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Abstract 

Bayside residential areas, which enjoy scenic ocean view, are very often 
attractive, and many parsons prefer living in bayside areas. However, 
many of bayside areas are also flood prone areas. For example, a popular 
residential area of Yokohama city, Japan, is predicted to suffer a serious 
flood damage after great earthquakes. The objective of this study is to ana-
lyze the trade-off between benefits and risks from the ocean, and provide 
some insights toward hazard adaptive/resilient urban design. We first per-
form a hedonic analysis of condominium prices, and quantify values of 
ocean-related attributes, including ocean view and proximity to the ocean, 
and the (negative) value of the flood hazard risk. Here, a multilevel spatial 
hedonic model is used. Then, desirable bayside urban form under the 
trade-off is discussed based on these analyses results. 
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On the other hand, many bayside areas are also flood prone areas. For 
example, Figure 1 shows the population density in Yokohama city, and a 
prediction of Tsunami inundation depth followed by the Nankai Trough 
earthquake, which is a great earthquake to come within a couple of dec-
ades. Figure 1 shows that many residents are in the flood prone area; many 
of them must get serious damages after the Tsunami. Noteworthy, the dan-
gerous situation is introduced despite Yokohama city provides flood risk 
information in multiple ways, including a web-GIS system and hazard 
maps.  

The high population density in flood prone areas might be due to the 
underestimation of flood risks. Actually, Michael (2007) demonstrated ex-
istence of such underestimation of flood risk in a hedonic analysis. In be-
havioristic psychology, the underestimation is well known as the normalcy 
bias (e.g., Omer and Alon, 1994). This bias suggests that people tends to 
think that a disaster will never occur because it has never occurred. Name-
ly, peoples are apt to be too optimistic about suffering from disasters. Fur-
ther, the bias also states that person is too optimistic even after disaster 
strikes. This bias can result in inadequate prepare for disasters, including 
population concentration in flood prone areas. Thus, to mitigate flood 
risks, we need to address the normalcy bias, not only providing risk infor-
mation on public. Some enforceable policy, such as landuse regulation, 
might be effective to cope with the normalcy bias.  

To increase human well-being in bayside cities, flood risk reduction and 
increase of natural environment, convenience, and so on must be conduct-
ed simultaneously. However, risks and benefits from the ocean can have a 
trade-off relationship. For example, Hamilton (2006) shows that, while 
dike protects coastal areas from flood risks, it decrease landscapes, and 
property values as well.  

Selection of the hedonic model is crucial to analyze the trade of between 
flood risks and benefits from the ocean. Unfortunately, the multiple regres-
sion model, which is used many hedonic studies (e.g., Paterson and Boyle, 
2002; Jim and Chen, 2009; Sander and Polasky, 2009) can lead misleading 
result because of its following limitations: (i) it cannot capture non-linear 
influences; (ii) it cannot capture spatial dependence; (iii) it cannot consider 
the multilevel structure (units-buildings), which must be considered if 
condominium prices are modeled. Ignorance of (i) can yield biased param-
eter estimates. Ignorance of (ii) and/or (iii) increase the risk of type I errors 
in the inferences (see, LeSage and Pace, 2009; Gelfand et al. 2007; Yama-
gata et al. 2013). However, to the best of the authors’ knowledge, no he-
donic study analyzes the trade-off considering (i), (ii), and (iii). 

The objective of this study is analyzing the trade-off between benefits 
from the ocean and flood risks, and discussing desirable urban form based 
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on the result. The trade-off is analyzed by a hedonic analysis of condomin-
ium prices in Yokohama city (see, Section 3.2). Reminder of this study is 
organized as follows. The next introduces a hedonic model considering (i) 
non-linearity, (ii) spatial dependence, and (iii) multilevel structure. Section 
3 applies the model and some alternatives to evaluate the trade-off. Section 
4 discuss how to cope with this trade-off based on the analysis result. 

