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Abstract 

Spatial cluster is the set of geographical units where concentration of 

events is observed. Spatial clusters provide useful information for under-

standing mechanism and characteristic of socioeconomic activities. Sever-

al methods have been proposed for cluster detection. However, there is no 

existing method relaxes a constraint on adjacency of geographical units 

that compose clusters. Constraint that requires exact adjacency may have 

significant impact on detected clusters, especially in the case of detailed 

data. In this study, we propose a new cluster detection method relaxes con-

straints on shape and adjacency. Along the lines of model-based clustering, 

we assume spatial data arise through a probabilistic model. Employing 

Potts model on the probabilistic model, we can embed constraints on shape 

in the probabilistic model and relax constraints on geometric shape. The 

applicability of the proposed method is tested on case studies using mesh 

data of Japanese economic census. 
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1. Introduction 

All socioeconomic activities are held on a geographical space. The phe-

nomenon on the geographical space is more or less dependent on its loca-

tion. It is useful for understanding mechanism and characteristic of socio-

economic activities to focus on relation between socioeconomic activities 

and their location. In fact, researchers on new economic geography (NEG) 

focus on spatial property of economic activities and produce impressive 

results. 

Recently, it has become much easier to get detailed spatial data such as 

mesh data or movement-locus data obtained by GPS. There exist a lot of 

methods that help us get exploratory findings from spatial data. Cluster de-

tection analysis is one of the exploratory analyses for spatial data. Detected 

clusters will be useful for understanding socioeconomic activities. For ex-

ample, detecting industrial agglomerations will provide empirical exami-

nation for results of NEG and basic information for decision-making of 

government on industry policies and urban planning. Several methods 

have been proposed for cluster detection in epidemiology and criminology 

for the purpose of investigating cause of infection disease or effective pre-

vention of crimes. In this paper, we focus on cluster detection on discrete 

geographical space consists of geographical units such as municipalities or 

meshes. 

In cluster detection, analysts face the problem of deciding constraints on 

geometric shape of spatial clusters. Absence of objective criterion makes 

spatial clustering analysis difficult. This problem has been pointed out by 

researches that proposed cluster detection methods such as Besag & New-

ell (1991), Kulldorff & Nagarwalla (1995), and Kulldorff (1997). There 

have been various ways to assume geometric shape of spatial clusters: cir-

cle (Kulldorff & Nagarwalla (1995)), ellipse (Kulldorf et al. (2006)), con-

vex hull (Mori & Smith (2013)) and set of adjacent geographical units 

(Duczmal & Assunção (2004), Tango & Takahashi (2005) and Inoue et al. 

(2013)). However, there is no existing method relaxes a constraint on adja-

cency of geographical units. Constraint that requires exact adjacency may 

have significant impact on detected clusters, especially in the case of de-

tailed data. There exist two main reasons to assume adjacency of geo-

graphical units in existing methods. First, analysts have to set arbitrary cri-

terion that control the maximum distance between non-adjacent 

geographical units that belong to the same cluster. Second, assumption of 

adjacency simplifies the cluster detection problem by reducing the number 
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of combination of geographical units to be considered. However, there is 

no guarantee real spatial clusters are composed only of adjacent geograph-

ical units. In the case of detailed spatial data, we argue that assumption of 

adjacency is not valid. 

The aim of this study is to propose a new cluster detection method that re-

laxes constraints on shape and adjacency of geographical units that com-

pose spatial clusters. Along the lines of model-based clustering, we assume 

spatial data arise through a probabilistic model. Employing Potts model on 

the probabilistic model, we can detect clusters through relaxed constraints 

on geometric shape. The applicability of the proposed method is tested on 

case studies using mesh data of Japanese economic census. 

2. Existing methods 

A large number of statistical methods have been developed for spatial data. 

