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Abstract 
Gentrification is a dynamic, globalized urban process whose complex 
definition varies with stakeholder perspectives. This complexity makes it 
challenging for researchers to study the impact of gentrification, and 
difficult for planners to anticipate the effects of gentrification with 
planning policy. This paper proposes to model gentrification as a Markov 
process, i.e. a process that assigns probabilities to potential “state” changes 
over time (Rabiner, 1989). Using American Community Survey (ACS) 
data for four boroughs of New York City between 2009 and 2013 
(including demographic, economic, geographic, and physical 
characteristics of census block groups), we develop our model in three 
steps: 1) clustering census block groups into states defined by ACS 
socioeconomic and demographic data, 2) deriving a Markov model by 
tracking transitions between states over time, and 3) validating the model 
by testing predictions against historic data and comparing them with 
qualitative documentation. 

_______________________________________________________ 
E. Royall (Corresponding Author) 
Department of Urban Studies and Planning, Massachusetts Institute of 
Technology, Cambridge, MA 02139  
Email: eroyall@mit.edu 
 
T. Wortmann 
Architecture and Sustainable Design, Singapore University of Technology 
and Design, 487372 Singapore 
Email: thomas_wortmann@mymail.sutd.edu.sg 

CUPUM 2015 275-Paper



 
 
  

   
1. Introduction 

Gentrification is a dynamic, globalized urban process whose complex 
and much debated definition varies with stakeholder perspectives. This 
complexity makes it challenging for researchers to study the impact of 
gentrification, and difficult for planners to anticipate the effects of 
neighborhood change with planning policy. 

The definition of gentrification is widely disputed in both academic and 
media circles. Since the term’s introduction by Ruth Glass in the 1960s, 
gentrification has been characterized as both a cause and a symptom of 
social injustice. Seminal views have characterized gentrification as urban 
re-investment resulting in displacement of the poor (Lees et al., 2009), a 
consequence of the transition to post-industrial cities (Lees, 2008), a 
generalized global urban strategy replacing liberal urban policy in an 
increasingly capitalistic society (Smith, 2002), and a symptom of regional 
economic or demographic change (Clay, 1989). Varying academic 
interpretations of, and professional experiences with gentrification make 
quantitative analysis of this social process a difficult endeavor. Recent 
quantitative studies disagree on how to characterize gentrification as a 
spatial, temporal or socio-economic process. However, throughout the 
literature, gentrification is described as a process of socioeconomic and 
demographic change in urban areas. 

This research proposes a quantitative methodology that identifies 
neighborhood-level, temporal patterns of socioeconomic and demographic 
change. Our method identifies patterns or “states” of social and economic 
conditions in neighborhoods, and tracks how these states change over time. 
Using k-means clustering to identify common socio-economic “states” 
through which urban areas transition over time, we represent neighborhood 
change as a probabilistic process of state transformations over time, i.e. a 
Markov process (Rabiner, 1989). Using American Community Survey 
(ACS) data for four counties in New York (Bronx, Queens, Kings and 
New York) between 2009 and 2013 (including demographic, economic, 
geographic, and physical characteristics of census block groups), we create 
a Markov model in three steps: 1) clustering census block groups into 
“states” defined by ACS socioeconomic and demographic data, 2) deriving 
a Markov model by tracking transitions between “states” over time, and 3) 
validating the model by generating predictions for un-tested data and 
comparing them against qualitative documentation of neighborhood 
change. 
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2. Concepts and Causes of Gentrification 

2.1 Gentrification as a Complex Process 

The dynamic relationships that characterize gentrification call for a 
mode of scientific inquiry that recognizes and engages their complexity. 
Concepts of gentrification vary depending on their political contexts. 
However, regardless of the political environments, gentrification is usually 
described as a temporal process. We understand a process as a series of 
actions or operations that result in a particular outcome. Certainly, the 
“particular outcome” most often associated with the gentrification process 
is displacement. Glass (1964) observed gentrification primarily as 
displacement of the lower class, citing that “once this process of 
‘gentrification’ starts in a district, it goes on rapidly until all or most of the 
original working-class occupiers are displaced”. Lees (2008) characterizes 
gentrification as a self-organized urban reinvestment process that uniquely 
results in the displacement of the lower class. However, following a recent 
report “Gentrification in America” from Governing Magazine (Maciag, 
2015), pundits assert that gentrification might not be characterized by 
displacement at all. City Observer’s Joe Cortright (2015) suggests that the 
tendency of higher-income families to isolate themselves in suburbs and 
gated communities creates pockets of spatial income segregation that are 
not necessarily a consequence of gentrification. Alternative views see 
gentrification as residential ethnicization (Hwang et. al (2014) and 
landscape aestheticization (Bryson, 2013). In European contexts, 
gentrification is sometimes viewed as a socio-economic process that can 
be proactively harnessed for urban revitalization (Oswalt, 2013). 

