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Abstract 

Public transport networks are a key element in the survival of modern cit-

ies and their inhabitants. It is therefore of paramount importance to be able 

to identify the most vulnerable parts of a network to disruptions through a 

prompt and effective risk assessment. Due to the complex nature of these 

networks, detecting the high risk areas is not always an obvious nor an 

easy task. This research intends to tap into this problem by examining in-

dividual trips in a transport network at a fine spatial and temporal resolu-

tion. A novel methodology to the field of Big Data using mathematical 

models from information is introduced, taking London's Underground 

transport network as a case study. Our analysis is revealing those high-risk 

areas given by spatiotemporal correlations, which is in contrast with previ-

ous assumptions focussed on crowdedness. 
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1. Introduction  

Public transport networks are vital in ensuring efficient urban function. 

In many cities, mass disruption to the public transport network has the po-

tential to cause significant damage to the urban economy and wellbeing. 

Information about where in the network a disruption would cause the more 

damage is therefore critical for contingency planning. Several studies [1, 2, 

3] associate risk to crowdedness, and hence they only consider the most 

crowded areas as the most susceptible ones to disruption. Nevertheless, 

some areas, not affected by crowdedness, can be identified as important 

hubs or brokers of people travelling through the network. These areas have 

the potential to create unexpected disruptions in the system, due to their 

spatial-temporal position. The temporal component would strongly de-

pends on the individual behaviours on route choices since these shape rel-

evant emergent properties of the network. These aspects are essential to 

understand causation so that well-informed risk management decisions can 

be taken. 

As a case study, we take a subset of the multimodal London's public 

transport network [4] consisting of the Underground mode. In particular, 

we focus on the network of passengers that use the Oyster smart travel 

card [5]. During the financial year 2012/13 [6], around 3820 million jour-

neys were registered in London's public transport network. We will ana-

lyse a sample of 762 million trips, made using Oyster cards over 2.5 

months between July and September 2012. 

Such a figure shows the importance of London's transport network for 

the city's economic output. Understanding the network's vulnerabilities and 

risks is therefore crucial for the millions of travellers that rely on its func-

tioning. 

In this paper, the high-risk areas are associated with underground sta-

tions and the transfer of information between any pair of them, understand-

ing information as the amount of people travelling throughout the network 

at a particular time. A novel methodology to the field of Big Data through 

the use of mathematical models from information theory [7], and the ap-

plication of entropy concepts to the Oyster smart card data is introduced. 

These tools reveal those high-risk areas given by spatiotemporal correla-

tions in contrast with previous assumptions focussed on crowdedness. 

Proper measures of disruption and damage to the system are being devel-

oped to assess the degree of risk in each of these areas, so, at this point, we 

only identified these risk areas, not the resilience per se of the network, so 

no redundancy analysis is performed at this stage of the investigation. Af-

ter analysing the Oyster dataset, two main outputs are being produced: 
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1) A comprehensive temporal profile of the volume of people that, mi-

nute by minute, are in each one of the stations. This corresponds not only 

to the individuals getting in/out of the transport network, but also its tran-

sient population. A route profile for each trip needs to be generated in or-

der to obtain these numbers. 

2) A complete spatiotemporal risk profile that highlights the so-called 

hubs in the system. These provide relevant candidates for testing risk man-

agement scenarios. In addition, they lead to important insights about spe-

cific activity patterns, other than work related, that could eventually be 

used to assess particular social mobility risks. 

2. Oyster card data set 

2.1 Smart-card Data 

Smart card data becomes available in recent years since an increasing 

number of cities regions and countries have adopted the Smart Card Au-

tomatic Fare Collection (SCAFC) System. The SCAFC system was origi-

nally designed to collect revenue for better managing public transportation 

system, they also produce large volume of data about aboard and alight 

transactions [8]. Several advantages arise from the analysis of smart-card 

data have been identified early by [9], mostly regarding to its high spatio-

temporal resolution and embedded information about individuals. Later re-

search make use of the advantages, examples can be found using smart-

card data to analyse users’ travel behaviour [10]; to improve public trans-

portation service [11]; to estimate OD matrix for evaluating system per-

formance [12]; to infer activity types by travel behaviours and functions of 

urban areas where people reached via public transportation [13]; and to 

identify the polycentric structure of cites from urban movement patterns 

[14, 15]. 