2. Hedonic model 

2.1 Basic regression (BR) model 

Our basic regression model is formulated as follows: 

 jijiy −− +′= εββββj-ix)ln( , (1) 

where i and j denote the indexes of condominium room and building, re-
spectively; yi-j denotes the price of condominium; xi-j [ 1×P ] denotes the 
vector of regressors; ββββ [ 1×P ] denotes the regression coefficient vector; 

and εi-j denotes the zero-mean normally distributed disturbance whose var-
iance is given by σε

2. While BR is one of the standard hedonic models, it 
ignores (i), (ii), and (iii). 

2.2 Multilevel regression (MR) model 

BR does not consider the multilevel structure of condominiums (units-
buildings), whose ignorance can introduce a serious bias in parameter 
standard errors (Hox, 1998). The multilevel regression (MR) model is an 
extension of BR with both unit-level disturbance (εi-j) and unit-level dis-
turbances, which is formulated as follows: 

 jijji uy −− ++′= εββββj-ix)ln( , (2) 

where uj is the building-wise normally distributed disturbance, whose vari-
ance is given by σu

2.  
Although Yamagata et al. (2013) suggests that MR furnishes reasonable 

hedonic estimates, it still ignores (i) non-linearity, (ii) spatial dependence. 
To consider the possible non-linear impacts of flood risks and/or benefits 
from the ocean, (i) must be considered. Consideration of (ii) is required to 
mitigate the omitted variables bias. When we construct a statistical model, 
it is common that some factors, whose data are not available, are omitted 
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from the model. Therefore it is crucially important to eliminate the effects 
of such confounding factors. Although the conventional way against this 
problem is to use instrument variables (Gibbons and Overman, 2012), the 
selection of good instrument variables is not an easy task. Then, if omitted 
factors have spatial autocorrelation patterns, we can mitigate the problem 
through the application of spatial autocorrelation models (e.g., LeSage and 
Pace, 2009; Seya et al., 2013; 2014).  

The next section discusses a model considering (i), (ii), and (iii). 

2.3 Spatial multilevel additive regression (SMAR) model  

We use the spatial multilevel additive regression (SMAR) model to con-
sider all points discussed just above. The SMAR model is defined as fol-
lows: 

++++′= −−−− )()()()ln( ,,,11 jiQQjiqqjiji zfzfzfy LLββββj-ix  

 jijjj ulatlons −++ ε),( , (3) 

where zq,i-j (q=1, …, Q) is the regressor, whose impact on )ln( jiy −  is possi-

bly non-linear. The non-linear impact is modeled through the smoothing 
spline function, )(⋅qf . For the smoothing function, we used the conven-

tional thin plate spline (Wood, 2003). )(⋅s  is the bivariate spatial smooth-
ing spline function, and lonj and latj are the longitude and latitude of the j-
th building. Here, we use the Tensor product smoothing operator for)(⋅s  
(Wood et al., 2013). The parameter estimation can be achieved using 
mixed model software such as the gamm4 package in R, which we used. 

To summarize, the model shown in Eq. (3), which we employed for the 
empirical analysis, has three notable advantages. (i) it can capture the non-
linear effects of flood risks and benefits from the ocean as well as the other 
variables; (ii) it explicitly considers the multilevel structure of condomini-
ums by introducing both building-wise disturbance (uj) and unit-wise dis-
turbance (εi-j); and (iii) it considers the spatial autocorrelation by the intro-
duction of the term s(lonj, latj). To the author’s knowledge, only Brunauer 
et al. (2013) have considered all of these aspects in the hedonic analyses, 
although they did not focus on benefits and risks from the ocean, which we 
focus. 
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3. Empirical analysis 

3.1 Study area 

Our study area was the seven central wards of Yokohama city (Naka, Ni-
shi, Minami, Isogo, Hodogawa, Konan, and Tostuka wards), which is the 
second largest city in Japan with a population of over three million (Figure 
2). The study area is located less than thirty minutes from south of the To-
kyo central business district (CBD) by train. 

 
Fig. 2. The 7 wards in Yokohama city 

 
Fig. 3. Average condominium prices in the target area 
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3.2 Data 

We used the data on condominium prices from 1993 to 2008. The data 
were provided by Marketing Research Center (MRC) Co. Ltd. These price 
data were based on registration (seller pricing) and not on transaction (ac-
tual traded price). However, with regard to residential condominium prices 
in Japan, discount negotiation is considerably rare, except in cases of high-
grade residences. Therefore, the registered price level is representative of 
the market situation. The geographical distribution of the averaged prices 
in each building is given in Figure 3. The number of building samples and 
room samples is 694 and 27,446, respectively. 

3.3 Variables 

Our hedonic analysis regresses logged condominium prices on variables 
categorized into flood risk, benefit from the ocean, other environmental at-
tributes, location attributes, and attribute of condominiums. 

