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Abstract 
Real-time urban climate monitoring provides useful information that can be utilized to help monitor 
and adapt to extreme events, including urban heatwaves. Typical approaches to the monitoring of cli-
mate data include the acquisition of weather station monitoring and also remote sensing via satellite 
sensors. However, climate monitoring stations are very often distributed spatially in a sparse manner, 
and consequently, this has a significant impact on the ability to reveal exposure risks due to extreme 
climates at an intra-urban scale (e.g., street level). Additionally, such traditional remote sensing data 
sources are typically not received and analyzed in real-time which is often required for adaptive urban 
management of climate extremes, such as sudden heatwaves. Fortunately, recent social media, such as 
Twitter, furnishes real-time and high-resolution spatial information that might be useful for climate 
condition estimation.  

 The objective of this study is utilizing geo-tagged tweets (participatory sensing data) for urban tem-
perature analysis. We first detect tweets relating hotness (hot-tweets). Then, we study relationships 
between monitored temperatures and hot-tweets via a statistical model framework based on copula 
modelling methods. We demonstrate that there are strong relationships between “hot-tweets” and tem-
peratures recorded at an intra-urban scale, that we reveal in our analysis of Tokyo city and its suburbs. 
Subsequently, we then investigate the application of “hot-tweets” informing spatio-temporal Gaussian 
process interpolation of temperatures as an application example of “hot-tweets”. We utilize a combina-
tion of spatially sparse weather monitoring sensor data, infrequently available MODIS remote sensing 
data and spatially and temporally dense lower quality geo-tagged twitter data. Here, a spatial best linear 
unbiased estimation (S-BLUE) technique is applied. The result suggests that tweets provide some useful 
auxiliary information for urban climate assessment. Lastly, effectiveness of tweets toward a real-time 
urban risk management is discussed based on the analysis of the results. 
_______________________________________________________ 
Y. Yamagata •  D. Murakami 
Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, 
Japan 
Email:  yamagata@nies.go.jp 
 
D. Murakami (Corresponding author).  
Email:  murakami.daisuke@nies.go.jp 
 
G. W. Peters 
Department of Statistical Science, University College London, London, U.K. 
Email:  gareth.peters@ucl.ac.uk 
 
T. Matsui U.K. 
Department of Statistical Modeling, Institute of Statistical Mathematics, Tachikawa, Japan 
Email:  tmatsui@ism.go.jp 

 

CUPUM 2015 258-Paper



1. Introduction 

The ability to develop management responses and adaptive strategies to 
manage extreme weather related events, such as urban heatwaves, is a major 
concern that is actively studied in the urban literature (e.g., Nakamichi et al., 
2013; Yamagata and Seya, 2013). A key challenge faced in such adaptive 
management approaches is the ability to accurately monitor in real time the 
intra-urban scale climate conditions (e.g., district level). However, monitor-
ing stations that assess the climate conditions are very often allocated 
sparsely in space, and it is usually difficult or impossible to analyze district 
level temperatures and humidity using the resulting data obtained from such 
sensor networks due to the sparsity of locations at an intra-urban scale. This 
is a known problem discussed in papers such as Zhang (2010) and Nevat et 
al. (2013). To illustrate this point for the urban environment in Tokyo, Fig-
ure 1 displays the spatial distribution of temperature monitoring stations of 
Japan Metrological Agency in Tokyo prefecture. The number of the moni-
toring stations is only 8, and it would be impossible to analyze district level 
temperatures using data at the monitoring stations only. 

 

 
Fig. 1. Spatial distribution of climate monitoring stations in Tokyo. 

 
In addition to data from weather monitoring stations, often remote sensing 

satellite data provides another popular approach for climate condition esti-
mation. For example, satellite imageries from MODIS (Moderate resolution 
imaging spectroradiometer) reveal ground surface temperatures with spatial 
resolution of 1km. However, we cannot acquire real-time climate infor-
mation from such satellite images 24 hours a day; in the case of Japan, 
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MODIS imagery is available only at four time points, which are around 
AM11:30, PM1:30, PM8:30, and PM10:30 each day.  

Given the challenges faced by sparsity (in space) of ground based weather 
and climate monitoring stations and the sparsity (in time) of remote sensing 
data to monitor in real time intra-urban climates, we seek a novel alternative 
approach that can supplement these accurate data sources with a less accu-
rate but prevalent in time and space lower quality data source. Hence, to 
provide real-time district-level climate information for adaptive public ur-
ban management of extreme climate events, we need to explore a novel so-
lution to supplement the missing data in regions far from monitoring sensor 
sites (see Figure 1). We will demonstrate in this paper how to begin to utilize 
Twitter (http://twitter.com) as an auxiliary information source to help to ex-
plain and extrapolate in an informed manner the local urban climate, espe-
cially, in this study the local intra-urban temperatures of Tokyo city. Twitter 
is a social media that allows uses to post short messages (up to 140 charac-
ters in Japanese) called “tweets.” Since a large amount of tweets are posted 
at arbitrary times and locations, we investigate whether they may provide 
real-time and high spatial resolution information relating to temperature and 
in particular extreme temperature events such as heatwaves. It is unknown 
as to what extent such data would be useful in helping to resolve this issue 
of estimation in the presence of scarce data from real climate monitoring 
sensor networks. Therefore, we aim to study the utility of this additional 
Twitter data in forming estimation of temperature in local urban environ-
ments to supplement the results obtained from sensor monitoring station re-
cordings. 

Application of tweets to such estimation problems is a recently active 
topic, for instance Thelwall et al. (2011) show that major events signifi-
cantly change sentiment of tweets. In Bollen et al. (2011) they utilized twit-
ter data to estimate public mood, and then applied the results to financial 
market analysis. Of most relevance to the study we undertake, it was demon-
strated recently in An et al. (2014) that tweets change depending on climate 
events, i.e. the information content in tweets and the topic of tweets is caus-
ally affected by climate conditions of the tweeter. They also show that tweets 
concerning climate change are increasing. However, most twitter studies 
including these studies just mentioned ignore the spatial dimension and 
structure of the data, this is probably due to the difficulty of obtaining ge-
otagged data on such tweet data records.  