2.2 Modeling Gentrification 

Gentrification remains difficult to model quantitatively, in part due to its 
wider political, social and cultural aspects (O’Sullivan, 2002), although 
multi-agent systems (MAS) and cellular automata (CA) models are 
commonplace in several areas of urban systems modeling (Torrens, 2006). 
CAs map agents onto a grid and model state changes in time relative to a 
set of rules based on the states of neighboring cells. MAS modeling and 
simulation attempt to model the complex interactions of individual agents 
in relation to each other and environmental conditions. Both MAS and CA 
models attempt to describe system-wide behaviors based on pre-defined 
relationships between actors and environmental features of a system. 
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In part, the appeal of CA and MAS models is their ambition to capture 

complex inter-relationships between agents and their environments, which 
is an evident characteristic of gentrification (see section 1). O’Sullivan 
(2002) demonstrates a spatial CA model of gentrification based on 
individual decision-making. Here, cells are characterized by abstract states 
such as “Not for Sale”, “For Sale”, “Seeking Tenants” and “Rented.” 
Depending on the conditions of neighboring cells, cells transition between 
states according to a set of pre-defined rules. Underlying this model is the 
Rent Gap theory, which describes dynamic interactions between 
residential home value and capitalized ground rent for a property over time 
(Smith, 1979). Similarly, Torrens and Atushi (2006) propose a hybrid 
CA/MAS approach, using dynamic property markets as a theoretical basis 
for their models. These models emphasize spatial effects of agent-based 
decision-making, reflecting the common practice among developers and 
real-estate agents to determine property value based on location. 

In contrast to the spatial, rule-based models described above, we 
propose a data-driven model of gentrification as a probabilistic process in 
time. Two factors support this modeling choice. First, the lack of 
consensus regarding the outcomes of gentrification (displacement, 
environmental change, social reorganization or property valuation 
changes) suggests that less emphasis should be placed on the result of the 
modeling or simulation process. This definitional uncertainty makes agent-
based modeling, where interactions are pre-defined to achieve desired 
effects, less applicable to the modeling of gentrification. Second, the view 
that gentrification is a temporal process and not a static condition demands 
the modeling of a process in time, which is a powerful feature of the 
Markov Model described in section 3.3. 

3. Materials and Methods 

In the following sections, we describe the three steps of our analysis: 1) 
The procurement and preparation of socio-economic data at a census block 
group level and over four time-periods (for the four counties of Bronx, 
Kings, New York, and Queens), 2) the clustering of these block groups 
into states (separately for each county), and 3) the derivation of four 
Markov models by tracking transitions between states over time for each 
county. 
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3.1 Procuring and Preparing ACS Data 

We obtained five-year estimates from the American Community Survey 
(ACS) between 2005 and 2013 via socialexplorer.com, a common data 
resource for Census and ACS data in the United States. We selected five-
year estimates because they are the most fine-grained analysis available 
from ACS, providing data at the level of census block groups. Four 
counties were selected for our analysis at the block group level: Bronx, 
Kings, New York, and Queens. These counties were chosen due to their 
spatial proximity, data set size, and consistency in data sampling across the 
region. The final data set consisted of 29.058 observations (i.e. census 
block group five-year estimates) per region (see Table 1), characterized by 
32 distinct fields. 

Table 1. Number of census block groups 5-year estimates per county and year 

County Total 2009 2010 2011 2012 2013 

Bronx 5400 925 1116 1119 1121 1119 

Kings 10182 2031 2037 2038 2038 2038 

New York 5164 854 1076 1078 1078 1078 

Queens 8312 1571 1685 1685 1685 1686 

Total 29058 5381 5914 5920 5922 5921 
 

3.1.1 Advantages and Limitations of American Community Survey 
(ACS) Data 

The primary advantages of ACS data are its accessibility and the 
availability of data at the census block group-level. This fine-grained 
sampling allows a higher resolution for models that is appropriate for 
processes like gentrification, which are often visible at the neighborhood 
scale. Additionally, the variety and amount of data available through ACS 
is appropriate for the clustering technique proposed here.  