 
2.2 Smart-card Data in Great London Area 

According to the London Travel Demand Survey (LTDS) in 2011, there 

are about 30% of total population in Great London area using public trans-

portation (including National Rail, Underground/DLR, and Bus/tram) for 

their daily commuting [16]. Travellers using Oyster cards account for ap-

proximately 90% of all bus passengers and 80% of rail passengers [17]. 

Oyster is accepted on multiple transit modes, including London buses, the 

London Underground, the London Overground, the Docklands Light 

Railway (DLR), and Tramlink. The dataset used for this study contains ap-

proximately 18 million transactions per weekday, among which, 9 million 
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transactions are entry/exit transactions of train systems (Underground, 

Overground and DLR). Both Entry and exit data are available for train 

rides at gated stations, while only entry data is available for bus rides. 

As a starting point, we chose the Underground line known as Victoria1 

(Figure 1). Risk Profile of all stations on these two lines are generated us-

ing Oyster card data in 2014. Though many attributes of a transaction are 

recorded, only four of them, entry station id, exit station id, entry time, exit 

time are used here, which we considered enough for constructing a train 

ride. A ride is generated by simply combining a pair of entry and exit rec-

ords grouped by card id and sorted by transaction time. Only rides starting 

and ending on the same underground lines are counted in order to provide 

a strong indication of the exact route through the network. After a prelimi-

nary data processing, there are approximate 0.2 million tube rides on Vic-

toria line on an average weekday. Each ride is in the form of card id, 

boarding time, boarding station id, alighting time and alighting stations id.  

 
Fig. 1. London’s underground network. Enhanced is the Victoria Line 

 

 

 
3. Entropy Measures 
 

                                                      
1 The Victoria Line, opened in 1968, comprises 16 stations with a total line 

length of 21km. It runs from Walthamstow Central (North London) to Brixton 

(South London). It transverses three of the busiest stations in the network: Warren 

Street, Oxford Circus and Victoria. 
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In information theory [7], the concept of Shannon entropy (Eq. 1) is the 

preferred measure to detect the reduction in uncertainty of any measure-

ment x of a random variable X. 

𝐻(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥), ∑ 𝑝(𝑥) = 1

𝑥∈𝑋𝑥∈𝑋

 
(3.1) 

 

 

Extending Shannon entropy to measure the uncertainty between two inter-

acting random variables is accomplished using Mutual Information (MI), 

defined by: 

 

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥) ∙ 𝑝(𝑦)
𝑦∈𝑌𝑥∈𝑋

 
(3.2) 

 

 

One major drawback with MI, is its lack of inherent directionality, MI(X, 

Y) = MI (Y, X). This shortcoming can be tackled by shifting one of the 

variables, basing the analysis on the entropy rates and calculating the 

emerging conditional probabilities of related X and Y. Schreiber [18] de-

fined the concept of Transfer Entropy TE, which use the previous states of 

X and the next state of Y. Several important statistical properties are found 

in TE which are useful in analysing systems in which interactions are non-

linear. More importantly, it can account for the directional relationships 

between systems, i.e., it is not symmetrical, unlike mutual information. By 

now, the use of TE is wide spread [19, 20, 21, 22] and is seen as a robust 

measure of complexity and interdependence between random variables. 