These methods can be grouped into two categories. Methods in first group 

describe quantitative relationship among spatial data by means of regres-

sion models. First group includes a lot of methods developed in geostatis-

tics and spatial econometrics. Another group consists of methods that pro-

vide exploratory findings. Techniques referred to as exploratory spatial 

data analysis (ESDA), which was first defined by Anselin (1994), are cate-

gorized as second group. Second group includes cluster detection methods 

and spatial clustering methods. Cluster detection and spatial clustering 

have a certain thing in common that both of the methods detect set of geo-

graphical units. However, we can draw a difference between the two anal-

yses. Cluster detection is intended to find accumulation of events. On the 

other hand, spatial clustering is intended to find classification of geograph-

ical space. 

Methods for cluster detection and spatial clustering can be categorized into 

two approaches on the way to deal with a probabilistic model that de-

scribes generation process of spatial data. Methods in first approach get 

detection results by estimating the probabilistic model based on observed 

data. Methods in second approach get detection results without estimating 

the probabilistic model. First group includes cluster detection method pro-

posed by Mori & Smith (2013) and spatial clustering methods based on 

model-based clustering. Second group includes cluster detection method 

named spatial scan statistic and spatial clustering methods based on densi-

ty-based clustering. 

As far as we know, all existing cluster detection methods assume exact ad-

jacency of geographical units that compose a cluster. On the other hand, 
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spatial clustering methods such as model-based clustering and density-

based clustering allow us to relax the constraint. One of the advantages of 

model-based clustering is that it has potential to allow us to extend cluster 

detection method to a method that combines multiple spatial data.  

In what follows, we review representative cluster detection methods and 

model-based clustering approach. 

2.1 Cluster detection method 

2.1.1 Spatial scan statistic 

Kulldorff & Nagarwalla (1995) (KN) proposed spatial scan statistic finds a 

statistically-warranted cluster. Spatial scan statistic is the one of the most 

widely used cluster detection methods. KN referred a candidate of spatial 

cluster as window, which is the set of geographical units that meets the 

constraints on geometric shape of a cluster. In spatial scan statistic, whole 

study area is searched by windows; one of the windows is judged as spatial 

cluster in cases where the window has the most significant accumulation. 

More precisely, KN assumed observed data is realization of a probabilistic 

model. Poisson distribution is commonly used. Under this assumption, KN 

made a null hypothesis and an alternate hypothesis. Null hypothesis argues 

there is no difference in degree of accumulation between inside and out-

side of the window. On the other hand, alternate hypothesis argues the de-

gree of accumulation inside the window is higher than that of outside of 

the window. The likelihood ratio of these two hypotheses is calculated to 

evaluate each window. Spatial scan statistic has a problem with detecting 

multiple clusters because recursive application of it confronts multiple test-

ing problem. This limitation comes from the fact that the null and alternate 

hypotheses assume that there exists only one cluster in the study area. 

KN assumed the shape of a spatial cluster was circle. But, there is a good 

chance that real spatial clusters have various geometric shapes. For exam-

ple, cluster along a railroad or river ought to be slim-line. Duczmal & As-

sunção (2004), Tango & Takahashi (2005) and Inoue et al. (2013) pro-

posed spatial scan statistic assume that a cluster to be combination of 

adjacent geographical units. 

2.1.2 Mori & Smith (2013) 

Mori & Smith (2013) (MS) proposed a cluster detection method detects 

more than one cluster simultaneously for the purpose of detecting industri-

al agglomerations. Evaluating all candidates of cluster (i.e. windows de-
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fined by KN) together, MS evaded multiple testing problem. MS referred 

set of windows as cluster scheme. MS assumes observed spatial data arise 

through a probabilistic model that describes the relationship between spa-

tial data and a cluster scheme. Spatial clusters are detected through a selec-

tion of one cluster scheme on the basis of Bayesian information criterion 

(BIC). MS employs dartboard model that regards each establishment as a 

dart. Under a certain cluster scheme, an establishment selects one window 

with a probability proportional to value of a parameter estimated for each 

window and subsequently selects one geographical unit in the window 

with a probability proportional to its square measure. Additionally, ana-

lysts need to constrain geometric shape of spatial clusters because MS’s 

model is independent from shape of clusters. MS assumes a cluster has to 

meet following two constraints. First constraint is that shape of a cluster is 

convex hull on a network that declares time-distance among geographical 

units. Another constraint is a cluster must not have any geometric hole. 