The flood risk is quantified by “Flood risk,” which represents the inun-
dation depth shown in Figure 1, and the benefit from the ocean is quanti-
fied by “Ocean dist.,” which represents the logarithm of the distance to 
the ocean [km], and “Ocean view,” which represents the goodness of view 
to the ocean, which is calculated as discussed in Appendix.1. 

Other environmental attributes used as regressors are as follows: “Open 
view,” which represents the openness of view, “Green view,” which rep-
resents the goodness of view to trees; “Green,” which represents the loga-
rithm of the number of tree cells within 500 m (irrelevant of whether or not 
visible); “Park dist.,” which represents the logarithm of the distance to the 
nearest urban park [km]. Detail of calculations of Open view, Green view, 
and Green are described in Appendix.1.  

Location attributes used as regressors include following variables: “Sta-
tion,” which represents the logarithm of the travel time to the nearest 
train/bus station on foot [minute]; “ C1 res.,” which indicates category 1 
(C1) residential districts (RD) [dummy]; “C1 low,” which indicates C1 
low-rise exclusive RD [dummy]; “C1 high,” which indicates C1 medium-
to-high exclusive RD [dummy]; “C1 exclusive,” which indicates C1 ex-
clusive RD [dummy]; “C2 res.,” which indicates category 2 (C2) RD 
[dummy]; “C2 high,” which indicates C2 medium-to-high exclusive RD 
[dummy]; “C2 exclusive,” which indicates C2 exclusive RD [dummy]; 
“Industry,” which indicates industrial districts [dummy]; “Semi Ind.,” 
which indicates semi-industrial districts [dummy]; “Commerce,” which 
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indicates commercial districts [dummy]; “Neigh. Com.,” which indicates 
neighborhood commercial districts [dummy]. 

Condominium attributes considered are as follows: “Area,” which rep-
resents the logarithm of room area [m2]; “Floor,” which represents the 
logarithm of floor of the room; “Num. dev.,” which represents the num-
bers of related developers; logarithm of view variables (“Open view,” 
“Green view,”); “Major dev.,” which represents the ratio of major devel-
opers called MAJOR 8 (Sumitomo Realty & Development Co., Ltd, Tokyu 
Land Corporation, Mitsubishi Estate Co., Ltd., Towa Real Estate Devel-
opment Co., Ltd., Daikyo Inc., Nomura Real Estate Development Co., 
Ldt., Mitsui Fudosan Residential Co., Ltd. and Tokyo Tatemono Co., Ltd.) 
to the other developers; “SRC,” which represents the steel reinforced con-
crete structure [dummy]; “WRC,” which represents the steel wall concrete 
structure [dummy]. Besides, to capture the time trend we also introduce 
“Time,” which represents the elapsed months from January 1993 [Year]. 

The GIS data on Park and Ocean were provided by the Yokohama city 
government. View variables are calculated as explained in Appendix.1. 
The other variables are acquired from the condominium price dataset of 
MRC Co. Ltd. 

This study allows non-linear influences for continuous variables except 
for distance variables (Ocean dist., Park dist., and Station dist). We assume 
linear influence for the distance variables because non-linear impacts of 
distance variables can produce distance-increasing effects, which is diffi-
cult to interpret (e.g., influence of a railway station inflates according to 
the distance from the station increases). 

3.4 Parameter estimates 

Table 1 summarizes the parameter estimation results of BR, MR, and 
SMAR, and Figure 4 shows non-linear influences estimated by SMAR. 
The large gap of Akaike Information Criteria (AIC) between BR and MR 
show that the model accuracy is drastically improved by considering the 
multilevel structure of condominiums. Actually, the building-wise vari-
ance, which is ignored in BR, is much greater than the room-wise variance 
(0.0193 vs 0.0033, in the MR model case). As a result, due to the type I er-
ror, t-values of BR are highly overestimated compared to MR and SMAR. 
This result suggests that consideration of the multilevel structure is crucial-
ly important in hedonic analysis of condominium prices. 
Significant levels: ***:0.1%; **:1%; *:5%, and . :10% 

Estimates of linear influences in MR and SMAR are similar: both mod-
els indicate significant negative influences of “C1 res.” and “Semi Ind,” 
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and “Park dist,” and significant positive influences of “Major dev.” Still, 
some notable differences are found between estimates, in which non-linear 
influences are allowed. While “Area” and “Floor” are significant at the 1% 
level in both models, they indicate substantial non-linear influences in 
SMAR that these impacts inflate as their value increase.  

