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ABSTRACT 

Although recent studies of Shared Autonomous Vehicles (SAVs) have ex-

plored the economic costs and environmental impacts of this technology, 

little is known about how SAVs can change urban forms, especially by re-

ducing the demand for parking. This study estimates the potential impact 

of SAV system on urban parking demand under different system operation 

scenarios with the help of an agent-based simulation model. The simula-

tion results indicate that we may be able to eliminate up to 90% of parking 

demand for clients who adopt the system, at a low market penetration rate 

of 2%. The results also suggest that different SAV operation strategies and 

client’s preferences may lead to different spatial distribution of urban park-

ing demand. 
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1. INTRODUCTION 

There is compelling research to suggest that advances in transportation 

technology has a powerful and irreversible impact on urban form. The de-

velopment of streetcars in the 1950s triggered the initial wave of suburban-

ization, which accelerated with the advent of the automobiles in the 20
th
 

century. Today, we are at the cusp of the emergence of autonomous vehi-

cles (AVs), that is, vehicles that can drive themselves. These driverless ve-

hicles are expected to introduce more fundamental changes to human trav-

el behavior, which may lead to different social structures and urban forms. 

AVs will facilitate car-sharing and ride-sharing behavior, as the technolo-

gy can overcome some key barriers, especially the limited accessibility and 

reliability of today’s car-sharing and ride-sharing programs (Kornhauser et 

al., 2013; Fagnant & Kockelman, 2014). Given the potential capabilities of 

AVs, it is easy to envision the implementation of Shared Autonomous Ve-

hicle (SAV) Systems, which will operate as a taxi service on demand. 

These future driverless taxis would also enable unrelated passengers to 

share the same ride with minimal increases in travel time and costs. It is 

reasonable to expect that SAVs will operate with a higher passenger load 

and automatically navigate to locations from where trips will originate, 

thereby reducing parking demand.  

In this study we estimate the various levels of parking demanded under 

SAV systems characterized by varying fleet sizes and passenger wait 

times. These estimates are based on an agent-based model of a 10 mile x 

10 mile hypothetical city laid out in a grid network of 0.5 mile street seg-

ments.  We develop scenarios with fleet sizes between 500 and 800 vehi-

cles, with various levels of willingness for ride-sharing, and with different 

empty vehicle cruising strategies. The simulation results indicate the 

amount of parking spaces saved when compared with conventional sys-

tems. The results also show where the most parking reductions can be ex-

pected under different assumptions in the stylized city described above.  

This study adds to the growing literature on the potential impact of AVs 

on the built environment. While the associated technologies to enable AVs 

are maturing quickly, these studies also acknowledge that the social and 

legal infrastructure for implementing such systems are lagging. Yet, de-

ployment of small-scale, low-speed shared autonomous vehicles will be 

tested in Europe (CityMobil2 project; http://www.citymobil2.eu/en/) and 

possibly by Google in the near future (Markoff 2014). In this paper we 

specifically address AVs as part of a sharing economy, such as car and ride 

sharing services that are becoming very popular. We contend that SAVs 
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offer a number of advantages to travelers that current systems cannot 

match.  

Compared to the conventional car-sharing program, such as zipcar and 

car2go, the SAV system offers more flexible services for clients, primarily 

through the elimination of the fixed rental and returning stations. For the  

mobile app based car-sharing program, such as Uber and Lyft, the SAV 

system may contribute to the reduction of operating costs and provide 

more affordable mobility services for disadvantaged groups of population. 

Meanwhile, by linking multiple trips and serving them using one SAV, the 

service holds great potential to relieve the congestion conditions on the 

road.   

2. EARLIER WORK 

Given that the SAVs have multiple advantages over the existing car-

sharing programs, several previous studies explored the feasibility of this 

new type of car-sharing system. Ford (2012) reviewed the present social 

and legal barriers for the adoption of SAV systems. The study also devel-

oped a simplified model to evaluate the performance of a shared taxi sys-

tem with fixed picking up and dropping off stations every half-mile to de-

termine whether the system can support existing travel patterns. The 

results suggest that the system is quite feasible, even though the current le-

gal environment will pose several barriers.  

Kornhauser et al. (2013) evaluated the feasibility of a shared autono-

mous taxi system in various counties in New Jersey. Their results indicate 

that SAVs can facilitate an increase in ride-sharing travel behavior. Burns 

et al. (2013) developed a more advanced agent based simulation model to 

evaluate the economic feasibility of a ubiquitous SAV car-sharing system. 

The simulation results imply that the cost per trip mile can range from 

$0.32 to $0.39, depending on the fleet size of the SAV system. This travel 

cost is more affordable than owning and operating a private vehicle (Burns 

et al. 2013).  

Fagnant & Kockelman (2014) investigated whether the SAV system is 

environmentally sustainable. Their model assumptions are similar to that 

used in Burns et al.’s model, but the model pays special attention to the 

environmental impacts of the system. Their study results indicate that each 

SAV has the potential to replace approximately 11 privately owned vehi-

cles. Additionally, some environmental benefits such as reductions in en-

ergy consumption, GHG emissions, and air pollutants emissions per vehi-

cle life cycle can be expected once the SAV system starts to serve 5% of 
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the population within the 10 mile x 10 mile grid-based study area. Howev-

er, Fagnant and Kockelman’s study suggested that the SAV system comes 

with associated costs of approximately 5% additional unoccupied VMT 

generated during the client picking up process. This side effect may be al-

leviated or even eliminated with the increase of ride-sharing behavior 

(Fagnant & Kockelman, 2014). In sum, there is evidence from multiple 

studies indicating this envisioned car-sharing service is economical and 

environmentally feasible.  

The popularity of dynamic ride-sharing can lead to reduced demand for 

parking. Fagnant and Kockelman (2013) estimated a saving of $250 in 

parking cost for each new autonomous vehicle in the market, primarily 

through reallocating parking space from Central Business District (CBD) 

to more remote areas and from ride-sharing. Moreover, Hayes (2011) sug-

gested that AVs can economize parking space because they can park inch-

es from each other since there is no need to open auto doors, assuming that 

the passengers will be dropped off before the AVs get to the parking slots. 

New mobile applications can serve individuals who participate in dynamic 

ride-sharing service by matching the nearest vehicle with the route that 

matches the users’ preference. Such a matching system will serve several 

passengers at the same time by linking trips that have origins and destina-

tions close to each other. Once the vehicle occupancy rate is improved, 

more parking demand reduction can be achieved.  