There are notable limitations of the ACS data. First, ACS only provides 
five-year, multi-year estimates at the census block group level. Five-year 
estimates are updated annually by removing the earliest year of the 
estimate and replacing it with the latest one (US Census Bureau, 2008). 
For example, following collection of data for 2013, data estimates from 
2007 will be dropped to create a 2008-2013 estimate. Therefore, multi-
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year estimates represent a period, rather than a specific year, and estimates 
overlap across periods. This overlap is a significant limitation for our 
model, as the overlapping estimates might significantly underestimate 
short-term variations occurring in vivo. For our model, single-year 
estimates at the census block group level would be more ideal, since we 
aim to capture time-series variation in data. Additionally, the ACS data 
collection process is relatively new, having started only in 2006 and the 
five-year estimates beginning as late as 2009. Consequently, there are 
inconsistencies in earlier five-year estimates across regions; some fields 
are missing or unavailable and other fields were collected under varying 
conditions. Specifically, our data includes estimates made after the 2008 
financial crisis and may not be representative of typical trends or patterns 
occurring under normal economic conditions. Finally, the period of the 
data is relatively short, encompassing only five years between 2009 and 
2013, obscuring long term patterns and trends. 

3.1.2 Pre-processing the ACS Data 

Before submitting the data to the clustering algorithm, we took several 
steps to increase its suitability for clustering. To increase the speed, 
quality, and intelligibility of the clustering, we turned 108 fields from the 
ACS data into 32 features that captured a broad picture of urban 
development in a more compact fashion. Census block groups without 
population were discarded, assuming that uninhabited areas such as 
industrial compounds and natural reserves display patterns of development 
that are different from those of inhabited and urbanized areas. 

The pre-preprocessing steps of the fields involved converting some of 
the fields into percentages, consolidating several fields into a single 
feature, and calculating a weighted average from several other fields. We 
took four features directly from the ACS data (total population, number of 
households, number of housing units, and the median year of structures 
built). 

To convert fields into percentages, we divided the value of more 
specific fields, such as the number of vacant housing units, by an 
appropriate more general value, in this case the number of all housing 
units. Such percentages are more suitable for clustering since they allow a 
better comparison of relative values. We included absolute values, for 
example the total number of housing units, as separate features. Other 
fields denoting specific categories or brackets were summed together, and 
the result converted into a percentage. For example, we simplified the 
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sixteen categories of household income into five features (based on the 
definition of middle class by Thompson and Hickey, 2004). In the same 
manner, we summed and converted 23 fields into 18 additional features. 

Five other fields were consolidated by converting brackets or categories 
into a weighted average. For this calculation, we assumed a hypothetical 
average value for each age bracket as the mean value of the bounds of the 
bracket, and calculated an overall, weighted average based on the brackets’ 
sizes. For example, we assumed that the average age of the men in the 18 
to 24 year age bracket is 21.5 (since the next bracket starts at 25) and 
included this value in the overall average, weighted according to the 
number of men in this age bracket. This method was also used to calculate 
the weighted average of housing units per building, the weighted average 
of owner-occupied housing units, and the weighted average cash rent of 
renter-occupied housing units. Note that this technique requires the 
assumption of an upper bound for the highest open-ended bracket, which 
includes values such as the number of men of “85 years and above”, or the 
number of units with a rent of “2000 USD or more”. (See table 2 for the 
fields we employed to calculate the weighted averages and the 
hypothetical average values.) 

Table 2. Features from ACS fields converted to weighted averages 

New Feature Original ACS Field(s) Upper Bound 

Average Male Age  SE_T005_003 -
SE_T005_014 92.5 Years 

Average Female Age  SE_T005_016 -
SE_T005_027 92.5 Years 

Average Housing Units SE_T097_002 - 
SE_T097_010 75 Units 

Average Value For Owner-occupied 
housing units 

SE_T100_002 - 
SE_T100_010 

1.500.000 
USD 

Average Rent for Renter-occupied 
housing units 

SE_T102_002 - 
SE_T102_012 3500 USD 

 