 
3.1 Transfer Entropy 
Given two concurrently sampled spaces of information X={x1,x2,…,xt}  

and Y={y1,y2,…,yt} the transfer entropy TE from X to Y, can be obtained 

from defining the entropy rate between two systems as the amount of addi-

tional information to represent the value of the next observation of one of 

this two systems: 

 

ℎ1 = − ∑ 𝑝(𝑦𝑡+1, 𝑦𝑡 , 𝑥𝑡) log(𝑝(𝑦𝑡+1|𝑦𝑡 , 𝑥𝑡))

𝑡

 
(3.3) 
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In the second case we define an entropy in which yt+1 depends only on yt  

thus 

 

ℎ2 = − ∑ 𝑝(𝑦𝑡+1, 𝑦𝑡 , 𝑥𝑡) log(𝑝(𝑦𝑡+1|𝑦𝑡))

𝑡

 
(3.4) 

 

The Transfer entropy TE between X and Y, is then defined as the differ-

ence between these   

 

𝑇(𝑋, 𝑌) = ℎ2 − ℎ1 = ∑ 𝑝(𝑦𝑡+1, 𝑦𝑡 , 𝑥𝑡) log (
𝑝(𝑦𝑡+1|𝑦𝑡, 𝑥𝑡)

𝑝(𝑦𝑡+1|𝑦𝑡)
)

𝑡=1

 
(3.5) 

 

Where t indicates a given point in time. Basically, (3.5) measures the re-

duction in uncertainty in 𝑦𝑡 , given 𝑥𝑡 and 𝑦𝑡−1 in comparison with given 

only  𝑦𝑡−1, i.e. the amount of information transferred from X to Y. 

 

If this measure is applied directly to our risk detection problem, and 

X=station A and Y=station B, and t runs for a whole day, the TE would 

represent the information transferred between A and B in precisely a 24hr 

period, but this would give none information whatsoever about which sta-

tions are candidates for testing risk scenarios. For this, we need a “local” 

measure that quantify the transfer entropy between station A and station B, 

but minute by minute of a day. 

 
3.2 Local Transfer Entropy 

Following [23], we would like to extract a single element from the summa-

tion in (5). In order to do that, the probability (𝑦𝑡−1, 𝑥𝑡) is rewrite in its 

operation form, i.e. counting the number of triplets𝑦𝑡+1 , 𝑦𝑡, 𝑥𝑡 observed 

(namely 𝑐𝑡) and divide it by the total number of points N in the sample: 

 

𝑝(𝑦𝑡+1 , 𝑦𝑡 , 𝑥𝑡) =
𝑐𝑡

𝑁
=

∑ 1𝑐𝑡
𝑖=1

𝑁
 

(3.6) 

 

Substituting (3.6) in (3.5), we obtain: 
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𝑇(𝑋, 𝑌) = ∑
1

𝑁
𝑡

(∑ 1

𝑐𝑡

𝑖=1

) log𝑏 (
𝑝(𝑦𝑡+1| 𝑦𝑡, 𝑥𝑡)

𝑝(𝑦𝑡+1 | 𝑦𝑡)
)

=
1

𝑁
∑ log𝑏 (

𝑝(𝑦𝑡+1| 𝑦𝑡 , 𝑥𝑡)

𝑝(𝑦𝑡+1 | 𝑦𝑡)
)

𝑁

𝑡=1

 

(3.7) 

This last expression represents an average over the weighted probability of 

observing 𝑦𝑡+1  

giving 𝑦𝑡, and 𝑥𝑡.Taking out a particular element of (7), the following ex-

pression is obtained: 

 

𝐿𝑇𝐸(𝑡 + 1, 𝑥𝑗−1, 𝑦𝑗) = log𝑏 (
𝑝(𝑦𝑡+1| 𝑦𝑡, 𝑥𝑡)

𝑝(𝑦𝑡+1 | 𝑦𝑡)
) 

(3.8) 

 

This measure represents only the information transferred by a particular 

element 𝑥𝑗 to a particular element 𝑦𝑗 at time t+1.Equation (8) is therefore 

the expression applied to each station at each minute in our Oyster data set. 