It is starting to be demonstrated that the spatial data associated with tweets 
may also be significant and informative when utilizing twitter data. For in-
stance, some studies suggest significant influence of location on tweets, see 
for example, Hahmann et al. (2014) who show that intensity of tweets about 
facilities (Airport, Bakery, Cinema,...) change depending on the distance to 
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the facility, while Li et al. (2012) demonstrate that tweets effectively reveal 
important information relating to local events such as car accidents and 
earthquakes. Tweets might also effectively describe local urban climate, it 
is this premise that we aim to investigate in this study.  

As a first step to utilizing tweets in urban climate monitoring, we first 
analyze statistical relationships between tweets and temperatures of their 
corresponding locations at intra-urban resolutions. In particular we focus on 
unpleasant hotness and heatwaves as the target of our extreme climate study. 
The subsequent sections of the manuscript are organized as follows. Section 
2 discusses how to exploit information pertaining to hotness from the twitter 
data. Section 3 analyzes relationship between tweets and temperatures. Sec-
tion 4 demonstrates an application example of tweets for local urban tem-
perature estimation. Finally, section 5 concludes our discussion. 

2. Temperature-related data 

2.1 Description of Twitter data 

We acquired data for tweets which included the following important attrib-
utes: the text message; a user id code; the spatial coordinates; and the time 
of tweeting. Such Twitter databases are known as geo-tagged tweets, the 
particular data set we utilized is commercially available and was collected 
by Nightley Inc. and purchased for this research project. The dataset consists 
of tweets posted in Tokyo between August 1 to August 31 in 2012. As a 
privacy policy, this data does not include all of the recorded tweets posted 
but instead only accounts for approximately 1% of a randomly sampled set 
of the geo-tagged tweets. Following, An et al. (2014), we exclude “re-
tweets,” which involves data that comes as a consequence of a re-posting of 
someone else’s tweet. The reason for this choice is that it is difficult to detect 
sentiment from a re-tweet. The resulting sample size we utilized involves 
130,332 geo-tagged tweets. In Figure 2, we provide a spatial scatter plot of 
their locations throughout the period under study, we see that the tweets tend 
to be distributed densely across Tokyo which provides a good resolution of 
information in the intra-urban Tokyo districts. The dense coverage is a 
marked contrast with the sparse distribution of temperature monitoring sta-
tions, which is shown in Figure 1. The dense tweeter information can now 
be assessed to see if it would be valuable to complement temperature infor-
mation at unmonitored sites. 
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Fig. 2. Spatial distribution of the tweeter data. White lines represent railways 

 

Table 1. Extracted synonyms of “Hot” and/or “Hot + Uncomfortable” 

Japanese English Japanese English 
あつい Hot 蒸し Muggy 
熱い Hot 水分補給 Rehydration 
暑 Heat 体調管理 Health management 
猛暑 Heat wave 猛烈に Furious 
炎天下 Blazing sun だるい Dull 
真夏日 Hot day 死ぬ Dying 
残暑 Lingering summer heat 異常 Abnormal 
熱中症 Heat illness 不快感 Discomfort 
バテ Summer heat 不快 Discomfort 
寝苦しい Cannot sleep well イヤ Unpleasant 
夏本番 Midsummer 嫌 Unpleasant 
日差し Sunlight クソ Shit 
照り Reflected heat Orz Discouragement  
湿度 Humid きつい Hard 
湿気 Moisture 辛い Hard 
汗 Sweat 大変 Hard 
ジメジメ Damp しんどい Tired 
ムシムシ Humid 厳しい Severe 
ベタベタ Sticky 苦手 Weak 
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2.2 Extraction of temperature related hotness tweets: “hot-
tweets” 

In this study we extracted only tweets that specifically related to unpleasant 
hotness using an approach known as “keygram,” (see http://ki-
zasi.jp/labo/keygram/keygram.py/) which utilizes a Japanese synonyms dic-
tionary to associated words (characters) to words of hotness (heat related). 
Table 1 summarizes synonyms of “hot” or “hot + un comfortable”, which 
were extracted through the use of keygram. Indeed, they are likely to explain 
unpleasant hotness. We use a dummy variable indicating 1 if the tweets in-
cluded any of the hotness-related keywords, and 0 otherwise, which we then 
refer to as “hot-tweets”. 

Spatial distribution of hot-tweets are distributed in Figure 3. This figure 
suggests that hot-tweets increase in nearby  station areas and that they in-
crease in the 2nd and 3rd week, which are the middle of the summer in Ja-
pan, and decrease in the 4th week, which is the end of the summer.  

 
 

 
Fig. 3. Spatial distribution of hot-tweets for each week in August, 2012 

 

1st week                                         2nd week 

Railway 

3rd week                                         4th week 
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3. Analysis of tweets and temperature over time 

3.1 A regression analysis based on generalized additive 
logistic model 

To analyze factors that explain “hot-tweets”, we apply a logistic additive 
regression model (e.g., Wood, 2006), which describes binary variables by a 
weighted sum of smoothing (nonparametric) terms as well as parametric 
terms. Suppose that pi = P(hot-tweeti = 1), where },...1{ Ni∈  is an index of 
tweet, then, our applied logistic additive model describes pi according to the 
following model structure: 

 ),(2)(1)(1
1

log)(tilog ,
i

i
i iiii

p
ppi latlonstimesdaysx

p
pp ++++=








−

= ∑ βα  (
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where α is a constant, xi,p is an explanatory variable, and βp is the coefficient, 
dayi and houri are the day and the time (in minutes) that i-th tweet is posted, 
respectively, and loni and lati are longitude and latitude of the tweeted loca-
tion.  
 

Table 2. Explanatory variables 

Variables Description 
Const. Constant (intercept); 
Tokyo dist. Log. of the minimum railway distance between the nearest station and ei-

ther of the principal main rail stations in Tokyo (Tokyo, Shinjuku, Ike-
bukuro, Shibuya, and Shinagawa stations); 

Station dist. Log. of the distance to the nearest railway station; 
Day pop. Daytime population density; 

Night pop. Nighttime population density; 
Park dist. Log. of the distance to the nearest urban park; 

River dist. Log. of the distance to the nearest river; 
Commerce Dummy of commercial district versus non-commercial (residential or 

other); 
Industry Dummy of industrial district 
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Table 2 summarizes explanatory variables. )(1 ⋅s  is the smooth spline 

function that models non-linear impacts of dayi and timei. For the smoothing 
function, we used the conventional thin plate spline (Wood, 2003; 2006). 