Finally, we normalized the values for every feature to be between zero 
and one to ensure an equal weightage in terms of the clustering algorithm. 
In other words, we created a broad selection of potentially relevant 
features, and refrained from a-priori assessing the relative importance of 
these features. The various pre-processing steps described above yielded 
29.058 observations with 32 features for inclusion in the clustering. 
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3.2 Clustering ACS Data 

To identify developmental states of census block groups in ACS data, 
we employed the K-means clustering algorithm (MacQueen, 1967). K-
means is an unsupervised machine learning technique. The algorithm aims 
to find previously unknown patterns in data that have not been assigned a 
category or label. In this section, we address the k-means clustering 
algorithm, our application of the algorithm to the ACS data, and our choice 
of the number of clusters k. 

3.2.1 The k-means Algorithm 

Given a set of multi-dimensional data points, k-means partitions the set 
into k clusters, while aiming to minimize the difference between the data 
points in each cluster. Mathematically, this difference is computed as the 
sum of the distances from the data points in each cluster to the center point 
(or centroid) of the respective cluster. This sum of distances is the 
objective function that the algorithm attempts to minimize.  

Starting with k randomly chosen cluster centers, each data point is 
assigned to the cluster center that is closest to it. In a second step, a new 
center point can be computed for each cluster by finding the center of mass 
(i.e. the average) of the data points that belong to the cluster. This 
procedure is repeated until the clustering no longer improves, i.e. until the 
cluster centers stop to change. The procedure can be summarized as 
follows: 

1. Choose k random cluster centers. 
2. Assign each data point to the cluster whose center point is closest 

to it. 
3. Recalculate the position of each cluster center as the average of 

the cluster’s members. 
4. Repeat steps 2 and 3 until the cluster centers no longer improve. 

3.2.2 Applying k-means to the ACS Data 

For the k-means algorithm, every five-year estimate for every census 
block group is represented as a 32-dimensional data point (since, as 
described above, our data set has 32 normalized features). Most census 
block groups appear several times in our data set, representing change in a 
census block group over time. In other words, the same census block group 

 

CUPUM 2015

Royall & Wortmann 
 

275-8



can occupy different positions in the 32-dimensional space of the data set 
due its developmental changes over time. 

We clustered the pre-processed data described in section 3.1.2 with the 
k-means clustering algorithm included in the Statistics and Machine 
Learning Toolbox of MATLAB. To mitigate the effect of the random 
choice for the first cluster centers, we computed 20 clusters with different 
starting points for each of the four counties, choosing the one with the 
smallest total distance, i.e. the smallest objective value, as the final 
clustering for each county. 

This procedure assigned each data point, i.e. each five-year estimate of a 
census block group, into a category or state, based on its socio-economic 
data. Note that, although the number of states had to be decided a-priori, 
the properties of the states emerge from the clustering process itself. (The 
states are characterized in more detail below.) By computing a single k-
means clustering for the census block groups of each county over several 
years (from 2009 – 2013), we could assign a category to every census 
block group at every time step, resulting in a series of state changes over 
time. After addressing the issue of choosing the number of clusters k in the 
following section, we describe how we developed a probabilistic model of 
urban change based on these state changes. 

3.2.3 Cluster Size Selection 

As mentioned above, k-means requires its user to choose the number of 
clusters k a-priori. How can one determine the “true” number of clusters in 
a data set? No straightforward answer exists, although many different 
methods have been proposed (e.g. Sugar and James, 2011). 

Mardia et al. (1980) propose to choose k as the square root of half of the 
number of data points as a rule of thumb. According to this rule, in our 
case we would have around 60 clusters, based on an average sample size 
of 7.265. However, due to its inherent complexity, a model based on such 
a large number of states would contributed little in terms of understanding 
gentrification. 

Instead, the statistical properties of cluster sizes k = 3, 6, 9, and 12 were 
investigated. k = 6 had the largest and most evenly distributed cluster size, 
and the greatest number of fields displaying low dispersion rates (as 
measured by a coefficient of variation) across clusters. At k = 9, clusters 
appeared to me more random in composition, and at k = 3, not enough 
variation appeared between clusters to enable meaningful comparison. 
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3.3 Creating a Markov Model from the ACS Data 

As previously discussed, each census block group was assigned to one 
of six clusters by applying the k-means clustering algorithm. As estimates 
for most blocks groups were consistently available for each period in our 
data, we were able to track the states, and thus the state changes, of the 
census block groups over time. From these state changes, we derived a 
Markov model of socio-economic change at the block group level. 