2.2. Model-based clustering 

In image understanding and pattern recognition, a lot of approaches for 

image segmentation have been developed; Cheng et al. (2001) provides 

one of reviews. Image segmentation methods allocate each picture element 

to one of groups where the same object is caught in original image. One of 

the major approaches is model-based clustering, which is employed by 

Celeux et al. (2003), Chen et al. (2005) and Cucala & Marin (2013) etc.  

Model-based clustering assumes observed image data arise through a 

probabilistic model that describes the relationship between image data and 

a configuration, which denotes certain image segmentation. Image seg-

mentation is carried out by searching configuration that has largest poste-

rior probability. The probabilistic model has two phases. First, a configura-

tion rises up stochastically under a prior distribution. Second, image data is 

generated based on the configuration and likelihood. In the framework of 

Bayesian statistics, likelihood is a probabilistic model that describes the re-

lationship between realized configuration and image data.  

A number of researchers employ q-state Potts model on prior distribution 

of configurations. Q-state Potts model is the probabilistic model proposed 

in statistical physics for the purpose of explaining the behavior of magnetic 

materials. Let’s suppose that every lattice point of two-dimensional square 

lattice has a spin which takes one of multiple states; the number of states 

each spin can take is denoted by q. Q-state Potts model gives relatively 

high probability to a configuration where close-set spins take the same 

state. Regarding each spin and spin’s state as picture element and group of 
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the element, respectively, this model can be employed as a prior distribu-

tion in image segmentation. By doing so, analysts can embed spatial auto-

correlation of image data into the probabilistic model that describes the 

generation process of observed image. 

3. Cluster detection with relaxed constraints 

We propose a new cluster detection method based on the framework of 

model-based clustering. We assume spatial data arise through a probabilis-

tic model. Regarding each spin and spin’s state as geographical unit and 

region that the unit belongs to, respectively, we employ q-state Potts model 

on prior distribution of the probabilistic model that describes generation 

process of observed spatial data. This approach enables us to relax con-

straints on adjacency of units. 

3.1 Framework 

In this section, we explain the framework. We suppose the study area is 

discrete geographical space that consists of N geographical units. The ob-

served data in geographical unit i is denoted by if ; 1( , )T

Nf ff . We as-

sume there exists K spatial clusters and a non-cluster region in the study 

area; every geographical unit belongs to one of those ( 1)K   regions. The 

region that geographical unit i belongs to is denoted by ia ( {0,1, , }K ); 

configuration of spatial cluster is denoted by a ( 1( , , )T

Na aa ), which is 

equivalent to MS’s cluster scheme in terms of holding information. We as-

sume observed spatial data is generated through following probabilistic 

process. 

  1. One configuration rises up under a prior distribution ( | )p a .  is set 

of parameters included in the prior distribution. 

  2. Spatial data f  is generated under a conditional probability distribution 

on a denoted by ( | , )p f a , which is called as likelihood in Bayesian 

statistics.  is set of parameters included in likelihood. 

Under those assumptions, we detect clusters by selecting a configuration 

on the basis of ICL, which is the one of most commonly-used model selec-

tion criteria in model-based clustering. Birnacki et al. (2000) proposed ICL 

defined by Eq. 3.1. 

( ) ( , | ) ( )K K KICL K p d     f a
 

(3.1) 
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K   . Birnacki et al. (2000) approximate Eq. 3.1 by Eq. 3.2. 