)(2 ⋅s  is the bivariate spatial smoothing spline function. Here, we use the 
Tensor product smoothing operator for )(2 ⋅s  (Wood et al., 2013). Eq.(1) out-
performs some other density estimation methods (e.g., the K-function-based 
method) in that multi-level (i.e., daily and hourly) temporal patterns that can 
be considered. The parameter estimation can be performed using function 
for general additive models such as gamm in the mgcv package in R, which 
we used in this analysis. 

Figure 4 shows the estimated non-linear impacts. s1(dayi) shows a time 
trend that illustrates that “hot-tweets” have a tendency to decrease around 
August 10 of 2012 and then to increase after this date. To clarify the reason 
for this behavior, we considered the daily mean temperatures which are plot-
ted in the left side of Figure 5. In agreement, with these findings from the 
hot-tweets, we also see that the mean temperatures decrease around August 
10, 2012. Thus, we postulate that perhaps the intensity of hot-tweets may 
reflect basic trends in daily temperatures. Estimated s1(timei) shows a ten-
dency for hot-tweets to increase in the morning, and decrease at night, such 
diurnal patterns are expected in local intra-urban climates. The intensity of 
hot-tweets is low at night and the same as the observed temperatures (see 
the middle of Figure 5). However, the increase of hot-tweets in the morning 
is somewhat inconsistent with the trend of temperatures, whose high peak is 
typically in the afternoon. On the other hand, change of hourly temperatures, 
which is plotted in the right subplot of Figure 5, has the high peak in the 
morning and the low peak at night, which is in agreement with the intensity 
of hot-tweets. Thus, we postulate that perhaps “hot-tweets” may also reflect 
changes of temperature rather than absolute temperatures themselves. Esti-
mated s2(loni, latj) shows a spatial pattern that hot-tweets increase in areas 
around train stations in the suburbs of Tokyo, which is the middle of this 
figure, and decrease in the western non-urban area and the eastern central 
Tokyo area. Monitored temperatures (see, Figure 1) do not display such ten-
dency; hot-tweets might explain spatial pattern of unmonitored tempera-
tures. 
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Fig. 4. Estimated non-linear impacts. Black lines show the estimated impacts, and 
gray area indicate their 95% confidential intervals 

 

 
Fig. 5. Mean temperatures observed at monitoring stations (left: daily means; mid-
dle: hourly means; right: hourly mean changes of temperatures). 
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Table 3. Parameter estimates 

Variables Estimates z-value Significance 
Const. -6.17 -14.4        *** 

Tokyo dist. 2.44×10-3 0.17  

Station dist. -7.81×10-3 -0.43  
Day pop. 3.69×10-7 0.16  
Night pop. -1.99×10-7 -0.50  
Park dist. -4.11×10-1 -4.79 *** 
River dist. -1.89×10-1 -4.15 *** 
Commerce -1.28×10-1 -2.67 ** 
Industry -1.09×10-1 -1.56  

. ** and * represents significant levels of 5% and 1% respectively 

 
Table 3 summarizes the estimates of βp which demonstrate through re-

gression analysis based assessment in what types of urban area people will 
tend to feel unpleasant hotness and be driven to comment about such local 
climate conditions. The results from this analysis show that, while indicators 
of urbanization, including Tokyo dist., Station dist., Day pop., and Night 
pop., are statistically significant, indicators of natural environment, includ-
ing Park dist. and River dist. are negatively significant at the 1% level. 
Therefore, these results suggest that “hot-tweets” tend to decrease in areas 
collocated around new parks and/or rivers, this may be due to the following 
reasons: the cooling effect of green and water areas which are known to act 
as heat-sinks in local urban climates; as well as the amenities available in 
many of these areas, which is also likely to reduce the chance of feeling 
unpleasant hotness and therefore tweeting about this unpleasant micro cli-
mate. Commerce districts are also found to be negatively significant at the 
5% level, which means that people in commercial areas tend to experience 
less unpleasantness due to heat in such intra-urban environments. Again, 
speculatively this may be due to amenities and air-conditioned office and 
leisure spaces in such locations, also resulting in a reduction the effect of 
unpleasant heat in such areas. 
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3.2 A correlation and extremal dependence analysis 

As Hahmann et al. (2014) mentioned the “application of tweet-analyses for 
high resolution applications should be approached with care as the corre-
lation between the contents and the locations of tweets that is required for 
these applications is probably often too low.” Hence, a study of the correla-
tion between tweets and temperature of their corresponding locations would 
be an important starting point to utilize tweets for high resolution urban cli-
mate analysis. We also argue that extremal measures of dependence and 
concordance are also required to be considered in this spatial-temporal set-
ting, in this regard we also include an analysis of spatial extreme dependence 
relationships captured through the notion of extremal tail dependence. 

To analyze the correlation, the twitter data must be associated with the 
temperature data, whose monitoring locations (see, Figure 1) are incompat-
ible with tweeted locations (see, Figure 2). Besides, since values of hot-
tweets (1 or 0) can be very noisy, it would be preferable to utilize the under-
lying process of generating hot-tweets, which is more stable, rather than hot-
tweet values. Thus, we utilize the probability of hot-tweets = 1, i.e. p(hot-
tweet=1) for the correlation analysis. This is because p(hot-tweet=1) can be 
considered as hot-tweets after a noise removal. 

The correlation between p(hot-tweet=1) and temperatures is 0.30, while 
the correlation between p(hot-tweet) and change of temperatures is 0.46. 
Thus, the change in temperature has a greater linear association with the 
probability of “hot-tweets”. We plot p(hot-tweet=1) against temperatures 
(left side of Figure 6) and change of temperatures (right side of Figure 6). 
Apparently, lower temperatures seem to have stronger positive correlation 
with p(hot-tweet=1) than higher temperatures. Also, greater positive change 
of temperature seems to have stronger correlation with p(hot-tweet=1) than 
the other positive or negative change of temperature. In other words, the 
correlation between p(hot-tweet=1)s and temperature/change of temperature 
is asymmetric. Unfortunately, such an asymmetric correlation structure can-
not be captured by the standard correlation coefficient. 
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Fig. 6. Plots of dHtweets against temperatures and change of temperatures 

To accommodate the potential for other measures of concordance as well 
as asymmetric correlation features such as those just analyzed we advocate 
a statistical modelling framework known as copula modelling. Copulas are 
a distributional parametric model based framework that provides functional 
model specifications that can accommodate a variety of different notions of 
concordance and dependence such as asymmetric correlation structures ob-
served in this data analysis, see a detailed review of copula modelling in 
Cruz et al. 2014 (chapters 7-10). The widespread use of copula models is 
based on the results obtained from Sklar’s theorem (Sklar, 1959), which as-
sures the existence of a unique probability distribution function called a cop-
ula, )(⋅C , which satisfies the following relationship: 
 ))(),((),( 111 pp xFxFCxxF  = , (2) 
where F(x1,... xp) is a p-dimensional cumulative distribution function (CDF) 
of random variables, x1,... xp, and F1(x1),... Fp(xp) are their continuous mar-
ginal distribution functions. As such we see that according to Sklar’s theo-
rem the copula is a CDF that joints these marginal distributions together and 
therefore directly captures the dependence and associations between each 
random variable, independent of the marginal scaling behavior.  