3.3.1 Markov Chains 

A Markov chain is a mathematical model that describes a probabilistic 
process of changes over time (Durret, 2010). As such, Markov chains have 
found wide applications in the natural and social sciences. Generally, a 
Markov chain is a system defined by a set of states N (i.e., the state space), 
and a matrix of transition probabilities P. N contains all the possible states 
n of the system, while P assigns probabilities to the transitions between 
these states. (See table 5 for an example of a transition probability matrix.) 
Given N and P, one can simulate the trajectory of a system by generating a 
random number p and letting the system change to the new state n(t+1) 
defined by P for the current state n(t) in case of p: 

n(t+1) = P(n, p) 
 

By repeating this process, a Markov chain model traverses a sequence, 
or chain, of states over time. Note that a key modeling assumption of 
Markov chains is their memoryless quality. That is, the next state only 
depends on the current state and the transition probabilities for that state. 
For our model we assume that P is time-homogenous, i.e. that the 
transition probabilities remain stable over time. In the following sections, 
we discuss how observed state changes in the clustered ACS data are 
modeled as a Markov chain. 

3.3.2 A Markov Model of Urban Change 

Given our consideration of clusters as states of urban development, it is 
natural to regard these states as defining the state space of a Markov 
process. Assuming that the processes of urban development are 
probabilistic and further assuming that the probabilities behind these 
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processes are fixed in time are major abstractions from reality. However, 
we regard these abstractions as valid in the context of largely unplanned, 
emergent urban phenomena such as gentrification and especially on the 
scale of a neighborhood or borough, which is large compared to our unit of 
analysis. We further believe that the advantages of our model, which 
include the representation of urban change in both time and space, the 
absence of any a-priori assumptions about urban dynamics, and the 
inclusion of socio-economic data, outweigh the cost of these abstractions. 

3.3.3 Calculating Transition Probabilities 

Since the clustering algorithm assigns census block groups five-year 
estimates to one of six states, one only needs to define the transition 
probabilities between these states to complete the Markov model. We 
derived these transition probabilities by counting the transitions from one 
state to another, and dividing them by the total number of transitions. 

Using the method described above, we calculated transition probabilities 
for the four counties included in our analysis for the period of 2009-2012. 
(To conserve space, we only include values for Bronx County, see table 2). 
We calculated the transition probabilities for 2013 separately, in order to 
assess the predicative capacity of the four Markov models.  

4. Results and Discussion 

In the following discussion, we characterize the states we found in our 
cluster analysis both quantitatively and spatially. We also discuss the 
results and predictive capacity of the Markov models resulting from such 
analysis. 

4.1 Characterizing States 

We performed k-means clustering separately for each county (Bronx, 
Kings, New York, and Queens), and compared the content of these clusters 
or states statistically to determine whether the clustering method achieved 
significantly different states. We first identified features that were tightly 
distributed around the mean, showing strong clustering within states. 
These features were further tested using paired t-tests to determine whether 
the difference between means for each of these features differ significantly 
between states in each county. 
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4.1.1 Identifying Significant Features by Coefficient of Variation 

A tight clustering around the mean of a feature, i.e. a standard deviation 
of less than 50% of its mean, or a coefficient of variation less than 0.5, 
suggests that a feature differs significantly between states and therefore is 
an important indicator of a state’s composition.  

Table 3. Mean, Standard Deviation, and Coefficient of Variation for low-
dispersion features of a cluster from Bronx County. 

Field Mean STD DEV COEFF VAR 

Male % 0.47 0.077 0.164 

Avg Male Age 35.752 8.454 0.236 

Female % 0.53 0.077 0.145 

Avg Female Age 39.005 8.865 0.227 

Family HH % 0.644 0.156 0.242 

Nonfamily HH % 0.356 0.156 0.438 

High School % 0.328 0.123 0.374 

Some College % 0.148 0.068 0.462 

Income < $35.000 % 0.445 0.216 0.486 

$35.000-$75.000 % 0.284 0.127 0.446 

Median year structure built 1941.457 140.94 0.073 

HU Renter Occupied % 0.641 0.256 0.400 

Average Rent 1131.239 410.261 0.363 

Transportation % 0.651 0.203 0.312 
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We identified several significant features for each county using this 
method. (Table 3 displays features with a coefficient of variation less than 
50% within a single cluster for Bronx County.) Five features displayed low 
variance, and thus high significance, across all counties and states. These 
features were: 

 percentage of tracts reported as “family households” 
 percentage of respondents walking, cycling or taking public 

transportation to work, or working at home 
 education level reported as “high school” or below 
 income reported below $30,000 
 property value 