ˆˆ( ) log ( , | ) log
2

K

K

v
ICL K p N f a

 

(3.2) 

ˆ
K is maximum likelihood estimate of parameters. Kv is the number of pa-

rameters included in the model. â denotes configuration that has largest 

posterior probability under ˆ
K ; â defined by Eq. 3.3. 

ˆ ˆ ˆˆ arg max ( | , ) ( , | ) ( )K K Kp p    
a

a a f f a
 

(3.3) 

BIC employed by MS could lead to overfitting in terms of clustering be-

cause it selects the model that best fits observed data. On the other hand, 

the purpose of ICL is to select the most valid model for clustering and ICL 

tends to select a model that has smaller number of clusters than BIC. 

Baudry et al. (2014) said that ICL is known to select stable and reliable 

number of clusters in practice. In this study, we employ ICL as model se-

lection criteria and select a configuration based on ICL. The spatial cluster 

detection problem is defined by Eq. 3.4. 

, ,

, ,

ˆˆ ˆ( , , ) arg max ( , , )

arg max ln ( | , ) ( | ) ln
2

K

ICL

v
p p N

 

 

   

 



 

a

a

a a

f a a
 

(3.4) 

All parameters are supposed to have non-informative prior distribution. 

3.2 Formulation of likelihood and prior distribution 

We argue there are three requirements for the probabilistic model describ-

ing the generation process of data. First requirement is that the probabilis-

tic model takes relatively high probability in cases where geographical 

units which have high observed value belong to cluster regions apart from 

low-value geographical units. Second requirement is that the probabilistic 

model takes relatively high probability in cases where close-set geograph-

ical units belong to the same regions. Third requirement is that the proba-

bilistic model takes nearly zero in cases where the configuration has a 

cluster that violates constraints on geometric shape. In our probabilistic 

model, multivariate normal distribution which is employed as likelihood 

expresses the first requirement; q-state Potts model which is employed as 

prior distribution expresses the second and third requirements. 
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3.2.1 Likelihood 

We employ multivariate normal distribution defined by Eq. 3.5 on likeli-

hood. 

 
2

22

1
( | , , ) exp

22

ii a

i

f
p






  
  

 
 

f a μ

 

(3.5) 

0( { , , })K μ and  are parameters;   μ . This likelihood takes 

high probability in cases where differences in data among geographical 

units that belong to the same region are small. This means likelihood of 

Eq. 3.5 satisfies the first requirement explained in the opening of section 

3.2. The estimate of parameters derived from Eqs. 3.4-3.5 is as follows. 

 
2

ˆ

ˆ

k

i

k i k

i C

i ai

f N

f N



 



 


  





 

(3.6) 

kN denotes the number of geographical units belonging to region k. kC de-

notes the set of geographical units belonging to region k. 

3.2.2 Prior distribution 

We utilize q-state Potts model defined by Eq. 3.7 to define prior distribu-

tion. 

 
1

( | ) exp ( , )
( )

p a H a
Z

 


 

 

(3.7) 

 is a parameter ( 0 ); Z is normalization constant. H denotes energy 

function of Potts model defined by Eq. 3.8. 

{0, , } ( , )

1
( , )

2
Ck

ij

k K i j N

H a w 
 

   
 

(3.8) 

The spatial weight coefficient between geographical units i and j is denot-

ed by ijw . 
kCN  denotes the set of all pairs of neighboring units in region k. 

Configurations with low energy get high probability in the prior distribu-

tion. This prior distribution gives prior probability which is significantly 

bigger than 0 to every configuration. Therefore, original Potts model has 

the potential to permit configurations that have peculiar spatial clusters. 

We make a proposal to add new penalties which express constraints on ge-

ometric shape of spatial clusters into energy function of Potts model in or-
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der to deal with this problem. Heavily penalized configurations get nearly 

zero prior probabilities. 