Past modelling efforts regarding dynamic ride-sharing focused on 

matching multiple clients with service vehicles so that certain objective 

function can be optimized.  Agatz et al. (2011) developed a simulation of 

dynamic ride-sharing by linking rips and vehicles to minimize the system 

level of VMT generation. Martinez et al. (2012)’s agent based shared-taxi 

system matched clients with taxis by minimizing the total travel time for 

both on-board and calling passengers. Fagnant and Kockelman (2015) de-

veloped their version of dynamic ride-sharing SAV model with more flex-

ible objective function to maximize the possibility of ride-sharing. As long 

as the increased travel time for both on-board and calling clients do not ex-

ceed certain thresholds, the two clients have the potential to share rides. 

The SAV that can deliver the clients to the destination using shortest 

amount of time is going to be assigned for the client.  

Both the studies form Martinez et al. and Fagnant and Kockelman as-

sume that clients’ only concern is the time cost in the ride-sharing process. 

However, this may not be the case in reality. The primary concern for peo-

ple with limited travel budget may be the cost of travel. If so, the objective 

function to minimize should be the total travel cost. Thus, in this study a 

different objective function is used to investigate how various customer 
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service preferences may vary the number of ride-sharing trips and urban 

parking demand. 

Although the literature on SAVs is growing rapidly, there are limited 

number of papers on how SAVs can reduce the demand for parking space. 

It is still unclear how much the parking demand is likely to be reduced and 

what would be the spatial distribution of parking requirements once the 

system is implemented. Just as The Economist (2013) stated recently: 

“Town planners, property developers and builders need to start thinking 

about the effect of self-driving technology on demand for roads, parking, 

housing and so on. So far there is little sign that this is happening.” This 

study begins to fill this gap through a simulation model, which is devel-

oped to estimate the potential impact of an SAV system on parking de-

mand. 

3. MODEL PARAMETERS 

This simulation is conducted on a 10 x 10 mile grid based hypothetical 

city. The resolution of the grids, which also represents the street network, 

is 0.05 mile. The client agents in this model are people who are willing to 

use the SAV system. It is assumed that the SAV system has a low penetra-

tion rate of 2% within the region. In other worlds, only 2% of population 

within the simulated area are willing to give up private vehicles and use 

the SAV system. The clients will generate vehicle trips that in general fol-

low the same profile as estimated from the National Household Travel 

Survey (FHWA 2009), in terms of trip length and trip departure time. 

SAVs are then assigned by the vehicle-client match center to serve clients. 

Different vehicle assignment rules are setup in this simulation model, 

based on client’s willingness to share rides with others and preference for 

the type of vehicle service. The Assigned SAV will then provide delivery 

service based on the operation rules set up in the model. The operation 

rules include how fast the vehicles may travel given the time of the day, 

what kind of route the vehicles might choose to follow, whether the vehi-

cle will continue empty cruising after dropping off the last client(s) on 

board, among others, described later. The parking demand will be recorded 

at individual grid cell level throughout the simulation process. By the end 

of the simulation day, total parking demand will be estimated for each grid 

cell in the simulation area. The time step of the model is set as one minute, 

indicating that the simulated variables, such as location of vehicles, service 

requests from household agents, and vehicle assignments will be updated 

every one simulation minute.  
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4. MODEL SPECIFICATIONS AND IMPLEMENTATION 

The simulation model is identified and programmed in Matlab. In this 

model, client agents call the match center for SAV service, once they de-

cide to make a trip. The client-SAV match center then assign the lowest 

cost vehicle to serve the client. After receiving command from the match 

center, the assigned vehicle will pick up the calling client and deliver 

him/her to the destination. The process is illustrated in Figure 1. The spe-

cifics for the major components in the model are elaborated in the follow-

ing sections. 

 
Figure 1. Simulation Model Schematic Graph 

4.1 Client Agents and Vehicle Trip Generation 

In this model, the client agents represent people who are willing to use 

the SAV system. In this study, we conservatively modeled a low market 

penetration rate of the SAV system, assuming approximately 2% of the 

population within the study area will adopt the system. Each client agent 

generates several vehicle trips within a simulation day.  

First, client agents are generated and assigned to each grid cell in the 

simulated area. It is assumed that the population density in the center of 

the hypothetical city is always higher than that in the fringe area. For a city 

like Atlanta, the population density is approximately 8000 per square miles 

in urban center and declines to around 1500 at places that are 5 miles away 

from the center (US Census Bureau, 2012). Thus, it is assumed that the 

density for client agent will be approximately 160 (8000 x 2%) per square 

mile in the urban center grids and 30 (1500 x 2%) per square mile in the 

further most grids in the simulated area. The population density within 
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other grid cells are calculated based on their inversed Euclidean distance 

from the urban core. Based on the assumed population density, there will 

be approximately 10,000 participating clients in our study area. Mean-

while, for each client agent, the model randomly determines whether (s)he 

is willing to share rides with strangers, based on the aggregated level of 

willingness to share. The model also generates a random hourly income for 

each client using the cumulative density function (CDF) of 2014 U.S. na-

tional hourly salary, obtained from Bureau of Labor Statistics (2014). 

Second, we estimate the trip generation rate for each grid cell based on 

the density of client agents, given the assumption that each person, on av-

erage, generates around 3.79 vehicle-trips per day (FHWA, 2009).  As a 

result, daily vehicle-trip generation rate is set as 1.52 (160 x 3.79 x 0.0025) 

per grid cell in the very center of the simulated area and 0.28 (30 x 3.79 x 

0.0025) in the four corners of the study area. The trip generation rates in 

all the rest of the cells are estimated using the following formula: 

 

𝜆𝑖 = 𝜆𝑚𝑖𝑛 +
(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)

𝐷𝑖𝑠𝑡𝑐𝑜𝑟𝑛𝑒𝑟,𝑐𝑒𝑛𝑡𝑒𝑟

∗ 𝐷𝑖𝑠𝑡𝑖,𝑐𝑒𝑛𝑡𝑒𝑟      (1) 

where,  

𝜆𝑖, is the trip generation rate at cell 𝑖; 
𝐷𝑖𝑠𝑡𝑐𝑜𝑟𝑛𝑒𝑟,𝑐𝑒𝑛𝑡𝑒𝑟, is the Euclidean distance from corner to the center 

cell; 

𝐷𝑖𝑠𝑡𝑖,𝑐𝑒𝑛𝑡𝑒𝑟, is the Euclidean distance from cell i to the center cell. 