After differentiation one obtains the general expression for the joint prob-
ability density function (PDF) of random vector x1,... xp, denoted by f(x1,... 
xp), according to the following decomposition based on Eq.(2) as follows: 
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where fj(xj) is the marginal PDF of xj. Eq.(2) implies that f(x1,... xp) can be 
decomposed into mutually independent elements, fj(xj), and the element that 
joints them, the copula density function c(F(x1),... F(xp)). Our interest is in 
the copula density c(F(x1),... F(xp)), which can be selected to describe the 
correlation between temperatures or change of temperatures and p(hot-
tweet). Many different copula models are available to be considered, see 
discussions in Cruz et al. 2014 (chapters 7-10) and the references therein. 

While c(F(x1),... F(xp)) can be modeled by both parametric or non-para-
metric approaches, we apply the latter, which is more flexible. We use a 
penalized hierarchical B-spline-based copula estimation approach of Schell 
and Ruppert (2013). This approach models copula using Eq.(4): 

 ∑
=

≈
K

k
pkkp uubuuc

1
11 ),(),(  φ , (4) 

where u1,... F(x1),... up = F(xp), and ),( 1 pk uu φ  is k-th B-spline basis func-
tion, and bk is the corresponding coefficient. See, Schell and Ruppert (2013), 
for more details on properties of such a semi-parametric copula model. 

In Figure 7 we plot the estimated copula model in Eq.(4) for the relation-
ship between temperature and p(hot-tweet). The result suggests the signifi-
cant correlation between lower temperatures and p(hot-tweet) and in addi-
tion perhaps even a lower tail dependence feature. In other words, variations 
of low temperatures, e.g. at night are explained well by p(hot-tweet). Strong 
correlation is also found between greater positive change of temperature and 
p(hot-tweet). That is, rapid temperature increase, e.g. in morning are ex-
plained well by p(hot-tweet).  

As an additional analysis of such relationships we also consider alterna-
tive concordance measures such as extremal tail dependence. Upper and 
lower tail dependences are quantified non-parametrically, as detailed in 
Ames et al. (2014), via the following concordance measure for upper tail 
dependence: 
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the sample size. k is set as the 1st, 2nd,... 20th percentiles to estimate the 
lower tail dependences, and as 80st, 81nd,... 99th percentiles to estimate the 
upper tail dependences.  

Upper tail dependences estimated in each percentile, λu, are averaged and 
summarized in Table 4. Lower tail dependences are summarized in the same 
table as well. This table shows the marked lower tail dependence between 
temperature and p(hot-tweets=1). In contrast, any extremal upper tail de-
pendence was not found between temperature and p(hot-tweets=1). This ta-
ble also shows moderate upper and lower tail dependences between change 
of temperatures and p(hot-tweets=1). 

In summary, while p(hot-tweets=1) explain both temperature and change 
of temperature, p(hot-tweets) have stronger relationship with the latter. Be-
sides, p(hot-tweets=1) have moderate upper and lower tail dependences with 
change of temperatures as well. From this dependence analysis we conclude 
that there may be some utility in utilizing geo-tagged twitter data to help 
estimate and forecast temperature change in a high-resolution manner, in 
order to supplement data from sparsely located monitoring stations and in-
frequent remote sensing data sets. Furthermore, the correlation between 
p(hot-tweet=1) and temperatures suggests that perhaps tweets may carry 
some information that could be useful for estimation and forecasts of the 
magnitude of temperatures in intra-urban environments. 

 
Fig. 7. Non-parametric copula estimates 

Table 4. Lower and upper tail dependence estimates 

 Lower tail Upper tail 
Temperature 0.40 0.00 
Change of temperature 0.20 0.23 
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4. Estimation of intra-urban spatial resolution temperature 
profiles using “hot-tweet” geo-tagged twitter data 

Based on the features observed in the geo-tagged “hot-tweet” data we now 
undertake an application that utilizes this data to perform intra-urban tem-
perature profile analysis. Hence, in this part of the analysis we utilize “hot-
tweet” data as an auxiliary information to capture local temperature interpo-
lation and combine it with more accurate sparse weather/climate monitoring 
data as well as remote sensing MODIS data for Tokyo prefecture. To 
achieve this we must first develop a spatial-temporal temperature interpola-
tion model considering both monitored temperatures and “hot-tweet” data. 
Since “hot-tweet” data occurs at any time and at any place, the idea is that 
they should provide greater spatial coverage for spatial temperature profile 
reconstruction in areas without any local sensor monitoring stations. There-
fore, the aim of this section is to assess the utility of such geo-tagged “hot-
tweet” data in informing such spatial temperature map reconstruction for 
intra-urban scale analysis. 

4.1 Spatial temperature field reconstruction at intra-urban 
resolution 

4.1.1 Model for monitored temperatures 

The model we develop is based on a spatial-temporal Gaussian process in 
which we express the de-trended temperature at the i-th monitoring station, 
whose spatiotemporal coordinates are denoted by xi, y(xi), as follows 

 )()()( iii vfy xxx += ,     ),0(~)( 2σNv ix , (6) 

where σ2 is a variance parameter. f(xi) is a Gaussian process, which we ex-
press as follows:  

 )),(,0(~)( jii cNf xxx , (7) 

where, and c(xi, xj) = E[f(xi)f(xj)] is a covariance function. 
If c(xi, xj) is given by a kernel function of the distance d(xi, xj) and the 

time-lag t(xi, xj) between xi and xj, the resulting Gaussian process describes 
both spatial and temporal dependencies. Here, one has to pay particular at-
tention to the form of the kernel in terms of how space and time features 
may interact in the temperature profile reconstruction. In this analysis we 
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adopt a product-sum model proposed in (De laco et al., 2001) which pro-
vides a popular spatiotemporal modelling specification which is formulated 
as follows according to the spatiotemporal covariance kernel functions: 

 )],,([)],([)],([)],([),( 222
jijistjitjisji tkdktkdkc xxxxxxxxxx σσσ ++= , (8) 

where σs
2, σt

2, σst
2 are unknown variance parameters. The spatial and tem-

poral kernel functions k[d(xi, xj)] and  
k[t(xi, xj)] in Eq.(8) can be defined using exponential function as follows: 
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where rs and rt are unknown range parameters of spatial and temporal de-
pendencies, respectively. 