We propose two penalties. First penalty named distance penalty is intend-

ed to avoid configurations that have a cluster consists of critically separat-

ed geographical units. Original Potts model permits configurations have a 

cluster that consists of distant geographical units. We need to pose a penal-

ty on the energy function to evade such configurations. Second penalty 

named complication penalty is intended to avoid complex configurations 

where a lot of clusters are in a jumble like Fig. 1. In Fig. 1, each grid 

square expresses geographical unit; a pattern of each square shows the re-

gion where the unit belongs. Plain units belong to non-cluster region. Like-

lihood defined by Eq. 3.5 has the potential to give high probability to such 

configurations because it is independent from geometric shape of spatial 

clusters. We need to pose another penalty to evade such configurations. 

To embody the idea of penalties, we utilize imaginary time-distance net-

work. We think it is best to employ the real transportation network for de-

tecting clusters of socioeconomic activities. But, it is difficult to embed re-

al transportation network in the probabilistic model. For this reason, we 

define the distance between two geographical units on imaginary time-

distance network denoted by G. G is undirected and weighted graph. 

Nodes of G are geographical units and links of G are put between adjacent 

geographical units. The weight of link is time-distance between the geo-

graphical units. 

Utilizing graph G, we formulate the distance penalty as Eq. 3.9. 

 
{1, , } ( , )

( )
Ck

d ij ij d

k K i j L

P d d l
 

  
 

(3.9) 

Fig. 1. Example of configuration that complication penalty is intended to avoid 
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dP denotes the value of distance penalty. dl is a parameter that define the 

maximal distance that is not penalized. ijd is the shortest distance between 

geographical unit i and j on network G. 
kCL is the set of links included in 

minimum spanning tree denoted by kT , which is defined on complete 

graph kG . kG is undirected and weighted graph. Nodes of kG are geograph-

ical units that belong to region k and the weight of links is the shortest dis-

tance on G. ( )ij dd l  denotes delta defined in Eq. 3.10. 

1
( )

0
ij d

ij d

if d l
d l

otherwise



  

  

(3.10) 

Fig. 2 shows the idea of distance penalty defined by Eq. 3.9. In Fig. 2, each 

grid square drawn by solid line expresses geographical unit. The dashed 

grid expresses the time-distance network G. We suppose that adjacent ge-

ographical units share a side of squares and time-distances between all ad-

jacent units are the same. The length of two-headed arrow express the dl . 

Pattern of square shows the region where the geographical unit belongs. 

Plain units belong to non-cluster region. Bold lines express minimum 

spanning tree T. The configuration of Fig. 2a is penalized because mini-

mum spanning tree T has the link whose the time-distance is longer than   

dl  between units A and B. On the other hand, the configuration of Fig. 2b 

is not penalized because the penalized link at Fig. 2a was removed. Formu-

lating distance penalty by Eq. 3.9, we can avoid clusters consists of criti-

cally separated units. 

Fig. 2. Distance penalty 

a  Configuration that 
has distance penalty 

b  Configuration that doesn’t  

has distance penalty 

A B 
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We formulate the complication penalty as Eq. 3.10, utilizing convex hull 

on time-distance network G. 

,

{1, , } {1, , }\

c k k

k K k K k

P s 

 

  
 

(3.11) 

, 'k ks denotes an square measure of overlapping area between convex hulls 

of region k and . The convex hulls are defined on graph G. Fig. 3 shows 

the idea of complication penalty. Fig. 3 is drawn in the same way with Fig. 

2. Squares drawn in heavy dashed line express convex hulls on time-

distance network G. The configuration of Fig. 3a is penalized by complica-

tion penalty because convex hulls are overlapping. On the other hand, the 

configuration of Fig. 3b is not penalized because overlap of two convex 

hulls observed in Fig. 3a was resolved. Formulating complication penalty 

by Eq. 3.11, we can avoid complex configurations where a lot of clusters 

are in a jumble.  

Adding these two penalties into energy function of Potts model, geometric 

shape of clusters is constrained. The prior distribution is defined by Eq. 

3.12. 