In practice, estimating the conditional probabilities in (8) has been proved 

to be a very difficult task. Several approaches could be taken to accom-

plish this calculation [24]. In this research a Kernel density estimation is 

used to estimate such probabilities (section 4.2). 

 

 

4. Methods 
 
4.1 Time Series Construction 
An 1140 point time series, representing the volume of people that is in a 

particular station Si in a particular time tj, is defined from the Victoria Line 

oyster data as follows: 

 

𝑉𝑆𝑖
= {

𝑃𝑇𝑖𝑛 + 𝑃𝑊𝑃, 𝑛𝑜 𝑡𝑟𝑎𝑖𝑛 𝑜𝑛 𝑆𝑖 
𝑃𝑇𝑖𝑛 + 𝑃𝑊𝑃 + 𝑃𝐼𝑇, 𝑡𝑟𝑎𝑖𝑛 𝑜𝑛 𝑆𝑖

 
(4.1) 

 

Where 

PTIN = People tapping in, 

PWP = People walking to platform 

PIT = People on a train align at Si at ti 

A typical record extracted from the data has the following format: 
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Table 1. Actual record from a single transaction in the Victoria line 

Entry station id Exit station id Entry time Entry time 

1 5 583 592 

 

In this context, the station id is assigned as follows: 

 

1. Walthamstow Central; 2. Blackhorse; 3. Tottenham Hale; 4. Seven Sis-

ters; 5. Finsbury Park; 6. Highbury; 7. King’s Cross St. Pancras; 8. Euston; 

9. Warren Street; 10. Oxford Circus; 11. Green Park; 12. Victoria; 13. 

Pimlico 14. Vauxhall; 15. Stockwell; 16. Brixton 

 

Times in table 1 are in absolute values, i.e., they represent the cumulative 

number of minutes from 00:00 hrs of a particular day. In this example, 583 

minutes = 9.43am. In general, the number of minutes m is transformed to 

standard time via a simple arithmetic operation. 

In (4.1) we are not taking into account people who are leaving the station. 

These people, although they are contributing to the total volume in a sta-

tion at a particular time, are not transferring information to the next station, 

in the sense specified in this work. We used two additional sources of in-

formation besides the Oyster data to precisely calculate (4.1): 

 

 1) The official time table for the Victoria Line. With this, we can infer 

where in the network a person is and 

2) An interchanging time survey, which provides the average time that 

would take a regular person to get into the station platform from the station 

entrance. 

 

After applying (9.8) to a typical week day in the Victoria line from 4.14am 

to 11.59pm, we obtain 16 time series (one for each station), each one with 

1185 points (one for each minute in the period defined). An extract for 

these time series in shown in Table 2. 

 

These time series show the amount of people (information) that the system 

holds at any given minute. Particularly in Table 2 we can observe part of 

the morning peak. As expected, the endpoint of the line (1. Walthamstow / 

16. Brixton) are not particularly crowded in the sense that people do not 

have to wait too much time to board a train. For example, at series 1 (cor-

responding of course with Station 1) from 9.00am to 9.01am only 9 people 

(9 bits of information) entered the system. Then, between 9.02am and 

CUPUM 2015  Murcio, Zhong, Manley & Batty 288-8



9.03am, the count goes from 59 to 31. This means that a train arrived at 

9.02am and the 59 people waiting to get on board, and, at 9.03am a new 

set of 31 people arrived to station 1. Figure 2 shows the full time series ob-

tained. 

Table 2. Total volume of people at each station of the Victoria Line in a 5 min 

window 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

9am 47 84 25 97 79 80 116 94 125 123 68 211 65 101 30 58 

9.01 56 40 40 61 110 75 113 89 88 184 187 169 113 60 69 74 

9.02 59 65 82 81 124 81 161 101 128 102 162 179 78 129 26 65 

9.03 31 36 31 46 74 83 130 121 78 178 88 201 31 62 46 61 

9.04 40 33 64 48 80 102 123 104 113 154 123 193 117 89 46 71 

9.05 35 59 45 98 71 82 120 111 140 98 107 119 56 58 23 42 

 

The global maximum (689 people) between the 16 time series is reached at 

Oxford Circus station at 6.45pm. The morning peak maximum corresponds 

to Victoria station at 8.34am with 547 people. The general behaviour ob-

tained as was expected. The classic double peaks observed are typical in 

cities’’ transport systems. 