Use of a basis function representation is an alternative approach to con-
struct the spatiotemporal covariance function c(xi, xj). In such a setting one 
would suppose that ws(xi), wt(xi), and wst(xi) are vectors of spatial and tem-
poral basis function values at location xi, then, c(xi, xj) can be modeled as 
follows: 

stististsttitittsisissjic bxwxwbbxwxwbbxwxwbxx )()()()()()(),( ′′+′′+′′=

, (11) 

where bs, bt, and bst are coefficient vectors. Although Eq.(11) is a rank 1 
covariance model, by assuming σ2 > 0, the resulting covariance matrix of 
y(xi) is always positive definite (see Eq.6). Following Eqs.(9) and (10), we 
defined the basis functions by the following exponential functions: 
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where ws(xi), wt(xi), and wst(xi) are i-th element of ws(xi), wt(xi), and wst(xi), 
respectively. Here, we denote by ax~ , the spatiotemporal coordinates of the 
a-th anchor point, which is placed anywhere in the target period in the target 
area, and sr~  and tr~ are known range parameters. Eqs.(12), (13), and (14) 
generate the a-th radial basis function based on the spatial and/or the tem-
poral distance separating xi and ax~ . When anchor points are densely sepa-
rated in space, many basis functions are generated (the number of basis func-
tions equals to the number of anchor points), and the resulting process model 
is usually more accurate than the model with fewer basis functions. In con-
trast, models with fewer basis functions are usually computationally more 
efficient. Hence, the number of anchor points must be selected judiciously. 
Following Cressie and Johannesson (2008), who discuss a basis function-
based spatial interpolation, the known range parameters sr~  and tr~  are 
given by 1.5 times of the shortest distance and time-lag between anchor 
points, respectively. 

While the former kernel-based approach has extensively been discussed 
(e.g., Cressie, 1993; Cressie and Wikle, 2013; Nevat et al. 2015), discussions 
of the basis function approach is still limited. However, the basis function 
approach is the computational more efficient: it is in nature a dimension re-
duction approach, and the computational complexity can be O(K3), where K 
is the number of basis functions (see, e.g., Cressie and Johannesson, 2008) 
whereas the computational complexity of the kernel approach is O(N3), 
where N is the sample size. Section 4.2 compares effectiveness of the two 
approaches by a Monte Carlo simulation. 

4.1.2 Model for “hot-tweet” geo-tagged twitter data 

Suppose that yht(xI) is a dummy variable of indicating 1 if the tweet at loca-
tion xI is a hot-tweet and 0 otherwise. We describe the probability of yht(xI) 
= 1 using Eqs.(15) and (16), which are defined as 

== ))(|1)(( IIht fyP xx  

 ∑
=

===
1

0
0_0_ ))(|)(())(|1)((

p
IIhtIhtIht fpyPpyyP xxxx , (15) 
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where T is a pre-determined threshold. yht_0(xI) is a dummy variable indicat-
ing 1 if f(xI) exceeds the threshold temperature T, and 0 otherwise. Eq.(15) 
assumes that one tends to comment about hotness when f(xI) exceeds T (i.e., 
yht(xI) tends to be 1 if yht_0(xI) = 1). 
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4.1.3 Efficient spatial-temporal temperature field reconstructions for 
intra-urban resolutions  

In this section we develop a spatial linear estimator for temperature data 
based on the S-BLUE framework proposed in (Nevat et al, 2015) and (Peters 
et al, 2015). The aim of this analysis is to interpolate the temperature at a 
new spatial locations x*, at which no measurement data is available, by es-
timating the underlying spatiotemporal process of temperatures by minimiz-
ing the mean squared error (MSE), which is formulated as follows: 

 ]))(ˆ)([( 2
** xx ffE − , (17) 

where f(x*) is the true unknown process and )(ˆ
*xf  is the estimate. For sim-

plicity, we denote f(x*) as f* hereafter. We select a class of spatial tempera-
ture field estimators, *̂f , that satisfy the following linear functional form 
given as  

 [ ]2
*,* ))((minargˆˆˆ BYYB

B
+−=+= αα fEf

a
, (18) 

where R∈α̂ , NR ×∈ 1B̂ , and Y is a vector observations that stacks vectors 
of y(xi) and yht(xI), which we denote y and yht, respectively (i.e., Y = [y', y'ht]' 
). Nevat et al. (2015) show that the minimization of the MSE under Eq.(18) 
yields the following estimator of f*, which we call the spatial best linear un-
biased estimator (S-BLUE): 

 [ ] [ ]YYYY ′′= −1
**̂ EfEf . (19) 

The elements in [ ]Y′*fE  and [ ]YY ′E  are given based on Eqs.(6) and (7), 
as follows: 

 [ ] [ ]][],[ ***** htht fEffEfE ycyyY ′′=′′=′ , (20) 
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where I is an identity matrix, c* is a column vector whose i-th element is 
c(xi, x*), and C is a matrix whose (i, j)-th element is c(xi, xj). In this study, 
c(xi, x*) and c(xi, xj) are given by either of the kernel function-based Eq.(8) 
or the basis function-based Eq.(11). In addition to the point estimator for the 
S-BLUE in Eq. (19) one may also define the accuracy of this estimator, as 
shown in Eq. (22). The associated MSE of the S-BLUE is given by 
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 [ ] [ ]YYYYxx ′′−= −1
***

2
* ),( EfEcσ . (22) 

A summary of the algorithmic steps required to calculate this S-BLUE 
estimator is provided in Algorithm 1. 