 

Third, the model generates random number of vehicle trips for each grid 

cell given the trip generation rate 𝜆𝑖 for cell i, provided the assumption that 

the trip generation will follow Poisson distribution. Subsequently, the 

model determines other parameters, such as departure time, length, and 

destination, for the generated vehicle-trips.  

Trip departure time and length assignment 

The model assigns a random departure time and trip length for each 

generated vehicle-trip based on the empirical CDF obtained from 2009 

NHTS weighted vehicle-trip data. First, a uniformly distributed random 

number between zero and one is generated. Then this random number is 

plugged into the corresponding inverse CDF function to generate the ran-

dom departure time and trip length, as determined by functions 2 and 3 be-

low. This process ensures that the generated vehicle-trips generally follow 

the trip departure time and length distributions from the 2009 national ve-

hicle-trip profile. 
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𝐷𝑇 = 𝑇∗(𝑟)                  (2) 

𝑇𝐿 = 𝐿∗(𝑟)                     (3) 

 

Where, 

𝐷𝑇, is the simulated departure time;  

𝑇𝐿, is the simulated trip length;  

𝑇∗(𝑥), is the inversed CDF for trip departure time; 

𝐿∗(𝑥), is the inversed CDF for trip length distribution; 

𝑟, is a system generated uniformly distributed random number (between 

0 and 1). 

Trip Destination Assignment 

The model identifies the location of destination for each generated vehi-

cle-trip, based on the origin and length of the trip. Given the trip origin and 

trip length, an agent has four travel direction options, which are northwest, 

northeast, southwest, and southeast, as shown in Figure 1. The probability 

of following certain direction is estimated using Formula 4, which is anal-

ogous to the algorithm used in Fagnant and Kockelman’s model (2014). 

An attraction factor α is used in the probability calculation formula to con-

trol the attractiveness of the urban center area. In the morning, the α is set 

as "1" to push the majority of trips into the CBD area. In the afternoon, the 

α is reduced to "0.65" to allow more trips to go outside of the CBD area. 

The number "0.65" is selected so that the amount of vehicle-trip arriving at 

CBD area will be roughly equal to that leaving the area. A uniformly dis-

tributed random number is generated and compared to the calculated prob-

abilities to determine the general direction of the trip. Given the trip direc-

tion and trip length, the model then determines the number of valid cells 

within the study area. If the number of valid cells is larger than zero, the 

final destination cell will be randomly selected among all the possible des-

tination cells. Otherwise, the model goes back to randomly generating an-

other trip direction. This process ends after a valid destination is obtained.  
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Figure 2. Trip direction choice illustration 

 

 

𝑃𝑟(𝐷𝑖) =   𝛼 ∗
𝑁𝑢𝑚𝐷𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙
+ (1 − 𝛼) ∗ 0.25        (4) 

Where, 

𝑁𝑢𝑚𝐷𝑖
, is the number of cell that falls in area 𝐷𝑖 

𝛼, is the attraction factor. 

4.2 SAV Fleet Size and Operation Rules  

The SAV fleet size is set as a selectable parameter, which determines 

the urban parking demand. Different fleet sizes from 500 up to 800 with 

increments of 50 are tested in the model. In the Fagnant and Kockelman 

(2014) model, the fleet size is determined by continuously adding more 

vehicles into the system once the client has been waiting for more than 10 

minutes in the model warming up runs. In our model, the final ideal fleet 

size is determined by the change of average waiting time in the system. 

We consider the fleet size to be optimum when additional 50 vehicles in 

the system does not significantly reduce the average waiting time through-

out the simulation day.  

All the SAVs in the system are randomly distributed in the study area at 

the beginning of the simulation day, which is similar to Burns et al. (2013) 

model. To mimic traffic congestion during peak hours, the SAV travel 

speed is set as 30 mph during off peak hours and is reduced to 21 mph dur-

ing peak hours. The SAVs are set to serve up to two overlapping vehicle 

trips generated by different agents. The average vehicle occupancy in the 
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United States is 1.55 (ORNL, 2013), thus two overlapping vehicle trips is 

likely to be generated by three persons. Assuming that all the SAVs are 

compact passenger vehicles, the SAVs may only be able to serve up to 

about two vehicle trips simultaneously. 

Moreover, we also set up vehicle cruising rules in some scenarios to fur-

ther reduce average trip delay and urban parking demand. The vehicle 

cruising algorithm is as follow. The study area is first divided into 16 (4 x 

4) square subareas. For each area, the balance value is estimated using 

Formula 5. The SAVs that have dropped off the last client but are not as-

signed to any other calling trips will cruise to neighboring areas where the 

total balance value is higher. If the SAV is already in the area with the 

highest total balance value, then it will keep cruising within the area ran-

domly to find potential clients. The SAVs will continue to cruise for sever-

al specified minutes before it eventually parks at the last cruising destina-

tion.  

 
𝐵𝑙𝑎𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒𝑖 =  𝜆𝑖 − 𝑆𝐴𝑉𝑖             (5) 

Where,  

𝑖, is the index for grid cell; 

𝜆𝑖, is the trip generation rate per minute in grid cell 𝑖; 
𝑆𝐴𝑉𝑖, is the number of SAV in grid cell 𝑖. 

In a grid based network, there exist multiple shortest routes between 

points A and B. To avoid congestion in one of the routes, the model em-

ploys several route choice algorithms under different service status of 

SAVs. For SAVs that are empty cruising or are assigned with an agent 

who is willing to share, the route with largest accumulated difference be-

tween the expected number of calling agents and the number of SAVs is 

selected. However, the SAV will only pick up the second passenger if the 

coordinate of this client falls within the blue square, determined by the ex-

isting location of the SAVs and destination of the first client as shown in 

Figure 3, to minimize total costs for both clients. 
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Figure 3. Possible Locations of the Second Client that can be Picked Up 

 

For SAVs assigned with one client agent who is unwilling to share or 

two agents who are willing to share, the route with the least total number 

of SAVs will be selected to avoid traffic, as there is no longer need to look 

for another potential sharing agent. It has to be mentioned that once an 

SAV is assigned to serve two different clients, the vehicle will optimize 

the route to deliver both agents to their destinations, i.e. the shortest route 

to get to both destinations, to reduce energy consumption. Thus, SAVs 

does not schedule route based on first come first serve principle for agents 

who are willing to share rides. All the scheduled routes will be updated at 

every time step, assuming that the SAVs are always equipped with the lat-

est traffic conditions.  

