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Abstract 

Modelling the growth of urban settlements is of considerable interest for 

different applications, amongst which integrated flood management. This 

study aims at modelling urban growth for a long time horizon up to 2100 

and to integrate the model outcomes with a hydrological model for the same 

time horizon. Forecasting land-use change over such time frames entails 

very significant uncertainties. In this regard, the main focus of this paper is 

attributed to the handling of uncertainty in an urban growth model. To this 

end, we examine a Monte Carlo Simulation method, which is integrated in 

the proposed urban growth model.  Transition probabilities for each non-

urban cell are estimated by a coupled Cellular Automata-Agent-Based ap-

proach. The results help to handle uncertainty over long time horizons and 

to assess the increment in degree of uncertainty at every time-step. 
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1. Introduction 

Across the globe, urban settlements are growing rapidly, which leaves urban 

planners with a continuous challenge of planning a livable urban system. 

Modelling this growth is of considerable interest to different disciplines in-

cluding flood management. Several studies indeed stated that for many river 

basins, exposure to flood risks may considerably increase during the 21st 

century as a result of a combination of climate and land-use changes. It is 

important in this respect to evaluate flood risks at different time horizons by 

coupling land-use changes and hydrological models. Several scenarios have 

been proposed to anticipate future climate change and its related impacts on 

rain and water surface levels. These scenarios are typically considering 

long-term time horizons, i.e. 2050-2100, as this is the appropriate time frame 

for analyzing such effects (Bates et al. 2008). 

This paper presents an urban growth model for a long time horizon up to 

2100 in order to couple the model outcomes with a hydrological model for 

the same time horizon. Predicting long-term future of urban growth remains 

an elusive goal. Urban development depends on technological, economic, 

social and cultural factors that cannot be modelled in a linear manner. In 

addition, eventual future extreme events such as economic collapses and 

shifts in weather conditions are hard to predict. In the context of making 

predictions of responses under never observed conditions requires the cou-

pling of deterministic physics-based and stochastic components. To this end, 

this paper focuses on handling uncertainty in urban growth models. Gener-

ally, uncertainties can be considered as a component of fuzziness or ran-

domness (Wang et al. 2013). A number of scholars analyzed uncertainties 

in land-use models using randomness (e.g. García et al. 2011; Maria de Al-

meida et al. 2003; Mustafa et al. 2014; Wu 2002). Al-Ahmadi et al. (2009) 

and Wang et al. (2013) introduced fuzziness in their models.  

Several approaches have been proposed to simulate urban growth in grid-

based data; among which Cellular Automata (CA) and Agent-Based (AB) 

models are the most common approaches (e.g. Bert et al. 2011; Mitsova et 

al. 2011; Puertas et al. 2014; Ralha et al. 2013). Traditional CA models are 

based on an extrapolation of past observations using spatial inferences; they 

are based on the implicit assumption that people's behaviors would be main-

tained over time. Such an assumption is acceptable for short time horizons, 

but not applicable to longer ones (more than 30 years). For instance, land-

owners may resort to speculative motives for hoarding land, in anticipation 

of potential development such as initializing of new roads. AB models are 

modelling agents as goal-oriented entities capable of responding to their en-

vironment and taking autonomous action, where these agents may represent 
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households, firms, etc. It has been therefore considered to integrate potential 

variations of agent behavior through an AB model. At cell level, in grid-

based data, CA can best consider the local factors through cell neighbors 

effects whereas AB could consider global factors; such as urban develop-

ment attractiveness (UDA) which depends on distance to cities, slope, etc.; 

through simulation of agents' behavior. 

We propose an approach that integrates CA and AB models for simulat-

ing future urban growth scenarios. Furthermore, a Monte Carlo Simulation 

(MCS) method has been introduced in the model that allows better handling 

of uncertainty. In this paper, we explore the effects of uncertainties about 

agents’ behavior due to global factors. The effects of uncertainties about 

local factors and the expected growth of households and related jobs has 

been maintained constant throughout simulations, although they are obvi-

ously other components of uncertainty.  