 

 
Fig. 2. Volume of people (bits of information), minute by minute, from 

4.15am to 11.59pm of a typical week day. 
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4.2 Kernel Density Estimation (KDE) 

 

One technique to estimate a probability for a given point xi of a random 

variable X={x1,x2,…,xt} is estimate de probability distribution f function 

of X [25]. This estimation is based of approximate the shape of this un-

known distribution f whit the following expression: 

 

𝑓ℎ(𝑋) =
1

𝑁ℎ
∑ 𝐾 (

𝑥−𝑥𝑗

ℎ
)𝑁

𝑗=1               (4.2) 

 

In our case, we not only need to calculate one probability, but the joint 

probability at an arbitrary point of the vector, 𝑦𝑡+1 , 𝑦𝑡, 𝑥𝑡 which can be es-

timated by 

 

𝑝(𝑦𝑡+1 , 𝑦𝑡 , 𝑥𝑡) = 
1

𝑁(ℎ𝑦𝑡+1 ,ℎ𝑦𝑡,ℎ𝑥𝑡)
∑ 𝐾3(𝑦𝑡+1 − 𝑦𝑡+1,𝑗) ∙ (𝑦𝑡 − 𝑦𝑡,𝑗) ∙ (𝑥𝑡 − 𝑥𝑡,𝑗)𝑁

𝑗=1          

(4.3) 

 

Where j is the index for each of the points in X and Y and h(.) is the band-

width for each vector 

 

ℎ(∙) = 1.06𝜎𝑁−0.2               (4.4) 

 

And the 𝜎 is the standard deviation in each vector (𝑦𝑡+1, 𝑡). The kernel K, 

we choose the widely used Gaussian kernel: 

 

𝐾(𝑔) =
1

√2𝜋
𝑒−0.5𝑔2

                (4.5) 

 

The rest of the probabilities in (3.8) are calculated in the same fashion 

marginalizing (4.3). 

 

 

5. Results and discussion 
Taking Table 2 as an example, if t+1=9.03am and j=7, then x6= Highbury 

and y7= King’s Cross St. Pancras. The LTE is the amount of information 

transferred from y7 at 9.02am and x6 at 9.03am to y7 at 9.03am. In terms of 

(3.8), we should calculate: 

 

𝐿𝑇𝐸(9.03, 𝑥6, 𝑦7) = log (
𝑝(130|161, 83)

𝑝(130 | 16)
) 
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After the calculations we obtain LTE=45.75 bytes of information is the 

amount of information transferred. In Figures 3 and 4 we show the com-

plete information profile for whole 16 time series. 

 

First, it is important to remark that Figure 3.a is showing the LTE calcula-

tion from southbound direction, Station 2 to Station 16. As there is no sta-

tion before 1, there is no information transferred to it in that direction. The 

idea behind these profiles is, as stated, that they are able to detect at which 

time, which stations have the maximum values of information transferred 

into them, as these can be identified as important brokers in the system. 

The maximum value in the northbound direction is 417.7 bytes at 7.53am 

in Tottenham Hale. At this same station/time, the volume of people is just 

215 people, while the maximum volume around this time is 547 people at 

Victoria station, situation that confirms our initial hypothesis that crowed 

stations are not necessarily key transfers of information in the system. We 

already mentioned that the maximum volume of people was at Oxford Cir-

cus at 6.45pm. At this station, the maximum number of bytes transferred 

was 265.44 at 5.33pm. More than an hour before the maximum volume of 

people is reached. This give us an insight on how this complex information 

patterns are generated in the network. 