4.3 SAV-Client Match Center 

The SAV - Client match center collects requests from persons request-

ing a trip and finds an SAV that minimize the cost of providing the service 

as discussed below. The match center assigns SAVs to serve agents who 

come first. At a certain time step, calling agents, who are not assigned with 

an SAV, will be put into a waiting list. Clients in the waiting list will be 

prioritized at the next time step to be matched with an available SAV. To 

avoid the situation, in which clients from certain areas will be served first, 

the order of the agents who called at the same time will be randomized be-

fore the SAV assignment process.   
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If there are multiple vehicles available in the system, the match system 

will select the most suitable one for the calling client. To find the “ideal” 

vehicle based on client’s preference and tolerance, the following algorithm 

is implemented. First, if the calling agent is not willing to share with other 

people, then the closest empty SAV will be allocated to serve the client. If 

the calling client is willing to share with others, then the match center will 

first identify all the available vehicles in the system. For clients who are 

willing to share, SAVs that are empty and the ones, assigned to only one 

client who is also willing to share are all available vehicles. Then the 

match center will estimate costs of each available SAV for both the calling 

customer and the on board customer (if there is one). Ride-sharing only 

happens when both the on board and calling client can benefit from it. In 

other words, if the travel cost for either one of them increases due to ride-

sharing, then the sharing won’t take place and the SAV with the on board 

client is no longer considered as an available vehicle for the calling client. 

After estimating all the potential travel costs, the match center will then as-

sign the least cost SAV (with respect to the calling agent) to serve the call-

ing clients. The potential travel costs are estimated based on client’s pref-

erences, as follows: 

1) In the scenario where clients value their time highly, the cost is esti-

mated based on the potential detour time and waiting time cost. The time 

cost is estimated using the simulated client’s hourly salary.  

2) In the scenario where clients have a limited budget, the cost is the ac-

tual out-of-pocket travel cost. The SAV travel cost is estimated using trip 

mile costs based on Burns et al.’s model. Burns et al. (2013) estimated the 

SAV travel cost to be from $0.32 to a high end of $0.40 per trip mile in 

their base scenarios, which have similar simulation set ups as in this study. 

We used the higher trip cost, i.e. $0.40 per trip mile, as the SAV travel cost 

for our study. When estimating travel cost for SAVs with one client on 

board, the potential cost is going to be split between the two clients, using 

the formula as shown below.  

∀ 𝑗 ∈ 𝐽: 𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑠𝑡𝑗 = 𝑆𝐴𝑉 𝐶𝑜𝑠𝑡 ∗
𝑑𝑖𝑠𝑡𝑗

∑ 𝑑𝑖𝑠𝑡𝑖
𝐽
𝑖=1

                 (6) 

Where,  

𝑗, is the j
th
 involved vehicle-trips; 

𝐽, is the set of all involved vehicle-trips. 

𝑆𝑝𝑙𝑖𝑡 𝐶𝑜𝑠𝑡𝑗, is the share of cost should be paid by j
th
 involved vehicle-

trips; 

𝑆𝐴𝑉 𝐶𝑜𝑠𝑡, is the cost occurred after picking up the second client; 

𝑑𝑖𝑠𝑡𝑗, is the distance between the second client’s origin and the j
th 

cli-

ent’s destination. 
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3) In scenario, where client is concerned about both time and out of 

pocket costs, then the cost will be estimated as the sum of both costs. Simi-

lar to the above scenarios, the potential SAV travel cost will be split be-

tween the two agents who share rides. 

If multiple SAVs have the lowest estimated cost, the ones with one cli-

ent on board will be prioritized to promote dynamic ride-sharing behavior 

in the system. Otherwise, the match model randomly selects one of the 

lowest cost vehicles to serve the client.  

5. RESULTS 

We ran the model for 50 simulation days to obtain stable results to de-

termine how the system may influence urban parking demand. Various 

scenarios are developed to determine how different attributes of the SAV 

system may affect urban parking demand. To obtain a baseline, we first 

test a scenario with no-ridesharing and no-vehicle cruising to assess how 

different SAV fleet sizes may influence urban parking demand. We then 

introduce ride-sharing to check how clients’ level of willingness to share 

influences the parking demand. In this scenario, clients’ preferences for 

different types of SAVs are also tested. In the final scenario SAVs are al-

lowed to cruise without passengers for specified amount of time to deter-

mine how this strategy may further reduce urban parking demand.  

5.1 Impact of SAV Fleet Size on Urban Parking Demand 

In this scenario, no ride-sharing service is offered by the SAV system. 

Different SAV fleet sizes are tested to determine how parking demand 

changes with the number of SAVs in the system. The result, as tabulated in 

Table 1, indicates that the total daily parking demand is positively corre-

lated with SAV fleet size. The standard deviations are presented in the 

brackets. The results show that adding another 50 vehicles into the system 

is likely to increase the urban parking demand by approximately 150 and 

the increase is quite constant. However, the day-to-day standard deviations 

tend to diminish when there are more vehicles in the system, indicating 

that the system is more stable or reliant overall.  Meanwhile, after adding 

more vehicles in the system, the average daily parking demand per serving 

SAV will decrease, as shown in Table 1. 

As we might expect, the average wait times for SAVs improve signifi-

cantly with more vehicles in the system but the gains become smaller as 
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the numbers get larger (The last column in Table 1). For instance, when 

there are only 500 SAVs in the system, the clients, on average, have to 

wait approximately 14 minutes to be served.  This waiting time is even 

larger than some current bus systems. In reality, if the clients have to wait 

longer than taking a bus, then most of them may choose to keep their own 

private vehicles or use the transit system instead. Additionally, the varia-

tion in results for repeated model runs for the 500-SAV scenario is quite 

large compared with other scenarios, indicating that the system is not sta-

ble. Therefore, it is not realistic to use 500 SAVs to serve the simulated 

population.  

