageous in that it is able to discover the patterns of industry 
coagglomeration and identify locations of industry coagglomeration. The 
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extracted industry coagglomeration patterns reveal the relatedness of indus-
tries, and will also help classify regions based on patterns of located indus-
tries; it might be a useful information that helps policymakers understand 
the characteristics of regions and develop effective policies to attract busi-
nesses to their regions. 

However, as stated in Section 5.4, the proposed approach has some draw-
backs, which we intend to explore on in the future research. 

Acknowledgement 

This study was supported by JSPS KAKENHI Grant Number 26289169. 
The 500-meter grid square statistics of the 2009 Economic Census for Busi-
ness Frame provided by Sinfonica is used as the CSIS Joint Research (No. 
456) using spatial data provided by Center for Spatial Information Science, 
The University of Tokyo. The author thanks Kohei Shiga for his research 
support. 

References 

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. 
Proceedings of the 20th International Conference on Very Large Data Bases, 487–
499. 
 
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. Journal of the Royal Statistical So-
ciety Series B, 57(1), 289–300. 
 
Brunsdon, C., & Charlton, M. (2011). An assessment of the effectiveness of multi-
ple hypothesis testing for geographical anomaly detection. Environment and Plan-
ning B: Planning and Design, 38, 216–230. 
 
Caldas de Castro, M., & Singer, B. H. (2006). Controlling the false discovery rate: 
a new application to account for multiple and dependent tests in local statistics of 
spatial association. Geographical Analysis, 38, 180–208. 
 
Cohen, A. C., Jr. (1960). Estimating the parameter in a conditional Poisson distri-
bution. Biometrics, 16(2), 203–211. 
 
Cressie, N.A.C. (1993). Statistics for Spatial Data. New York: Wiley. 
 

CUPUM 2015 Extraction of Industry Coagglomeration Patterns from Small... 146-17



Duczmal, L., Kulldorff, M., & Huang, L. (2006). Evaluation of spatial scan statistics 
for irregularly shaped clusters. Journal of Computational and Graphical Statistics, 
15(2), 1–15. 
 
Duranton, G., & Overman, H. G. (2005). Testing for localization using micro-geo-
graphic data. The Review of Economic Studies, 72(4), 1077–1106. 
 
Ellison, G., & Glaeser, E. L. (1997). Geographic concentration in U.S. manufactur-
ing industries: A dartboard approach. Journal of Political Economy, 105(5), 889–
927. 
 
Ellison, G., & Glaeser, E. L. (1999). The geographic concentration of industry: Does 
natural advantage explain agglomeration? The American Economic Review, 89(2), 
311–316. 
 
Ellison, G., Glaeser, E. L., & Kerr, W. R. (2010). What causes industry agglomer-
ation? Evidence from coagglomeration patterns. The American Economic Review, 
100, 1195–1213. 
 
Han, J., Pei, H., & Yin, Y. (2000). Mining frequent patterns without candidate gen-
eration. Proceedings of the 2000 ACM SIGMOD international conference on Man-
agement of data. ACM Press, New York, NY, USA. 
 
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics, 6(2), 65–70. 
 
Kulldorff, M. (1997). A spatial scan statistic. Communication Statistic Theory and 
Method, 26(6), 1481–1496. 
 
Ministry of Internal Affairs and Communications of Japan. (2007). Japan Standard 
Industrial Classification (Rev. 12, November 2007). 
 
Mori, T., & Smith, T. (2010). A probabilistic modeling approach to the detection of 
industrial agglomeration. KIER Discussion Paper, 777, 1–54. 
 
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Jour-
nal of Applied Probability, 13(2), 255–266. 

CUPUM 2015 Inoue 146-18