 

Analysing the whole profile, the different dynamic between the morning 

and afternoon peaks is evident. At mornings, destination stations like 

King’s Cross (station 7) have very low LTE values, as they are not trans-

ferring information to the system (people exit there); while the end point of 

the line hold larger LTE values for exactly the opposite reasons: they are 

transferring large amounts of information into the system. In the after-

noons, central stations 6, 7 and 8 are the ones with the greater LTE values 

in the system at that time period. However, these values are much lower 

than its morning counterparts. This could have something to do with the 

train frequency or the different choice route of many people. Further anal-

ysis in this dichotomy should be performed. 

 

In Figure 4.a we are presenting the LTE in the northbound direction. The 

behaviour is very similar to the northbound, morning peak holding the 

maximum LTE value; morning peak and afternoon peak presenting very 

different patterns, etc. But, the maximum value shifts from station 3 to sta-

tion 2 and almost an hour earlier. This certainly is related to the observed 

fact that people tend to travel early in this direction. In both directions, af-

ternoon peak, reflect very low LTE values at the end points of the line and 

its surrounding stations. This is due the same reason explained for the low 
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values at King’s Cross at mornings: this stations are exit points, nor exit or 

transfer points at this particular time.  

 

 

 

 
 

Fig. 3.  Information profile of the Victoria line, southbound direction. The 

areas with larger LTE values are the ones identified as possible spatial 

temporal points serving as hubs of information in the network. a) LTE val-

ues for each minute. The larger values are reached at morning peak, 

around 7 to 10. The different behaviour between morning and afternoon 
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peaks is evident, showing the different dynamics empirically observed. b) 

Zoom at the information profile around the maximum value (7.33am at 

station 3). We can observed how the information transferred from on sta-

tion to another changes not trivially minute by minute. 

 

The final step is to construct the risk profile for the whole line. As a pre-

liminary processing, we calculated the average bytes transferred at each 

station at each minute in both directions and then we isolated the positions 

(station-minute) with the highest LTE value, restringing the calculations to 

stations 2 to 15, as with the end points no average can be calculated as they 

appear only in one direction. This procedure is detecting that at mornings 

(around 7.40am to 8.30) a block of six stations are the most likely to cause 

a disruption in the line. Interesting enough, only one station at a particular 

minute in the afternoon was detected. It is important to notice that the vol-

ume of people at these block of stations is not too large in the morning. 

 

 

6. Conclusions and future work 

The local information transfer between the end stations at every single mi-

nute cannot be constructed as the sum of the transfer information between 

station 1 and station 2 plus transfer information between station 2 and sta-

tion 3 ... station 15 and station 16. This is one of the classic footprint for a 

complex system. The interaction of people travelling in the system in-

crease or decrease the total amount of information in no trivial ways, af-

fecting how the system could respond to possible affectations at different 

times. Our results support the idea that although crowded stations repre-

sents a risk in terms of public security and eventually shutting down such 

stations could lead to major disruptions in the network, these are not the 

only points that could provoke a disruption. The stations identified are 

transferring, at key minutes, much of the information (people) through the 

system. There are still outstanding questions which we need to explore fur-

ther. The risk profile proposed, based on the average of the information 

transferring it in both directions, should be tested and revised with another 

risk assessment techniques. After that, different disruption scenarios at the 

identified hubs should be tested. 

 

Transport authorities could take advantages of studies like the one just pre-

sented, using it as a support system to evaluate, in real time, risk sensitive 

stations at particular time windows, and expand their contingency scenari-

os to these spatiotemporal positions. 
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Our immediate work, in terms of the Oyster data set, would be to extend 

the analysis to the whole network and to modify our route definition to 

represent people travelling via more than one line. 

 

 
Fig. 4.  Information profile the Victoria line, northbound direction. The 

layout is the same that in the Figure 2. a) LTE values for each minute. 

Again, the different behaviour between morning and afternoon peaks is ev-

ident b) Zoom at the information profile around the maximum value 

(6.38am at station 2, Blackhorse) 
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