Some differences between MR and SMAR are also in environment-
related regressors. Firstly, while the MR model suggests the negative sig-
nificant influence of “Open view ,” which is difficult to interpret, the effect 
of “Open view” estimated by SMAR model becomes positive and it in-
creases rapidly with the increase of the value of “Open view”. It means 
that very nice view (in terms of amount of visibility) may be capitalized in-
to condominium prices, but slightly nice view may not have any positive 
impacts. The effect of “Green view” has also been found to be non-linear. 
That is, before around 10, the effect of f(Green view) is constant at approx-
imately 0.02 (positive), but after around 10, it decreases rapidly with the 
increase of the value of “Green view”. It means that a moderate amount of 
“Green view “may raise condominium prices, but too much “Green view” 
may decrease condominium prices. Such information could be useful for 
condominium developers and/or urban designers. 

Let’s move to the view describing benefits from the ocean (“Ocean 
dist.” and “Ocean view”). “Ocean dist.” in the MR model is negatively 
significant at the 1% level, whereas it is not significant in the SMAR mod-
el. Because ignorance of spatial dependence can lead biased t-values (see 
Anselin, 1988), the MR model might have overestimated the premium of 
“Ocean dist.” With regard to “Ocean view,” the MR model estimates that 
it is positively significant at the 1% level irrespective of the quality of 
ocean view. On the other hand, the SMAR model suggests that only scenic 
ocean view has statistically significant influence. The influence from 
Ocean view increases as the quality increases. Consideration of such non-
linearity would be required to evaluate benefit from the ocean appropriate-
ly.  
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Table 1. Estimated parameters  

Category Regressor 
BR MR SMAR 

Coef. t-value Coef. t-value Coef. t-value 

Intercept Intercept 4.317  88.28  *** 4.226  21.20  *** 8.272  454.37  *** 

Risk Flood risk 0.021  5.70  *** 0.034  1.50  
    

Environment 

Ocean dist. –0.044  –38.10  *** –0.049  –6.90  *** –0.002 –0.13 
 

Ocean view 0.012  24.18  *** 0.009  21.20  ***   
 

Open view 0.010  3.82  *** –0.017  –4.00  *** 

   
Green view –0.014  –6.13  *** 0.004  1.10  

    
Green 0.029  8.95  *** –0.011  –0.70  

    
Park dist. –0.010  –11.53  *** –0.014  –2.60  **  –0.009 –1.80 . 

Location 

Station dist. 0.012  10.95  *** –0.001  –0.10  
 

–0.002 –0.26 
 

C1 res. –0.049  –13.55  *** –0.069  –3.20  **  –0.032  –1.71  . 

C1 low –0.013  –3.23  ** –0.026  –1.10  
 

–0.007  –0.33  
 

C1 high 0.010  2.52  * –0.027  –1.10  
 

–0.004  –0.17  
 

C1 exclusive 0.045  9.69  *** 0.026  0.90  
 

–0.001  –0.03  
 

C2 res. –0.018  –2.65  **  –0.029  –0.70  
 

0.001  0.03  
 

C2 high –0.007  –1.10  
 

–0.037  –1.00  
 

–0.006  –0.18  
 

C2 exclusive 0.038  8.16  *** 0.028  0.90  
 

0.003  0.11  
 

Industry –0.066  –10.23  *** –0.017  –0.40  
 

0.016  0.40  
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Significant levels: ***:0.1%; **:1%; *:5%, and . :10% 

Semi Ind. –0.109  –29.08  *** –0.088  –3.50  *** –0.057  –2.62  **  

Commerce 0.001  0.25  
 

–0.032  –1.40  
 

–0.007  –0.33  
 

Neigh. Com. –0.003  –0.92  
 

0.000  0.00  
 

0.000  –0.01  
 

Condominium Area 0.940  220.21  *** 1.134  417.30  *** 

   

 