 
 

Algorithm 1: S-BLUE field reconstruction 
Input  : Y, xi, x*, σ2, C, c 
Output : *̂f  
1: Calculate the cross-correlation vector E[f*Y' ] 
2: Calculate the covariance matrix E[YY'] 
3: Calculate the S-BLUE of the intensity of the spatial field at a loca-

tion x*, as follows: 
[ ] [ ]YYYY ′′= −1

**̂ EfEf  
 
In summary, we developed models for monitoring temperatures and hot-

tweets in section 4.1.1 and section 4.1.2, respectively, and developed the S-
BLUE, Eq.(19), which interpolates temperatures at x* considering both 
monitored temperatures and hot-tweets. The remaining components to dis-
cuss for this spatial estimator that incorporates remote sensing data, ground 
based monitoring data and geo-tagged twitter data involves specification of 
how best to evaluate or estimate the spatial conditional moments given by

][ * htfE y′ , E[yy'ht], and E[yhty'ht] in Eqs.(20), (21), which we will discuss in 
section 4.1.3, and how to estimate parameters in c(xi, x*) and c(xi, xj), which 
we will discuss in section 4.1.4. 

4.1.3 Approximation of the cross-product moment terms in the S-
BLUE estimator 

The detailed derivations for the estimators of these spatial cross correlations 
is provided in Peters and Matsui (2015), here we present a summary of these 
results as they pertain to the application of these techniques in this paper. 
We consider the I-th element of ][ * htfE y′ , the (i, J)-th element of E[yy'ht], 
and the (I, J)-th element of E[yhty'ht], which are in Eqs.(20), (21), are ex-
pressed as follows in Lemma 1 and Lemma 2 (see detailed derivations in 
Peters and Matsui, 2015). 
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Lemma 1 (Cross-Correlation between Spatial Process and 
Observations) 

The I-th element E[f*yI ] of ][ * htfE y′ , which describes a cross-correlation 
between spatial processes at I-th tweeted site and *-th prediction site, is 
given by  

 ),()|1Pr(
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where T0 = -∞, T1= T, and T2 = ∞ (see, Eq.16), and )),(,0;( 2
IIk cT xx+σφ  is 

the value of the probability density function of the normal variable with 
mean 0 and variance σ2 + c(xI, xI) at Tk. 

Lemma 2 (Cross-Correlation between Observations) 

The (i, I)-th element of E[yy'ht], E[yiyI], which describes a cross-correlation 
between spatial processes at i-th monitoring station and at I-th tweeted site, 
is given by 
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The (I, J)-th element of E[yhty'ht], E[yIyJ], which describes a cross-corre-
lation between spatial process values at I-th and J-th tweeted sites, is given 
by 
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where ),;( 2σλ ik fΦ  = ∫ ∞−

kT
i dTfT ),;( 2σφ  is the value of the cumulative dis-

tribution function of ),;( 2σφ ik fT  at Tk. 
 

Eqs.(23), (24), and (25) are derived by assuming μ( ⋅ ), which appears in Pe-
ters and Matsui (2015), equals 0. This assumption is imposed because we 
assume temperatures after detrending (e.g., using a linear regression model: 
see section 4.1.1). Also, the number categories in the binary variables, L, 
which is in Peters and Matsui (2015), is given by 2 following our assumption 
of using hot-tweets, which take 0 or 1. 
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Fortunately, Lemma 1 provides a closed form solution of E[f*yI ]. Accord-
ingly, ][ * htfE y′ , which is a part in the S-BLUE equation is readily calculated 
once covariance functions, ),( jic xx , are estimated. In contrast, solutions of 
E[yiyI] and E[yIyJ] include expectation terms. To calculates the expectations, 

we need to evaluate ∫ ∞−

kT
i dTfT ),;( 2σφ  and fI. If fi and σ2 are known, they 

have closed form solutions. The end of subsection 4.1.4 discusses how to 
estimate them in a computationally efficient manner, which is important to 
implement S-BLUE considering large data such as twitter data. 

4.1.4 Estimation 

This section discusses how to estimate parameters in c(xi, xj) (and c(xi, x*)), 
which are contained in the expressions for ][ * htfE y′ , E[yy'ht], and E[yhty'ht], 
and S-BLUE equation (19) as well. Note that we use monitored temperatures 
only in the parameter estimation step. 

The kernel function (Eq.8)-based c(xi, xj) can be estimated using the 
weighted least squares (WLS)-based method (e.g., Cressie, 1993), whose 
spatiotemporal version is recently installed in gstat, which is a standard ge-
ostatistical package in R (http://www.r-project.org/). We apply the WLS-
based method to estimate the product-sum kernel function, Eq.(8). 

On the other hand, we apply an expectation-maximization (EM) algo-
rithm of Peters and Matsui (2015) which extended the formulation of Hoff 
and Niu (2012) to the mixed sensor fusion spatial covariance estimation con-
text. We utilize this approach of Peters and Matsui (2015) in order to esti-
mate the basis function-based c(xi, xj), Eq.(11). We briefly overview the key 
components of this approach and explain the algorithm. We first substitute 
the basis function-based c(xi, xj), Eq.(8), in to the Gaussian process model, 
Eq.(6). The resulting model is expressed by a matrix notation as follows: 

 vfy += ,    ),(~ BwBw0f ′′N ,    ),(~ 2I0v σN , (25) 

where f describes the Gaussian process and v the white noise. Eq.(25) is 
identical to the following equation: 

 vBwΓy += ,    ),(~ I0Γ N ,    ),(~ 2I0v σN , (26) 

where B is a matrix of coefficients. The log-likelihood of this model yields 
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where wi =[ws(xi)', wt(xi)', wst(xi)']'. 
The EM-algorithm identifies the maximum likelihood (ML) estimates of 

σ2 and B. To establish the algorithm, we first consider the conditional distri-
bution of the random effects nuisance parameter, Γi. which is the i-th ele-
ment of Γ, which can be shown to obtain the conditional distribution as fol-
lows 
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Using Eq.(28), the conditional ML estimators of B and σ2 are derived by 
differentiating the log-likelihood to obtain the expressions given as follows 

 1)~~(~~ˆ −′′= WWWEB , (29) 

 )ˆ~~()ˆ~~(1ˆ 2 BWEBWE −′−=
n

σ , (30) 

where W~ is a 2n×q matrix with i-th row given by miwi and (n+i)-th row by 
siwi, and E~ is a 2n×p matrix of the residuals given by [E', 0]', where 0 is a 
matrix of zeros with its dimension equals to E', a detailed discussion of the 
derivation steps and re-parameterization of this model to obtain Eq. (29) and 
(30) are provided in Peters and Matsui (2015). 