Based on the results in Table 1, the average waiting time diminishes 

when more SAVs are added into the system. However, the reduction in av-

erage waiting time per added SAV decreases dramatically from 7.32 to 

0.12 seconds. When there are more than 700 vehicles in the system the re-

duction in average waiting time is smaller than one second per added SAV. 

This indicates that the efficiency of adding SAVs to reduce expected wait-

ing time become really low once there are 700 vehicles in the system. 

Therefore, it takes about 7 SAVs to serve 100 client agents. 

 
Table 1. Daily Parking Demand by SAV Fleet Size 

 
 

 

The simulation results also indicate that the parking demand is higher in 

the center of the simulated area, as shown in Figure 4. Additionally, the 

larger the fleet size of the system, the larger the demand gap between the 

urban center and urban fringe area. This is attributed to the fact that we as-

sumed that the trips have the tendency to end in the central area before 

noon. Thus, based on this simulation result, the parking demand may con-

centrate in the areas where a large amount of trips are attracted to, if no 

operation strategy is implemented to ask vehicles to reallocate themselves. 
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Figure 4. Spatial Distribution of Parking Demand by SAV Fleet Size 

Studies have shown that dynamic ride-sharing service is expected to be 

more affordable and environmentally friendly compared to non-ridesharing 

systems (Noland et al. 2006; Chan and Shaheen, 2011). Thus, we continue 

to explore whether introducing dynamic ride-sharing can help further re-

duce the fleet size and parking demand while maintaining the level of ser-

vice for the SAV system. The results are elaborated in the following sec-

tion. 

  

5.2 Impact of Ride-sharing and Client’s Preference on Urban 
Parking Demand 

In the ride-sharing scenario, we first explore how the level of willing-

ness to share (i.e. the percentage of population who are willing to share 

rides with strangers) may affect the total daily parking demand and service 

quality of the SAV system. Scenarios with different level of willingness to 

share from 25% to 100% with increments of 25% are tested. We start with 

the assumption that all clients value their time the most. Each client will be 

assigned with an SAV with the least wasted time cost to accommodate 

their service preference.  

The results of above scenarios, as illustrated in Figure 5, indicate that 

the total daily parking demand is not sensitive to the level of willingness to 

share. The error bars in the chart represent day-to-day standard deviations. 

T-tests are conducted between results based on various level of willingness 

to share and the test results indicate that the difference between various 

trend lines are not statistically significant. Such outcome is heavily influ-

enced by the fact that we always assign the SAVs with the least potential 
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time cost to each customer. In other words, the client-SAV match center 

may always prioritize an empty SAV for each client to avoid additional de-

tour time costs. Therefore, even if people are willing to share, limited 

number of trips are linked together given the least travel time cost assign-

ment method. Under this scenario, less than 10% of all the generated vehi-

cle trips are actually linked trips across all level of willingness to share and 

SAV fleet sizes. The percentage of linked trips reduces from 9.7% to 6.3% 

when the fleet size increases from 500 to 800 SAVs, as there are even less 

motivations to share rides when there are more than sufficient number of 

SAVs in the system. 

 

 
Figure 5. Total Parking Demand after Ridesharing (Assign least time cost SAV to serve 

each client) 

However, considering the needs of different clients in actual circum-

stances, assigning SAV with least time cost may not always be an ideal 

way to assign vehicles. For instance, least wasted time cost based vehicle 

assignment method may not be appealing for people who have a con-

strained budget. For this type of clients, the most desirable assignment al-

gorithm is matching them with the least out of pocket cost SAV via max-

imizing the shared miles. The waiting and detour time costs are ignored in 

such assignment algorithm. Meanwhile, for a majority of the population 

the ideal SAV may be the one that can minimize the total SAV cost (i.e. 

the combination of time and travel cost). In this study, we also explored 

how the above two types of client-preferences-based vehicle assignment 

methods may affect the daily parking demand.  

The results for the least travel cost and least total cost scenarios are plot-

ted in Figure 6. In the least travel cost SAV assignment scenario, the total 

daily parking demand is highly sensitive to the level of willingness to 

share. The more people who are willing to share, the less parking demand 
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will be needed. It is also noticed that the reduction increases significantly 

when more than 50% of the population are willing to share. This suggests 

that to implement the dynamic ride-sharing SAV system, a critical mass of 

population is required to magnify the benefits offered by the system.  

The results from least total cost scenario generally fall between the re-

sults from least travel cost and least time cost scenarios. The results indi-

cate that the parking demand will decrease when the level of willingness to 

share become higher. However, the reduction is not as significant as that in 

the least travel cost scenario. In this model, the reduction in parking de-

mand is closely associated with how much people value their time. Thus, 

the small reduction in parking demand after ridesharing is due to the fact 

that people value their time based on their hourly salary. However, if the 

perceived time cost of travel is less than the hourly salary, then more re-

duction in parking demand can be expected in this scenario. However, the 

most reduction is not going to be larger than the least travel cost scenario. 

Assuming that the least total cost assignment method is acceptable for 

most clients, we adopt that vehicle-client match method in the scenarios 

where ridesharing service is provided. 

 

 
Figure 6. Total Daily Parking Demand by SAV Fleet Size for Least Travel Cost As-

signment (Left) and Least Total Cost Assignment (Right) Scenarios.  

The spatial distribution of the demand for parking with 700 SAVs with 

various levels of willingness to share and where everybody prefers the 

least total cost SAV system, is shown in Figure 7. As seen in this figure, 

the most significant reduction of parking demand occurs in the urban 

fringe area once people start to share rides with others. Also notable from 

the figure is that even with reduction in the overall parking demand, the 

parking demand in the center of the simulated area remains higher than the 

rest of the study area. 
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Figure 7. Spatial distribution of parking demand by different level of willingness to 

share 

Finally, we compared the service quality of the dynamic ridesharing 

system with the non-ridesharing system and the results are illustrated in 

Figure 8. The average waiting time for all trips seem to improve dramati-

cally with ridesharing especially when there are less than 700 SAVs in the 

system. The results are expected, as in the no-ridesharing scenario a client 

has to wait for the next empty vehicle. However, in the ride-sharing sce-

nario, the waiting time can be significantly reduced since the client is will-

ing to avail of an SAV assigned to another agent who is also willing to 

share. Thus, ride sharers can expect shorter wait times during the peak 

hours than other riders who want the SAV to themselves.  