Floor 0.078  43.36  *** 0.084  29.80  *** 

   
Num. dev. 0.024  12.89  *** 0.010  0.70  

 
0.006  0.53  

 
Major. dev. 0.071  31.96  *** 0.069  4.90  *** 0.062  5.14  *** 

SRC –0.018  –7.14  *** –0.010  –0.50  
 

–0.019  –1.25  
 

WRC –0.031  –3.66  *** 0.024  0.50   –0.007  –0.16  
 

AIC –31405 –75216 –78875 
Room level variance 0.1365 0.0033 0.0029 
Building level variance 0.0000 0.0193 0.0142 
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Fig. 4. Estimated non-linear estimates 

In contrast, “Flood risk” is not significant both of these two models. It 
implies that, while “Ocean dist.” and “Ocean view” are appropriately re-
flected as significant positive benefits from the ocean, “Flood risk” is not 
reflected as a negative benefit from the ocean. This ignorance or underes-
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timation of “Flood risk” can make urban form less adaptive to the flood 
risk. To demonstrate it, estimated influences from “Ocean dist.”, “Ocean 
view,” and “Flood risk” are summed and plotted, as well as inundation 
depths, in Figure 5. This figure shows that, as a result of the underestima-
tion of the flood risk, the ocean increases economic value of flood prone 
areas, which are attractive in terms of “Ocean dist.” and “Ocean view.”  
This result claims that publication of flood risk, which is conducted by 
Yokohama city, does not necessarily work sufficiently, and some enforce-
able policy that encourages appropriate action even people underestimates 
risks, is needed. Landuse regulation might be an effective approach. On 
the other hand, our hedonic approach still has some problems to be solved. 
For example, while we simply introduce the inundation depth in our re-
gression model, the influence is likely to change depending on whether the 
depth exceeds floor height of each building. Besides, flood risk changes 
depending on structure of building. Consideration of these points would be 
an important task in the future studies. 

 
Fig. 5. Estimated marginal benefit from the ocean. Dots represent condominiums. 
Condominiums with greater marginal benefits from the ocean are colored by deep 
red. Blue areas denote flood prone areas. 
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3.5 An application of the analysis result for urban policy 
making 

Flood risk adaptation policy must be discussed considering not only its in-
fluence on the risk reduction but also its secondary influences on amenity, 
natural environment, and so on. Fortunately, our hedonic analysis reveals 
economic values of these factors (e.g., the economic value of natural envi-
ronment was evaluated by applying Green, Ocean dist, and Park dist for ex-
planatory variables). Estimated economic values are useful for policy mak-
ing considering not only disaster risks but also other factors. 

To illustrate this, this section evaluates influences of a migration policy for 
multiple factors, based on the hedonic result. The procedure is summarized as fol-
lows: (a) variables describing accessibility (Station), natural environment (Green, 
Ocean dist, and Park dist), landscape (Open view, Ocean view, and Green view), 
and floor risk (Flood risk) in each minor municipal district are calculated; (b) eco-
nomic values of these variables are evaluated based on the hedonic analysis result; 
(c) benefits that residents receive from these variables are evaluated by multiply-
ing their evaluated economic values with populations Pk, where k is an index of 
minor municipal districts. 

In step (a), Open view, Ocean view, and Green view in each minor municipal 
district are evaluated as follows: (a-1) average floor height in each minor munici-
pal district are estimated using ZMap-TOWN II, an individual building data pro-
vided by Zenrin Co., Ltd. (http://www.zenrin.co.jp/); (a-2) Open view, Ocean 
view, and Green view for each district are evaluated the by the inverse distance 
weighting (IDW).method. Specifically, in step (a-2), the potential of views from 
the geometric center of k-th district is evaluated by the IDW-based spatial smooth-
ing of view variable values given in each condominium (see, Yang et al., 2007). 
Here, (average floor height in k-th district)/2 is applied for the height of the van-
tage point for k-th district. 

In step (b), economic values of each variable, i.e., xp,k and zq,k in our hedonic 
model Eq.(3), are evaluated by exp(xp,kβp) and exp(f(zq,k)). exp(xp,kβp) and 
exp(f(zq,k)) represent marginal benefits of xp,k and zq,k, respectively, which are de-
rived from Eq.(3). Using these marginal benefits, the total marginal benefit in k-th 
district is evaluated by PkEk, where E 

k = exp(Σpxp,kβp +
 
Σqf(zq,k)) (see Eq.3) is the 

sum of the economic impacts from each variable. Further, the total benefit in the 
target area is evaluated by averaging (or summing) the district-wise benefit, PkEk. 