Now, based on Eqs.(28)-(30), we can develop an EM-algorithm-based 
ML estimation whose procedure is summarized as follows: 

 
1- Initialize σ2 and B 
2- Estimate mi and vi using Eq.(28) 
3- Estimate σ2 and B using Eq.(29), (30) 
4- Iterate the steps (ii) and (iii) until the estimates of σ2 and B converge 

 
Fortunately, Eqs.(29) and (30), which calculate least squared estimates, and 
Eq.(28) are computationally efficient. Hence, this estimation approach is 
likely to be a computationally efficient alternative to the standard kernel-
based estimation, which can be highly computationally inefficient when spa-
tiotemporal data are modeled. 
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After estimating B, the value of the Gaussian process at xi, fi, can be esti-
mated by Bwi 1(see Eq.25). Likewise, the value of the Gaussian process at a 
tweeted site xI can be estimated by BwI where wI = [ws(xI)', wt(xI)', wst(xI)']'. 
This study applies fi and fI, which are estimated like that, to estimate 

∫ ∞−

kT
i dTfT ),;( 2σφ  and fI, which are in E[yiyI] and E[yIyJ] (see the previous 

subsection). In other words, after the EM-algorithm-based parameter esti-
mation, we obtain closed form solutions of E[yiyI] and E[yIyJ], and E[f*yI ], 
and the S-BLUE Eq.(19) as well. This approach is computationally efficient, 
and, accordingly, would be useful for S-BLUE considering a large dataset 
such as twitter data. 

4.2. Monte Carlo simulation comparing performance of kernel 
based model with basis function based model. 

4.2.1 Assumptions on the accuracy and efficiency study 

Before going to the S-BLUE-based temperature interpolation, this section 
performs a Monte Carlo simulation that compares effectiveness of the kernel 
function-based approach, which uses Eq.(8), and the basis function-based 
approach, which uses Eq.(11), in terms of model accuracy and computa-
tional time.  

Sample sites are distributed in a two-dimensional space. Their X and Y 
coordinates are determined by scaling random samples from N(0,1) to make 
the minimum and the maximum coordinates 0.0 and 1.0, respectively (see 
Figure 8). Synthetic data are generated for the N sample sites and 30 by 30 
regular points, whose maximum and minimum coordinates are 0.1 and 0.9, 
respectively. The synthetic data is generated using the Gaussian process 
whose expectation equals 0 and covariance function is exp(-d(xi,xj)/0.4). 
Figure 8 illustrates sample sites, the regular points, and a resulting simulated 
synthetic Gaussian process that is used to perform the Monte Carlo compar-
ative study. 

In this simulation study, data generated in the N sample sites are used for 
model estimation, the data generated in the 30 by 30 points are used to eval-
uate predictive accuracy of models. We demonstrate two types of simula-
tions. The first simulation examines the influence of sample size on predic-
tive accuracy. The simulation is conducted while varying the sample sizes 

1 Based on Eq.(25), Bwi can be considered as a rough estimate of fi, which is determined 
by the monitored temperatures and not depend on hot-tweets. Use of the rough estimate 
is important to increase the computational efficiency. 
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over the range given by N∈{20, 200, 1000}. In this simulation, the anchor 
points, which must be provided a priori for basis function generation, are 
simply given by 3 by 3 points (see Figure 8). In the second simulation, the 
influence of the number of anchor points on the predictive accuracy is ex-
amined using a fixed sample size of N=200 synthetic samples. There, the 
numbers of regularly placed anchor points assumed are 3×3, 5×5, 7×7, 
10×10, and 13×13. In the first and second simulations, predictive accuracy 
evaluation is iterated over 200 replicated experiments. These simulations are 
performed using 64 bit PC whose memory is 4.0 GB. 

4.2.2 Results of accuracy and efficiency Monte Carlo studies 

Table 5 summarizes root mean squared errors (RMSEs) of the two ap-
proaches when the sample size is increasing from N= 20, 200, and 1000 
samples respectively. This table clearly shows the inaccurateness of the ba-
sis function approach relative to the kernel-based widely applied approach 
for a fixed number of basis functions given by 3×3. Even though the number 
of samples increases substantially the basis function approach is still under-
performing in this case. We believe it is primarily due to the fact that bias 
due to small numbers of anchor points in the representation is resulting in 
this reduced accuracy. We will test this hypothesis in the second study by 
fixing the number of samples and increasing the number of anchor nodes. 

Table 6 summarizes the RMSE with variation of the number of anchor 
points for a moderate number of sample observations N=200. This table sug-
gests that, while basis function approach is less accurate when the number 
of anchor points is small, the accuracy is compatible with the kernel-based 
approach when the number of anchor points is large. This result suggests the 
importance of using a sufficient number of anchor points, and, accordingly, 
basis functions. 

Clearly the basis function approach is significantly more computationally 
efficient than the kernel based method, due to its dimension reduction. 
Hence, when the appropriate number of basis anchor points are selected, this 
can be highly computational efficient. To see this, computational times of 
the two approaches are summarized in Table 7. This figure demonstrates 
that our basis function approach is far more computationally efficient than 
commonly used kernel-based approach, in particular, when the sample size 
is large.  

In short, the basis function approach is a computationally efficient ap-
proach whose accuracy is compatible provided that a sufficient number of 
basis functions are used. Based on the result, the next sub-section applied 
the basis function approach to temperature estimation while paying attention 
to how to determine the number of basis functions used. 
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Fig. 8. Examples of sample sites and 30 by 30 regular pointes (left), 3 by 3 anchor 
points (middle), and a Gaussian process generated (right). 

Table 5. Sample size and RMSE 

Sample size Kernel-based approach Basis function approach 
(3 by 3 anchor points) 

20 1.047 1.820 
200 0.707 1.778 

1000 0.399 1.251 

Table 6. The number of anchor points and RMSE (sample size: 200) 

# of anchor points Kernel-based approach Basis function approach 
3×3 

0.707 

1.778 
5×5 1.157 
7×7 0.853 

10×10 0.813 
13×13 0.784 

Table 7. Computational times (second) 

Sample size Kernel-based approach Basis function approach 
(3 by 3 anchor points) 

20 0.30 0.00 
200 20.7 0.12 

1000 1124.51 1.08 
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4.3. Application to temperature interpolation 

4.3.1 Assumptions 

This section applies S-BLUE Eq.(19) for a spatiotemporal temperature in-
terpolation in Tokyo in August 25, 2012. Because computationally effi-
ciency is crucially important in real-time risk management, which is our fo-
cus, we apply the basis function approach for the covariance function 
estimation. 