Controlling for the number of vehicles in the system, the average      de-

tour time for shared rides decreases with increasing levels of willingness to 

share. This can be predicted since higher rates of participation in dynamic 

ridesharing service improves the possibility of finding a better match for 

shared rides. However, the average detour time declines more slowly when 

more people start to share rides. The most significant reduction is found 

between 25% willingness to share and 50% willingness to share scenarios. 

In addition, it is observed that when there are more than sufficient number 

of vehicles in the system, the benefit of ridesharing disappears. This result 

can be observed in the scenario when there are more than 750 SAVs in the 

system. In this case, both average waiting time and detour time change in-

significantly for different levels of willingness to share. Thus, the fleet size 
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should be carefully considered when designing an SAV system to encour-

age ride-sharing behavior. 

 
 

Figure 8. Average Waiting and Detour Time by SAV Fleet Size. 

The simulation results also suggest that less SAVs will be required to 

serve the participating clients if they are willing to share. For instance, if 

100% of the simulated vehicle-trips are shared and we want to constrain 

the average waiting and detour time to approximately 2 minutes, then 600 

SAVs will be quite sufficient to serve the population. However, this level 

of willingness to share will be difficult, if not impossible, to achieve in the 

near future. Therefore, we select 50% of population as willing to share and 

650 vehicles as the default setting for further scenario development. Under 

this setting, the average total delay time is 2.36 minutes, which is only 

around half a minute longer than the average waiting time in the 700-SAV 

& No-sharing Scenario. However, the ridesharing system is able to reduce 

the SAV fleet size by 7% from 700 to 650. 

5.3 Impact of Vehicle Cruising on Urban Parking Demand 

In this study, we also considered the possibility of using empty vehicle 

cruising strategy to further reduce the parking demand and improve the 

service quality. In this scenario, the SAVs will continue relocating them-

selves to places where the anticipated number of clients is high while the 

existing number of SAVs is low. Different empty cruising time threshold 

is set between 5 minutes and 30 minutes to determine the relationship be-

tween parking demand and empty cruising time.  

The results, as shown in Table 2, suggest that longer the empty cruising 

time allowed in the system, lower the parking demand. It is reasonable to 

expect this result since the SAVs that cruise forever will not need any 
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parking. We also notice that parking demand falls more slowly as empty 

cruising time increases. The parking demand is reduced by more than 10% 

when the initial 5-minute cruising is introduced. The reduction rate falls to 

approximately 4% when the cruising time increases from 20 to 30 minutes.  

 
Table 2. Daily Parking Demand and VMT Generation by Empty Cruising Time 

(650 SAV, 50% willing to share) 

 

It is also important to note that the parking reduction from cruising 

comes at a cost. The total daily VMT of the system will increase signifi-

cantly as shown in Table 2. Thus, life cycle energy consumption and GHG 

emissions analysis should be performed to understand the full cost and 

benefit of the empty vehicle cruising strategy. 

It is also interesting to note that the spatial distribution of parking de-

mand changes significantly once the SAVs start to empty cruise, as illus-

trated in Figure 9. The parking demand tends to be more evenly distributed 

throughout the study area, the longer the vehicle cruise. This can be at-

tributed to the fact that the vehicle empty cruising process is, to some ex-

tent, similar to the vehicle reallocating process, which renders vehicles to 

be more evenly distributed within the region. The cruising strategy pro-

vides a means for distributing parking to lower cost areas within the city, 

instead of concentrating in the higher cost central areas. 

Empty Cruising Time 
Daily Parking Demand  

[Std. Dev.] 

Avg. Waiting Time  

[Std. Dev.] 

Avg. Daily VMT  

[Std. Dev.] 

No Cruising 3346  [36.2] 2.36  [0.32] 210885  [1154] 

5-min Cruising 2972  [32.4] 2.13  [0.31] 243150  [1718] 

10-min Cruising 2676  [26.8] 1.83  [0.24] 270523  [1437] 

15-min Cruising 2460  [17.2] 1.81  [0.24] 291361  [1882] 

20-min Cruising 2296  [22.4] 1.76  [0.23] 313149  [1647] 

30-min Cruising 2063  [20.4] 1.72  [0.22] 342976  [2092] 
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Figure 9. Parking Demand Spatial Distribution by Vehicle Empty Cruising Time 

5.4 Simulation Results Summary 

The simulated results are further compared with the business as usual 

(BAU) parking demand scenario. We assume that without the SAV sys-

tem, the 10,000 simulated clients are most likely to own their own private 

vehicles. The 2009 NHTS data show that the average vehicle ownership 

per licensed driver is 0.99. Therefore, there will be a need for 9900 private 

vehicles. Thus based on our model result, one SAV will be able to replace 

around 14 privately owned vehicles, or even more when the level of will-

ingness to share is higher. Shoup (2005)’s study indicates that under urban 

context 3-4 parking lots will be needed for each private vehicle. Chester et 

al. (2010) estimate the ratio of parking space per private car to be around 

3.3. The estimated parking spaces includes all the paid parking, commer-

cial parking, home space, work space, and on-street parking. Chester et al. 

(2010) also employed a rule-of-thumb 8-1 space per car ratio, which in-

cludes both designated and non-designated parking spaces. In this study, 

the business as usual parking demand is estimated using space per car ratio 

from 3.0 to 8.0. Based on the simulation results, approximately 90% of 

parking demand for the participating clients can be reduced once the SAV 

system is implemented.  Additionally, adding the ridesharing service into 

the system may further reduce the parking demand by one percentage point 

and adding 5-min cruising operation rule into the system may further re-

duce parking demand by another one to two percentage points. The estima-

tion results are tabulated in Table 3. 
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Table 3. Simulation Results vs. BAU Parking Demand 

 

In sum, the SAV system can help eliminate a significant amount for 

parking demand and the benefits of such extensive reductions in parking 

are significant. The parking lots are often aesthetically unpleasant and their 

elimination can result in improving walkability and attractiveness of the 

area. The decrease in parking space requirement may also contribute to al-

leviating the urban heat island effect if the impervious surfaces are trans-

formed by introducing natural vegetation. In addition, a significant amount 

of built up space can be reclaimed for other uses in central cities where de-

veloped space is at a premium. Therefore, adoption of SAVs can offer 

multiple opportunities for planning aesthetically pleasing, healthy, and sus-

tainable urban environments in the heart of the city.  