4.1.2 Testing for Significance using Paired t-tests 

We used a paired t-test to determine the statistical difference between 
means of these five features within clusters 1-6 for each county. 
Comparisons between six clusters in each county resulted in 20 
comparisons for each county. Sample sizes of each feature ranged from 40 
to 3002 observations. (As an example, see table 4 for t-test results for the 
percentage of reported family households in Bronx County.) 

The majority of feature means varied significantly (t > 2) across states 
with each county. According to this finding, k-means successfully 
clustered the ACS block groups into statistically different groups, varying 
primarily by features describing household structure, transportation modes, 
education levels, household income and home value. 

Of the five significant fields, the percentage of reported family 
households varied most significantly across clusters for each county. In 
other words, this feature showed the fewest number of insignificant 
comparisons between states. The finding suggests that of the four counties 
sampled, the percentage of reported family households varies the most 
both between the states within each county and across counties (reported 
family household percentages ranged from 25% to 76%). The percentage 
of family households in a region may be an important indicator of a 
region’s current or future gentrification status. Another important factor 
appears to be transportation mode to work (car or public transport, walking 
or biking). Like percentage of reported family households, this factor 
appears to vary most both within and across counties (The range of 
reported transportation mode varies from 89.7% to 42%). People in New 
York County (Manhattan Island) reported the highest percentages of 
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walking, cycling or taking public transportation to work, while those in the 
Bronx County reported the lowest. Accordingly, there may be a correlation 
between gentrification and proximity to jobs that enable walking or 
cycling, although this finding may also be due to the relative presence of 
biking infrastructure, access to public transportation, or other culturally 
mediated behaviors. 

Table 4. Paired t-test results for the percentage of family households for clusters 
1-6 (k1 – k6) within Bronx region. Highlighted comparisons are not significant. 
% Family Households 

  k1 k2 k3 k4 k5 

k1 3.5         

k2 8.84 -10.26       

k3 1.37 4.14 -7.07     

k4 -2.94 13.23 1.73 8.58   

k5 35.49 29.13 25.08 41.98 23.51 
 

4.1.3 Understanding Complex Relationships 

The value of the k-means clustering method lies in the ability to draw 
associations between patterns within states. For example in Bronx County, 
because state 1 differs significantly from state 4 for all five features, we 
can assume the relationships between these features are non-trivial. 
Therefore the mean values for education in state 1, (32% reported a high 
school education or below) are associated with mean values for income in 
state 1 (28% report income levels below $30,000), and that this 
relationship is distinctly different from that occurring between the same 
variables in state 4 (where larger percentages of both high school 
education and income are reported). The clustering method therefore 
provides simultaneous insight into relationships between several variables. 
Additionally, the Markov Model examines how these complex 
relationships evolve over time. The consistent appearance of five 
significant features across states and counties suggests that k-means 
clustering has captured at least some of the complexity of urban 
development. The spatial analysis provided in the following section further 
reinforces this impression. 
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4.2 Visualizing States 

To study our clustering results qualitatively, we visualized the location 
of census tracts in terms of their state (cluster) identity. Initial observation 
reveals little variation between states, that is, the majority of census block 
groups rarely transition between states across the period studied (2009-
2013, see figure 1). This lack of variation is to be expected given the lack 
of variation in the ACS census data, and the ACS estimation methodology 
(see section 3.1.1). However, the k-means clustering does result in visible 
spatial groupings that appear to correlate with neighborhood boundaries. 
These spatial groupings are notable considering that the input data used in 
the clustering did not contain any spatial indicators. 

Figure 1.  State visualizations of Bronx County from 2010-13 (clockwise from 
upper left).  
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For example, a visualization of states identified in Bronx County shows 

evident spatial clustering of states one (yellow) and six (blue). 
Examination of these states’ composite ACS field data reveals differences 
between education attainment level and household composition. State six 
has 10% fewer family households, a 3% higher education attainment level, 
lower poverty levels (18% fewer residents report an income less than 
$35,000, newer housing stock (10%), Higher average rent (by an average 
of $246), and a lower percentage of residents that report non-vehicular 
travel to work (45% compared to 65%). Comparison of groups of census 
block groups falling within specific states to neighborhood boundaries in 
Bronx County shows that state one maps tightly to the affluent Riverdale 
neighborhood, while state six encompasses a belt of several neighborhoods 
across East Bronx. 