Based on the approach of evaluating marginal benefits from each variable, we 
evaluates the effectiveness of three migration policies: 
• BAU  :Business as usual 
• Adapt 1 :Migration of residents in areas where the inundation depth 

exceeds 0.5m. New addresses of the migrated persons are left to chance. 
• Adapt 2 : Migration of residents in areas where the inundation 

depth exceeds 0.5m. New addresses of the migrated persons are decided 
based on the hedonic analysis result. 
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Adapt 1 distributes the migrated persons in proportion to the current populations 
in each minor municipal district. Adapt 2 distributes them proportional to the eco-
nomic value Ek in each district, to increase PkEk. 

Total benefits under each of these scenarios are 1.063 (BAU), 1.060 (Adapt1), 
and 1.062 (Adapt2). The result demonstrates that the adaptation policies 1 and 2 
decrease the total benefit because of their secondary influences to factors except 
for the flood risk. The result also suggests that Adapt 2 is better than Adapt 1. Ac-
tually, the decrease of the total benefit by Adapt 2 is only 0.38 times of the de-
crease by Adapt 1. This result demonstrates the effectiveness of utilizing the he-
donic result in a migration policy. 

To look Adapt 1 and 2 in more detail, marginal benefits from accessibility, nat-
ural environment, and landscape are evaluated individually in each scenario. The 
result suggests that Adapt 2 indicates greater scores than Adapt 1 in all of the three 
factors. Decreases of accessibility, natural environment, and landscape scores by 
Adapt 2 are 0.49 times, 0.16 times, and 0.95 times of the decreases by Adapt 1. 
The result shows that Adapt 2 effectively holds benefit from natural environments.  

Lastly, the gap of population densities between Adapt 2 and BAU is plotted in 
Figure 6. This figure suggests that, considering accessibility, natural environment, 
and landscape, moving persons in flood prone areas to safer areas in the east part 
of the target area is desirable. 

 

 

Fig. 6. Gap of population density (Adapt 2 minus BAU) 
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Appendix: Evaluation of Open view, Ocean view, Green 
view, and Green 

To evaluate view variables, we perform a viewshed analysis using the digi-
tal surface model (DSM) and the digital terrain model (DTM) shown in 
Figure A.1 and Figure A.2, respectively. The DSM describes the height of 
the surface defined as the sum of the height of the ground and that of the 
objects on it, and the DTM describes the height of the ground surface only. 
They are created from airborne LiDAR data through GIS data processing. 
Their spatial resolution (mesh block size) is approximately 0.5 m x 0.5m. 
Using these data, we applied the viewshed analysis to evaluate open view, 
green view, and ocean view. The latter two were evaluated by counting the 
number of mesh blocks of green and ocean which are visible from each 
room. Open view was evaluated by counting the number of mesh blocks of 
visible DSM from each room. Details of the evaluation procedure are 
summarized as follows: 

 
1. Condominium data and their shape polygons (source: Fundamental 

Geospatial Data of Geographical Survey Institute of Japan) were 
manually combined with reference to Google Maps and several 
condominium web pages. Then, we extracted the building polygons with 
information on attributes and prices. 

2. Floor height of each room in each building was identified based on the 
room numbers. 

3. Using the longitude and latitude information in step 1 as well as the 
height information in step 2, the 3D coordinates of each viewpoint were 
set for each room. 

4. A viewshed analysis from each viewpoint was performed. Then we 
obtained the estimated values of open view. Subsequently, green view 
and ocean view were evaluated as follows. 

5. Mesh blocks, which corresponded to tree, were identified in the 
following manner: 
5-1 The aerial photo (spatial resolution: 0.5 m x 0.5 m), which was 

acquired simultaneously with the LiDAR data, was classified by 
a maximum likelihood method, and the actual placement of 
trees was estimated. 

5-2 Based on the vertical difference between DSM and DTM, we 
assigned height information to the mesh blocks corresponding 
to trees. Here, in order to remove noise, mesh blocks in which 
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the estimated tree heights were less than 0.5 m were excluded 
(Figure A.3) from the tree meshes. 

6. Mesh blocks, which corresponded to ocean, were estimated using the 
vector GIS data of ocean provided by Yokohama city. 

7. Green views and ocean views were evaluated by counting the visible tree 
meshblocks and visible ocean meshblocks, respectively. 

 

 

Fig. A.1. DSM  

 

Fig. A.2. DTM 
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