6. MODEL VERIFICATION 

To verify that the simulation model is programmed without logical er-

rors, we traced the behavior of SAVs in our model and one scenario is ran-

domly selected to be visualized. The arrows in Figure 10 indicate the gen-

eral movement of the selected vehicles every 5 minutes.  The behaviors of 

all simulated SAVs seem reasonable, indicating that the simulation model 

is logically consistent and correctly programmed.  
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Figure 10. SAV Tracing Example (from 3:00pm to 7:30pm, end of evening peak) 

We also tested the sensitivity of the model to determine whether the 

change of parameters in the model leads to reasonable changes in the cor-

responding model outputs. We have already analyzed the change of aver-

age waiting time and daily parking demand, given different SAV fleet siz-

es, levels of willingness to share, and empty cruising times. Here, we 

highlight other SAV system performance indicators, such as the number of 

shared trips, average travel cost (for ride-sharing scenarios), VMT genera-

tion, system delay, and vehicle utilizations.  

Table 4 shows the different system performance indicators across fleet 

size. The results suggest that the indicators for system service quality, such 

the percentage of trips delayed by more than 5 minutes and peak hour 

waiting time, are improved dramatically when the fleet size becomes larg-

er. Additionally, the wasted VMT during pick up process tends to drop 

when there are more SAVs in the system as anticipated. The occupied 

VMT doesn’t change across different scenarios, as we fixed the random 

number seed in each model run to control the variations in random number 

generation. By fixing the random seed for each run we can ensure that the 

variations in system performances are only associated with the changes in 

fleet size. 

 
Table 4. SAV System performance indicators by Fleet Size 

 
The system performance indicators for different levels of willing-

ness to share are displayed in Table 5. As expected, the percentage 
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of trips delayed by more than five minutes declines with the increase 

in people’s willingness to share. The reduction is most significant 

during the peak hours, as the results show the rush hour average 

waiting time is reduced from 10.2 minutes to approximately 3.0 

minutes. This is expected as the ridesharing service actually increase 

the service capacity of the system by improving the utilization of 

available seat capacity. We also observe an increase in shared VMT 

and number of shared rides when more people agree to share vehi-

cles.  Furthermore, we find better matches of trips when more people 

choose to share rides, which is reflected in the decline in detour time 

and trip costs. Finally, we notice that less pickup VMT is generated 

when ridesharing is introduced into the system. This is due to the 

fact that SAVs pick up the second client while serving the first client 

for the shared rides. 
 

Table 5. SAV System performance indicators by Level of Willingness to share 

(650 SAV in the system and Clients prefer least total travel cost) 

 
To verify the cruising scenario, we estimated the percentage of trips de-

layed by more than 5 minutes, cruising VMT, and pickup VMT, as tabu-

lated in Table 6. The results indicate that the system service quality can be 

improved slightly by allowing vehicles to navigate to areas where the de-

mand outstrips supply, as the percentage of trips delayed by more than 5 

minutes tends to decline with the increase of empty vehicle threshold. We 

observe that the system generates more VMT during the cruising process, 

as we anticipated. The results show that the increase of cruising VMT is 

not proportional to the increase of allowed cruising time, as when longer 

cruising period is allowed, the probability of SAVs being reassigned to a 

new client becomes higher, rendering a decrease in VMT growth. The 

pickup VMT declines slightly, as the vehicles continue to allocate them-

selves to meet potential demands. However, the decline in pickup VMT is 

rather small compared to the growth of cruising VMT. Thus, the system 

generates more VMT overall.  
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Table 6. SAV System performance indicators by Empty Cruising Time Threshold 

(650 SAVs, 50% willing to share) 

 
Finally, we also compared our model outputs with Burns et al. (2012) 

and Fagnant and Kockelman’s (2014) results to examine the reasonable-

ness of our results. Since these studies do not involve ride-sharing, we only 

compared no-ridesharing model results. To make the results comparable, 

we selected scenarios with similar fleet size and trip generation ratios. Fig-

ure 11 summarizes the average waiting time of different scenarios from 

different studies. The results indicates that the average waiting time from 

this study is quite reasonable compared with other studies. The average 

waiting time from Burns et al. (2012)’s study is slightly higher than ours. 

Such discrepancy can be attributed to the fact that their model used an av-

erage speed of 20 mph, while our simulation assumed an average speed of 

30 mph during off-peak hour and 21 mph during peak hour. Fagnant and 

Kockelman (2014)’s model has smaller average waiting time, as their 

SAVs continuously reallocate themselves. Our simulation model also gen-

erates smaller average waiting time, once the vehicle empty cruising strat-

egy is implemented in the model. In sum, our model output is quite rea-

sonable compared with existing SAV simulation studies.  

 
Figure 11. Comparison of Average Waiting Time 

Cruising Time % trips delayed by 5+ minutes 
VMT (in thousands) 

Cruising  Pickup 

0 12.2%  [0.034] - 13.7  [0.5] 

5 9.4%  [0.031] 29.5  [1.01] 13.5  [1.7] 

10 7.2%  [0.025] 59.3  [1.33] 12.4  [1.4] 

15 6.6%  [0.026] 81.2  [1.70] 11.7  [1.8] 

20 6.3%  [0.029] 99.3  [2.13] 11.2  [1.5] 

30 5.8%  [0.024] 121.5  [2.20] 11.0  [1.8] 
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7. MODEL LIMITATIONS 

Although our simulation model add more understanding of how SAV 

system may influence future urban parking demand, the proposed SAV 

model can still be further improved from several perspectives. First of all, 

parking price should be incorporated into the model framework. The SAVs 

doesn't necessary need to park at the destination and can navigate to 

cheaper parking lots in more remote areas. The behavior will be primarily 

determined by the relationship between gas and parking prices. Second, 

the model can be improved if the real world network and travel behavior 

patterns can be applied in the model. Currently, most of the model inputs 

are normalized national level data and the simulated participating clients 

have homogeneous socio-economic characteristics throughout the study 

area. Additionally, although the speed of SAV is different during peak and 

off peak hours, the link level speed doesn’t vary within the study area. If 

congestion is considered in the model, then central urban residents may 

expect more waiting delays. Finally, the model also assumed that people 

with different socio-economic characteristics are equally willing to share 

rides with strangers, which may not be the case in real life. Thus future 

work should be conducted to integrate all the above important factors into 

the simulation model. Moreover, authors seek to make further efforts to 

investigate how we shall utilize the emancipated parking spaces wisely to 

achieve smart growth in the future.  