In order to stress the role of uncertainty, the number of agents included in 

the model has been deliberately limited to three categories: urban developers 

(UrbA) represents households, firms and some farmers who decided to stop 

being farmers, farmers (FarmA) and government (GovA). The UrbA and 

FarmA will seek appropriate cells to develop or to retain in the current state 

based on profit maximization; the GovA will permit or prevent new urban 

developments. The AB model calculates transition probability combining 

three layers that define cell probability for urban development: a neighbor-

hood weight (NBW), agriculture-urban externalities (Ag-UrbW) and the 

UDA. The NBW and Ag-UrbW layers are developed using a CA model. 

Other factors and parameters are automatically generated by a logistic re-

gression analysis and an MCS algorithm to model the effect of uncertainty 

upon land-use change, in terms of attractiveness.  The effect of the stochastic 

component is addressed by comparing different model runs, and focuses on 

the analysis of the effect of an MCS used to incorporate the stochastic com-

ponent in the model. The main contribution of this paper is to highlight the 

handling of uncertainty over time in urban growth models.   

2. Methodology 

2.1. Study area 

The model framework is applied to Ourthe river basin located in Wallonia, 

in the southern part of Belgium. It occupies an area of 2,140 km2 and con-

sists of 37 administrative municipalities. It has 664,744 inhabitants in 2013 

(IWEPS 2013). The landscape is composed of 214,005 cells of 100x100 m². 

The geography of the area goes from flat to hilly with altitude ranges from 
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+47 to +618 m above the sea level. The largest metropolitan area is Liège 

city with population of 195,931 in 2013 (IWEPS 2013). The Ourthe River 

is a 165 km long river in the Ardennes in Wallonia. It is formed at the con-

fluence of the Ourthe Occidentale (Western Ourthe) and the Ourthe Orien-

tale (Eastern Ourthe), west of Houffalize. After the confluence of the two 

Ourthes, the Ourthe flows in north direction. It flows into the river Meuse 

in the city of Liège (Fig. 1). 

 

 

Fig. 1. Study area and land-use map of 1990 

2.2. Data 

The CORINE Land-Cover (CLC) datasets provide a detailed inventory of 

the biophysical land cover in Europe using 44 classes. It is made available 

by the European Environment Agency (EEA) (http://www.eea.eu.int/prod-

ucts) at a resolution of 100 and 250m² grid cells. A 100m² CLC of 1990 and 

2000 are used in this paper to apply the model framework. The CLC 44 

classes have been reclassified into seven general classes (Fig.1). The Navteq 

streets of 2002 dataset has been used to calculated Euclidean distances to 

four functional road classes (1: high speed roads, 2: quick travel between 

and through cities, 3: moderate speed travel within cities and 4: moderate 

speed travel between neighborhoods).  
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Euclidean distances to cities have been calculated using the major 11 Bel-

gian cities (Fig.1). Access to jobs has been calculated using the number of 

jobs available within 20km for each municipality. 

2.3. Urban growth model 

Urban development is a product of both physical constraints and human de-

cision-making behavior. Therefore, a coupling of CA and AB is highly suit-

able to encapsulate urban development possibility at a specific location.  The 

model target is to simulate urban growth from 1990 to 2100. The model is 

first calibrated and validated with real observed data of 1990 and 2000 and 

it is then used to project possible future urban growth at a 2100 time horizon. 

In the study area, 176,183 cells could be converted into urban land-use 

between 1990 and 2000. The real amount of developed urban cells over 

those ten years is 4,730. In the model, each time-step represents one year 

which would be adequate in a model of land-use change (White and Engelen 

2000). 