 
1

( | , , , ) exp ( , , , , )
( , , , )

d c d d c d

d c d

p b b l H b b l
Z b b l

 


 a a  
(3.12) 

db and cb are parameters. The energy function is defined by Eq. 3.13. 

{0,1, , } ( , )

1
( , , , , )

2
Ck

d c d ij d d c c

k K i j L

H b b l w b P b P 
 

    a  
(3.13) 

a  Configuration that has  

  complication penalty 
b  Configuration that doesn’t 

has complication penalty 

Fig. 3. Complication penalty 

CUPUM 2015 Spatial Cluster Detection on Detailed Data without Constraint ... 373-11



In this paper, analysts set value of parameters included in the prior distri-

bution. By doing so, we can evade calculation of intractable normalization 

constant. Estimation of these parameters is one of challenges for the future. 

3.3 Solving method employing genetic algorithm 

The spatial cluster detection problem defined by Eq. 3.4 is combinatorial 

optimization problem. We suppose it is nearly impossible to get globally 

optimal solution. We use genetic algorithm (GA) as a heuristic search 

technique to the problem. We regard configuration and ICL as gene and 

fitness function, respectively. Termination condition of GA is that absolute 

value of difference between best ICL value and mean ICL value is smaller 

than threshold level for 5 successive generations.  

In this study, GA has three operators: local search, mutation and duplica-

tion of competent individuals. Based on following observation, we add lo-

cal search as operator of GA so that GA reaches good solution in a short 

time. Though it is nearly impossible to get globally optimal solution, we 

can roughly expect the characteristic of competent individuals. By the 

formulation of likelihood and prior distribution, we can say that competent 

individuals have penalties-zero spatial clusters consist of geographical 

units where observed data are high. However, local search is more likely to 

go into locally optimal solution. Mutation plays the primary role in avoid-

ing locally optimal solution. Generally, locally optimal solutions are 

searched through crossover, which generates new individuals. In our algo-

rithm, locally optimal solutions are searched through the local search. We 

suppose we don’t need to search locally optimal solutions again by crosso-

ver. We just duplicate competent individuals as an alternative to crossover. 

Duplication of individuals makes our algorithm faster because it evades 

calculation of ICL. As a matter of fact, the most time-consuming part is 

calculation of minimum spanning tree T and convex hull on time-distance 

network G for every cluster. We can make the algorithm faster by decreas-

ing the number of calculation of ICL. 

4. Application 

In this chapter, the applicability of the proposed method is tested through 

case studies using aggregated data of 2009 Japanese economic census that 

shows the number of establishments for each nibunnoichi chiiki mesh, 

which is approximately square, 500 m on a side. The study area is approx-

imately square area 16km on a side that consists of 1073 meshes of heart 
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of Tokyo. The proposed method is applied on data that shows the density 

of establishments for each mesh. Our method is also intended to be applied 

to data aggregated on municipalities, which have great difference in square 

measure. So, observed data is standardized by square measure. The square 

measure is calculated on polygon data which can be downloaded from the 

web page managed by Japanese National Statistic Center (http://www.e-

stat.go.jp/SG1/estat/eStatTopPortalE.do). In this paper, time-distance be-

tween adjacent meshes is set by straight-line distance between median 

points of meshes. We assume that adjacent meshes share a side of mesh. 

As to spatial weight matrix, we suppose 
21ij ijw d .  

Parameters of the prior distribution are set up as 4  , 
610d cb b  and 

2dl  km.  is non-negative parameter. As  takes larger value, close 

meshes are more likely to belong to a same region. If  is too big, we can-

not detect clusters because all meshes belong to a single region. We chose 

an adequate value for parameter  so that we would get meaningful results. 

db and cb are set to large value enough to dismiss penalized configurations. 

As to dl , we chose adequate value so that we could detect multiple clusters 

that consist of non-adjacent meshes. In this paper, we show results of two 

industries both are classified in information and communications industry. 