8. CONCLUSIONS 

In this study, SAV parking demand simulation model is developed to 

evaluate the potential impact of SAVs on urban parking demand. Com-

pared to existing SAV simulation models, this model have the following 

improvements. First, in the dynamic ride-sharing model two agents can be 

served together by one SAV based on client’s preference and tolerance 

level. Second, different vehicle assignment methods were tested based on 

client’s preference of serving SAVs to explore different performance of 

the system. Finally, empty vehicle cruising strategy was incorporated in 

the model to determine how many parking spaces can be further reduced. 

The no-ride sharing model simulation result shows that the parking de-

mand is sensitive to the number of SAVs in the system. To reduce the 

parking demand, we may reduce the number of SAVs within the system. 

However, the total number of serving vehicles cannot be too small, other-

wise it will deteriorate the service quality of the system. For the simulated 
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hypothetical grid-based city, at least 700 vehicles will be needed to main-

tain the average waiting time at approximately 2 minutes.  

The ride-sharing model results indicate that parking demand sometimes 

will be sensitive to the level of willingness to share rides, depends heavily 

on how the system assign the SAVs to serve the calling clients. If the least 

time cost assignment method is used, then the parking demand will only be 

sensitive to the number of vehicles in the system. If the least travel cost as-

signment method is implemented, then higher level of willingness to share 

will also help to reduce the parking demand in a significant manner. The 

total least cost assignment method seems to be the most reasonable. Using 

the least cost assignment method, the SAV system can operate with 50 less 

SAVs in the system compared with no-ride sharing system, while maintain 

the average waiting and detour time to around 2 minutes.  

The vehicle empty cruising model results suggest that we may further 

reduce parking demand by sacrificing VMT. However, the marginal reduc-

tion rate of sacrificing VMT diminishes when the threshold of empty cruis-

ing increase. Finally, by comparing all the above parking demand simula-

tion results with the estimated business as usual parking demand, we 

noticed that up to 90% of parking demand for the simulated households 

can be eliminated if we put 700 SAVs in the system. Once those urban 

parking spaces are no longer in need, more sustainable designs, such as 

more green, open, and human oriented space can be introduced. Planners 

and local decision makers may seize this opportunity to guide the city to 

develop in a more sustainable way. 

CUPUM 2015
Exploring the Impact of Shared Autonomous Vehicles … 

205-27



REFERENCES 

Agatz, N. A., Erera, A. L., Savelsbergh, M. W., & Wang, X. (2011). Dy-

namic ride-sharing: A simulation study in metro Atlanta. Transportation 

Research Part B: Methodological, 45(9), 1450-1464. 

 

Burns, L. D., Jordan, W. C., & Scarborough, B. A. (2013). Transforming 

personal mobility. The Earth Institute. 

 

Chan, N. D., & Shaheen, S. A. (2012). Ridesharing in north america: Past, 

present, and future. Transport Reviews, 32(1), 93-112. 

 

Chester, M., Horvath, A., & Madanat, S. (2010). Parking infrastructure: 

energy, emissions, and automobile life-cycle environmental accounting. 

Environmental Research Letters, 5(3), 034001. 

 

Fagnant, D., & Kockelman, K. (2013). Preparing a Nation for Autonomous 

Vehicles: Opportunities, Barriers and Policy Recommendations. Eno Cen-

ter for Transportation. October.  

 

Fagnant, D. J., & Kockelman, K. M. (2014). The travel and environmental 

implications of shared autonomous vehicles, using agent-based model sce-

narios. Transportation Research Part C: Emerging Technologies, 40, 1-13. 

 

Fagnant, D. J., Kockelman, K. M., & Bansal, P. (2015). Operations of a 

Shared Autonomous Vehicle Fleet: for the Austin, Texas Market 2. Trans-

portation Research, 26.  

 

Fagnant, D. J., & Kockelman, K. M. (2015). Dynamic Ride-Sharing and 

Optimal Fleet Sizing for a System of Shared Autonomous Vehicles. 

Transportation Research, 20.  

 

Ford, H. J. (2012). Shared Autonomous Taxis: Implementing an Efficient 

Alternative to Automobile Dependency (Doctoral dissertation, Princeton 

University). 

 

CUPUM 2015
Zhang, Guhathakurta, Fang & Zhang 

205-28



Hayes, B. (2011). Leave the Driving to it. American Scientist, 99, 362-366. 

Kornhauser, A., Chang, A., Clark, C., Gao, J., Korac, D., Lebowitz, B., & 

Swoboda, A. (2013). Uncongested Mobility for All: New Jersey's Area-

Wide aTaxi System. Princeton University. Princeton, New Jersey 

 

Malokin, A., Mokhtarian, P. L. and Circella, G. (2015) “How Do Activi-

ties Conducted while Commuting Influence Mode Choice? Testing Transit 

-Advantage and Autonomous - Vehicle Scenarios”, to be submitted to 

Transportation Research Part A. Presented at 2015 TRB Conference 

Martinez, L. M., Correia, G., & Viegas, J. (2012). An agent-based model 

to assess the impacts of introducing a shared-taxi system in lisbon (portu-

gal). In Proceedings of the 7th International Workshop on Agents in Traf-

fic and Transportation. 

 

Noland, R. B., Cowart, W. A., & Fulton, L. M. (2006). Travel demand pol-

icies for saving oil during a supply emergency. Energy Policy, 34(17), 

2994-3005. 

 

Oak Ridge National Laboratory, United States. Dept. of Energy. Office of 

Vehicle, Engine Research, & United States. Dept. of Energy. Office of 

Transportation Systems. (2012). Transportation energy data book (Edition 

32). 

 

Shoup, D. C. (2005). The high cost of free parking (Vol. 206). Chicago: 

Planners Press. 

The Economist (2013). Look, no hands. April 20 issue. 

U.S. Department of Transportation, Federal Highway Administration 

(2009). National Household Travel Survey. URL: http://nhts.ornl.gov. 

U.S. Census Bureau (2012). Household Density by Distance to CBD. 

Washington, D.C.: Government Printing Office, Retrieved from 

http://www.census.gov/data/2012 

 

CUPUM 2015
Exploring the Impact of Shared Autonomous Vehicles … 

205-29