Additionally, the clustering method identifies groups of census tracts 
with similar properties that may not be adjacent to each other. For 
example, both Co-op City (one of the largest cooperative housing 
developments in New York) and Kingsbridge (a westerly working class 
community) fall into state five (purple), but are separated geographically. 
State five is characterized by very low education attainment levels (18% 
Some College), an evenly split distribution of family and non-family 
households, lower rents on average ($939) and a low-income bracket, 
(47% report making less than $35,000 annually.). 

Kings County (see figure 2) exhibits tight spatial clustering for states 
one, two and three, with dispersion of state six largely near coastlines. 
Within this county, state six is characterized by very high rates of non-
vehicular transportation (walking or cycling to work or working from 
home), and low rates of reported family households, compared to the other 
five states. These areas may be highly affluent, particularly along coastline 
developments. Notably, one of these clustered state six areas represents a 
recent coastline condo-development in Williamsburg. We also note several 
block groups transitioning to state six in between 2010 and 2013 in the 
increasingly popular Williamsburg area. State one, mapping onto East 
Brooklyn, is characterized by a high instance of reported family 
households and education attainment levels, but low non-vehicular 
transport levels relative to other states in the county. 
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New York County (see figure 3) shows three stable states over time, 
mapping onto upper (state one) and lower (state six) Manhattan and the 
areas surrounding central park (state five). State six, mapping largely onto 
lower Manhattan shows fewer family households and a larger share of the 
population reporting ownership of dwelling units, while state five is 
characterized by higher percentages of family households and renter 
occupancy. 

Finally, Queens County (see figure 4) shows tight clustering of states 
four and five, which appear similar in composition except for one 
important factor: average value of owner-occupied units. Average home 
value in state four is significantly lower than state five by a difference of 
over $100,000 (401,253 vs. 556,677). Unlike previous counties, these 
states do not appear to map clearly onto neighborhood boundaries. Inquiry 
into the reason for these tight spatial clusters should be the subject of 
further research. 

Figure 2. State visualization of Kings County for 2010. 
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Figure 4. State visualization of Queens County for 2010. 

Figure 3. State visualization of New York County for 2010. 
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4.3 Predicting State Transitions 

The four Markov Models described in section 3.3 track an individual 
census block group’s path through the state space in order to identify 
transition probabilities between states over time. These transition 
probabilities can then be applied to previously untested block data. 
Specifically, we derived transition probabilities for 2009 10, 
2010 11, and 2011 12, and compared them with the transition 
probabilities for 2012 13. (See table 5 for the transition probabilities 
from Bronx County. See table 6 for the average errors of predicted 
transition probabilities per county and state.) 

For all four counties, percentages along the diagonal of the transition 
matrix (non-transitions) make up the largest percentage of observations, 
which is the probability of a census block not transitioning to a different 
state was greater than transitioning to a different state. The average 
probability in the period from 2009 to 2012 for a census block group to 
retain its state is 76%. This means that, statistically, during the transitions 
of 2009 10, 2010 11, and 2011 12, 44% of census block 
groups retained their states. We attribute this finding to the lack of 
variation in the ACS census data, ACS sampling methodology, and the 
short time frame (2009-13) for which ACS data was available.  Apart from 
this finding, transition probabilities vary markedly between the four 
counties. For example the transition probability from state six to state five 
are 1.86% for Bronx, 1.47% for Kings, 12.94% for New York, and 5.14% 
for Queens County. This suggests that the patterns through which block 
groups change may vary significantly across counties.  

In order to assess the predictive capacity of the four Markov models, we 
compare the transitions probabilities computed for 2009 2012, with the 
probabilities for 2012 2013. These probabilities are remarkably similar 
for each county, with an average error of 5.9%. (See table 6 for the error in 
the predicted transition probabilities for each county and state.) This 
average includes outliers with errors of around 20%: these are due to very 
small cluster sizes leading to big variations of the transition probabilities. 
For example, the error for state four of Bronx County is 16.67%, 
corresponding to a cluster with only three to four members (see table 5.).  