4.1 Spatial clusters of information services industry 

Fig. 4 shows the result of spatial cluster detection for information services 

industry. Fig. 4a shows the density of establishments; dark meshes have 

high density. We also show the railroad network in Fig. 4a and b. Fig. 4b 

shows the result of cluster detection; pattern of each mesh shows the re-

gion where the mesh belongs. Plain meshes belong to non-cluster region. 

Fig. 4c shows the convergence process of GA. Solid line and dashed line 

expresses the best ICL value and mean value of ICL of each generation, 

respectively. 

We can point out following three points as to Fig. 4. First, fig. 4c indicates 

GA at least converged with one of the locally optimal solutions. Second, 

multiple clusters are detected. There are five detected clusters in Fig. 4b. 

Third, proposed method detects clusters that consist of non-adjacent mesh-

es. For example, the detected cluster around Tokyo and Akihabara station 

has several non-adjacent meshes. 
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4.2 Industrial agglomeration of six industries 

Fig. 5 shows that results of cluster detection for six industries including in-

formation services industry. Figs. 5a-c and Figs 5d-f show results of indus-

tries classified into tertiary industry and secondary manufacturing, respec-

tively. The heavy line indicates Yamanote Line, which is a belt line 

railway that connects most of Tokyo's major stations.  

We point out following three points as to Fig. 5. First, we can reaffirm the 

fact that our method detects clusters that consist of non-adjacent meshes. 

Such clusters are detected in all six industries. Second, as in Figs. 5a-c, 

three industries classified into tertiary industry have in common that most 

clusters locate at a nearby site of major stations. Shinjuku and Shibuya sta-

tions clearly lie at the heart of detected clusters in all three tertiary indus-

tries. Clusters are also detected around Ikebukuro, Akihabara, Tokyo and 

Gotanda stations in one or two industries. Third, as in Fig. 5d-f, most de-

tected clusters for industries classified into secondary manufacturing lie 

outside of the ring of the Yamanote Line; all three industries have a cluster 

located at east side of the ring of the Yamanote Line. However, there are 

several differences among industries of secondary manufacturing. For ex-

ample, Manufacture of plastic products except otherwise classified (Fig. 

5f) has clusters located at south side of the ring of the Yamanote Line, on 

the other hand other two industries don’t have such clusters. These results 

indicate that industries of secondary manufacturing have wider variety of 

location pattern than tertiary industries. More detailed comprehensive 

analysis is an issue in the future. 

Fig. 4. Clusters of information services industry 

a  Density of establishments b  Detected clusters 

ICL 

Number of generations 

c  Convergence  

    process of GA 

Akihabara 

Tokyo 
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Fig. 5. Clusters of six industries 

a  Information services industry b  Communications industry 
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5. Concluding remarks 

In this study, employing model-based clustering approach, we proposed a 

new cluster detection method that relaxes the constraints on geometric 

shape of spatial clusters. Relaxed constraints on geometric shape were ex-

pressed as two penalties added into energy function of Potts model which 

is employed on the prior distribution. We applied proposed method on 

mesh data of 2009 Japanese economic census. The result of case study 

shows that proposed method can detect clusters that consist of non-

adjacent geographical units; our method can make clear the location of in-

dustrial agglomeration using detailed data. 

Proposed method is characterized by Potts model and the two penalties, or 

distance penalty and complication penalty. The framework of our method 

can be used to detect clusters constraining geometric shape in the same 

way as existing cluster detection methods. For example, if we set up the 

maximal distance that is not penalized by distance penalty (denoted by dl ) 

as distance between adjacent geographical units, our method detect clus-

ters assuming exact adjacency of geographical units. If we add one more 

penalty requiring circular clusters, our method detect such clusters. How-

ever, it should be noted that the fact remains that analysts face the problem 

of absence of objective criterion for setting constraints on geometric shape 

of spatial clusters.  