The calculation procedure is as follows: (i) hourly mean temperature, 
which captures time trends of spatially distributed temperatures, and dis-
tance to the Tokyo station and distance to the nearest station, which capture 
the heat island effect, are regressed on the monitored temperatures; (ii) the 
spatiotemporal process of the residual temperatures is modeled by the basis 
function approach; (iii) temperatures are interpolated by S-BLUE with hot-
tweets (S-BLUEwith) and S-BLUE without hot-tweets (S-BLUEwithout). 
S-BLUEwith utilizes both hourly monitored temperature data at 8 monitor-
ing stations (Figure 1) and hot-tweets (see Figure 3), and S-BLUEwithout 
utilizes only the monitored temperature data. Their interpolation equations 
are   and  , respectively. Section 4.3.2 selects the number of basis functions, 
which is critical for accurate interpolation (see the previous section), and 
section 4.3.3 discusses the interpolation result. 

4.3.2 Selection of the number of anchor points and basis function 

This section selects the number of anchor points by a 5-fold cross-validation 
(CV) that quantifies the model accuracy by the following steps: (i) divide 
the monitored temperature data into 5 subsamples randomly; (ii) apply 4/5 
subsamples for the model estimation; (iii) predicts the remaining 1/5 sub-
samples using the estimated model; (iv) evaluate the predictive accuracy by 
comparing monitored and predicted temperatures using RMSE; (v) repeat 
steps (ii) to (iv) for all 5 cases. The 5-fold CV is conducted iteratively by 
varying the number of anchor points. 

Since we consider both spatial and temporal dimensions, anchor points 
must be placed in both of these dimensions. Regarding the 1D temporal di-
mension, At anchor points are placed at regular intervals, and At is varied 
during the CV. Regarding the 2D spatial dimension, we place anchor points 
at each of the 8 monitoring stations, and they are fixed throughout the anal-
ysis. 
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Fig. 9. RMSE and number of basis functions 

 

 
Fig. 10. Comparison of monitored and predicted temperatures: 8 basis functions are 
applied in the basis function approach. 

Figure 9 displays the relationship between RMSE and the number of basis 
functions. This figure suggests that, while it is crucial to introduce more than 
a contain number of basis functions, RMSE is nearly constant once the num-
ber of basis function goes beyond 8. Hence, we apply 8 basis functions, 
which reduces the computational cost and provides the most stable, accurate 
and parsimonious model choice in this study. Note that the 8 basis function 
case furnishes the smallest RMSE. Figure 10, which compares monitored 
and predicted temperatures, shows that accuracy of the basis function-based 
approach is comparable to the kernel-based approaches. This figure con-
firms the computational efficiency of the basis function approach for large 
spatiotemporal data (e.g., twitter data) descriptions. 
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4.3.3 Interpolation result 

Figure 11 plots the interpolated temperatures at 6AM, 0PM, and 6PM in 
August 25, 2012. A significant difference between S-BLUEwith and S-
BLUEwithout are found at 0PM: while the northern area is the hottest based on 
S-BLUEwithout, the center of Tokyo area, where hot-tweets are densely dis-
tributed at around 0PM, is the hottest based on S-BLUEwith. Considering the 
severe heat island effect in the central Tokyo area (e.g., Saitoh et al., 1996; 
Ohashi et al., 2007), the latter result is intuitively more reasonable. 
 

 
Fig. 11. Temperature interpolation results 
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Accuracy of S-BLUEwith and S-BLUEwith out are compared by a cross-
validation. Since consideration of hot-tweets must be significant for temper-
ature interpolation at unmonitored sites, temperatures monitored at 7 sta-
tions (and hot-tweets) are applied to interpolate temperatures at the remain-
ing station site, and it is iterated for all 8 cases. Then, predictive accuracy is 
evaluated by RMSE. 

RMSE of S-BLUEwith and S-BLUEwithout are 3.85 and 3.89 only at the 
monitoring sites respectively, verifying that consideration of tweets increase 
local temperature interpolation accuracy marginally. Though due to the cal-
ibration of the models at these sites, it is not unreasonable to expect similar 
performance. However, more importantly, as shown in Figure 11, we see 
that the incorporation of the geo-tagged Twitter data can significantly 
change the estimated spatial resolution accuracy for local area analysis. This 
finding would be valuable as a first step of utilizing twitter and other social 
medias in urban climate analysis. We believe this is the first step in the in-
corporation of participatory sensing data with ground based sensor, as with 
all first attempts, this can be improved also with remote satellite sensing 
data. We believe the study of the twitter data and the approach of extracting 
hotness-related tweets can be enhanced further in future analysis. 

Figure 12 displays RMSEs evaluated in every monitoring sites. The fig-
ure suggests that the consideration of hot-tweets significantly increases the 
accuracy at two monitoring stations in the bayside part of the central area. 
The improvement suggests that densely distributed hot-tweets in the central 
area (see Figure 12) successfully captures temperature-related information 
that could not be captured by monitored temperatures. Based on Figure 12, 
the improvement might be due to the fact that hot-tweets were required to 
capture heat island effects in the bayside area around noon accurately. 

 

 
Fig. 12. Gap of RMSEs (S-BLUEwith minus S-BLUEwithout) 
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5. Concluding remarks 

This study first revealed that hot-tweets increase depending on not only tem-
peratures but also change of temperatures. In addition, we showed that rivers 
and parks decrease perceived hotness, and hot-tweets as well. After that, as 
an application example, we applied the twitter data for a local temperature 
interpolation, and showed that tweets are beneficial to increase the accuracy.  

Our discussion suggests the potential of Twitter in real-time management 
of temperature-related risks, including the risk of urban heatwave. Consid-
ering the trend of global warming and the fact that some past heatwaves have 
caused many deaths, real-time risk management of heatwave must be an ur-
gent task. Fortunately, tweets reflect not only ambient temperatures, but also 
conditions of each human. A risks analysis using both temperature infor-
mation and human condition information in tweets (participatory sensing 
data) would be an important study toward a real-time urban heatwave man-
agement utilizing social media data. 
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