These outliers indicate that adapting our method of analysis to maintain 
relatively equal cluster sizes as an area for future research. Also, note that 
due to the probabilistic nature of Markov models, the predictions apply 
strictly to the county level, and not to individual census block groups. 
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Allowing for more fine-grained predictions, perhaps including interactions 
between neighboring states, is another interesting direction for future 
research. 

Table 5. Transitions probabilities for Bronx County from 2009 to 2012, and from 
2012 to 2013. Starting states are according to row, and end states according to 
column. 

 
2012 

 
State 1 

 
State 2 

 
State 3 

 
State 4 

 
State 5 

 
State 6 

 93% 0% 0% 0% 2% 5% 

 0% 86% 9% 0% 5% 0% 

 0% 18% 71% 0% 7% 3% 

 0% 30% 10% 50% 10% 0% 

 2% 12% 12% 0% 71% 3% 

 1% 0% 8% 0% 2% 88% 

  
State 1 

 
State 2 

 
State 3 

 
State 4 

 
State 5 

 
State 6 

 90% 0% 5% 0% 5% 0% 

 0% 89% 6% 0% 4% 0% 

 0% 9% 88% 0% 2% 1% 

 0% 0% 0% 100% 0% 0% 

 2% 6% 5% 0% 86% 2% 

 0% 0% 4% 0% 0% 96% 
 

Table 6. Predictive average error  per county and state, comparing transition 
probabilities from 2009-2012 with 2012-13 

County Total   1  2  3  4  5  6 

Bronx 6% 3% 1% 6% 17% 5% 3% 

Kings 5% 19% 1% 1% 1% 1% 3% 

New York 9% 3% 17% 26% 1% 3% 2% 

Queens 5% 1% 17% 1% 2% 5% 3% 
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5. Conclusion 

The research presented here proposes modeling neighborhood change as 
a transition between meaningful states that emerge empirically from socio-
demographic datasets. We identify states as profiles of complex 
relationships between socio-economic and demographic factors that may 
not be clear to the researcher a priori, and may not be identifiable through 
traditional forms of linear regression analysis.  

The k-means clustering method proves to be a successful methodology 
for identifying these states, i.e., patterns of urban development. States 
emerging from ACS data map consistently to neighborhood boundaries, 
and enable the spatial comparison of neighborhood areas exhibiting similar 
socio-economic and demographic properties. The degree to which census 
block groups are spatially grouped into state categories may be an 
indicator of relative levels of socio-economic segregation; i.e., areas where 
census block groups fall into a single state represent pockets of 
homogenous characteristics, while regions with a patchwork distribution 
of states show variation of socio-economic conditions. Because state 
identification is not dependent on spatial information, other regions, which 
may not fall into traditional neighborhood boundaries, but exhibit 
homogenous data characteristics, are identifiable. Such visualizations 
enable researchers to visualize emergent trends in census data without 
restricting their analysis to existing neighborhood boundaries. The tests of 
the predictive capacity of the Markov models for the four counties show 
the promise of our method as a tool for planning agencies to model urban 
changes in a metropolitan area, and as an opportunity to refine the 
approach of planning policy by targeting symptoms of gentrification in 
support of negatively impacted communities. 

Data collected over a longer period, and using a different sampling 
method than that performed by ACS would significantly enhance the 
results presented here. Future applications of this research include 
investigating the application of the method to larger and more robust data 
sets, as well as different regions and context. Another ambition is the 
development of better and more fine-grained predictions, which could 
possibly achieved by including interactions between neighboring states. 

We observe that machine learning and other pattern-recognition 
techniques host a wealth of possible applications for model development in 
urban analytics. Machine learning methods are able to handle large and 
complex data sets, such as those that characterize urban environments.  
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However, it is important to acknowledge that such an approach depends 
heavily on data quality and responsible algorithm development. 
Furthermore, evidence-based planning must always be supplemented by 
qualitative observation.   

Modeling gentrification as a probabilistic process of state changes in 
time and space provides insights into the dynamic nature of this complex 
phenomenon. While mathematical models may be unable to account for 
many of the social and cultural intimacies of a particular site, they can 
generate more refined research questions for this important driver of urban 
regeneration. However, the research does not present a complete model of 
gentrification. Rather, our method allows the empirical study of 
neighborhood-level urban development by condensing complex urban data 
into latent profiles that both describe and predict urban change.    
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