Proposed method has two problems to be solved. First, we need to speed 

up calculation and analyze larger study area including an entire economic 

zone. Though we have already employed several devisals, GA still takes 

approximately 30 min. on average to detect clusters from data whose size 

is the same as case studies of this paper. Main cause of this problem lies in 

repeating calculation of minimum spanning tree and convex hull for every 

cluster. We are going to take in a devisal that reduces the number of calcu-

lating of minimum spanning trees and convex hulls. 

Second, the parameter   of original Potts model should be estimated from 

data for the purpose of reducing the impact of arbitrary setting made by 

analysts. 

Acknowledgment 

This work is the production of collaborative research with Center for Spa-

tial Information Science, The University of Tokyo, which provided mesh 

data of 2009 Japanese economic census. 

  

CUPUM 2015  Ujiie & Fukumoto 373-16



References 

Anselin, L. (1994). Exploratory spatial data analysis and geographic in-

formation systems. In M. Painho (Ed.), New tools for spatial analysis. 

Luxembourg: Eurostat. 

 

Baudry, J.-P., Cardoso, M., Celeux, G., Amorim, M. J. and Ferreira, A. S. 

(2014). Enhancing the selection of a model-based clustering with external 

categorical variables. Advances in Data Analysis and Classification. 

doi:10.1007/s11634-014-0177-3. 

 

Besag, J. & Newell, J. (1991). The detection of clusters in rare diseases. 

Journal of the Royal Statistical Society, Series A, 154(1), 143-155. 

 

Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture 

model for clustering with the integrated completed likelihood. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 22(7), 719-

725. 

 

Celeux, G., Forbes, F. & Peyrard, N. (2003). EM procedures using mean 

field-like approximations for Markov model-based image segmentation. 

Pattern Recognition, 36, 131-144. 

 

Chen, F., Tanaka, K. & Horiguchi, T. (2005). Image segmenta-tion based 

on bathe approximation for Gaussian mixture model. Interdisciplinary In-

formation Sciences, 11(1), 17-29. 

 

Cheng, H. D., Jiang, X. H., Sun, Y. & Wang, J. (2001). Color image seg-

mentation: advances and prospects. Pattern Recognition, 34, 2259-2281. 

 

Cucala, L. & Marin, J.-M. (2013). Bayesian inference on a mix-ture model 

with spatial dependence. Journal of Computa-tional  and Graphical Statis-

tics, 22(3), 584-597. 

 

CUPUM 2015 Spatial Cluster Detection on Detailed Data without Constraint ... 373-17



Duczmal, L. & Assunção, R. (2004). A simulated annealing strategy for 

the detection of arbitrarily shaped spatial clusters. Computational Statistics 

& Data Analysis, 45, 269-286. 

 

Inoue, R., Kasuya, S. & Watanabe ,T. (2013). Spatio-temporal cluster de-

tection of point events by hierarchical search of adjacent area unit combi-

nations. Proceedings of 13th International Conference on Computers in 

Urban Planning and Urban Management, Paper 51, USB memory. 

 

Kulldorff, M. (1997). A spatial scan statistic. Communication Statistic 

Theory and Method, 26(6), 1481-1496. 

 

Kulldorff, M., Huang, L., Pickle, L. & Duczmal, L. (2006). An elliptic spa-

tial scan statistic. Statistics in Medicine, 25, 3929-3943. 

 

Kulldorff, M. & Nagarwalla, N. (1995). Spatial disease clusters – detection 

and influence. Statistic in Medicine, 14, 799-810. 

 

Mori, T. & Smith, T. E. (2013). A probabilistic modeling ap-proach to the 

detection of industrial agglomerations. Journal of Economic Geography, 

1-42. 

 

Tango, T. & Takahashi, K. (2005). A flexibly shaped spatial scan statistic 

for detecting clusters. International Journal of Health Geographics, 4(11). 

CUPUM 2015  Ujiie & Fukumoto 373-18