The model is based on two modules: a demand module and a transition 

probability module. The demand module calculates the quantity of change 

for urban lands at each time-step. Widely, two methods have been used to 

estimate urban land demands (i) linear extrapolation of the past change trend 

(e.g. Pontius et al. 2004) and (ii) socioeconomic factors to estimate future 

growth (e.g. White and Engelen 2000). In this paper, we have linearly ex-

trapolated the change between 1990 and 2000. 

In our model, the development of non-urban cells are done by UrbA and 

controlled by GovA. FarmA, owning undeveloped arable and grasslands 

cells, will decide to keep or to sell their own cells. Moreover, a number of 

farms will decide to stop being farmer and change to UrbA. If a cell state is 

urban in time-step tn, it automatically remains the same in the next time-

steps. Three land-use classes can only be changed into an urban land-use 

class; arable lands, grasslands and forests. All other land-uses will be intro-

duced in the model as constraints.  

2.3.1. Transition probability module 

The transition probability module is the core element of the model repre-

senting decision-making criteria of agents to select target cells for develop-

ment. It employs CA and AB approaches to calculate the transition proba-

bility for each non-urban cell. 
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Agents state variables 

At the initialization of the model, the real land-use map of 1990 is uploaded 

into the model, the parameters are set, and the agents are created. FarmA 

controls all arable and grasslands. GovA controls other land-uses except ur-

ban lands and sets zoning constraints for the entire study area based on three 

categories, in terms of urban development, permitted (urban zones), permit-

ted under strict circumstances (arable, grassland and forest) and forbidden 

(wetlands, water bodies and other classes). GovA sets zones using a zoning 

plan developed by the Walloon authorities. UrbA calculates the demand for 

future urban development and starts seeking cells to develop. 

Agents’ movement and interaction 

UrbA will start seeking appropriate cells to develop until meet the required 

demand. It starts selecting an undeveloped cell randomly, wherever it starts, 

it assesses the score of the current cell. Agents record the positions and the 

states of the visited cells and learn each other.  

When UrbA determined which cells to develop, it has to ask for a permis-

sion from GovA. GovA considers that zoning of land is not always strictly 

enforced in Belgium. If a cell is located in a permitted zone, GovA will give 

the permission automatically, otherwise a sort of competition will be carried 

out to determine the winner. The winner of the competition depends on the 

number of times that GovA has lost cells in the previous competitions. We 

used logistic regression analysis to define the rule of zoning. The odds ratio 

of zoning is around 12 which means that it is around 12 times more likely 

to find new urban cells in urban zones than other zones. Thus, we assumed 

that at each time-step, GovA will give permissions for at most 8% of the 

amount of required cells to be developed outside urban zones. In addition, 

under this rule, the available urban zones cannot meet the required urban 

cells up to 2100. GovA detects that the current zoning plan might cover only 

40 years to come. In this paper, we do not specify a complete model. In the 

complete model, GovA will establish different scenarios for developments. 

There are some efforts to set a number of new regulations in Wallonia with 

respect to the development of new residential areas, called settlement cores, 

which proposed to reduce the housing density from about 10 households/ha 

(Marique et al. 2011) to more than 20 households/ha in 2100 (Beckers et al. 

2013) and GovA considers such regulations. However, in this paper, GovA 

will give a permission for development in permitted under strict circum-

stances zones to meet the requested urban cells after 40 time-steps. 
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Decision to take 

Once all agents finish the search, they have to decide which cells to develop. 

A number of scholars consider various parameters representing decision-

making criteria of agents to select cells for development using qualitative 

and/or quantitative approaches (e.g. Matthews et al. 2007; Parker and Mer-

etsky 2004; Ralha et al. 2013). A quantitative approach is introduced here 

to parametrize the decision-making criteria. When UrbA has the opportunity 

to make a decision regarding land-use, the agent first forms an urban devel-

opment expected value for each undeveloped cell. This expected value rep-

resents the profitability score that the agent expects to obtain from the un-

developed cell based on his own knowledge. The agent knows the demand 

curve for urban activity and understands the profit-maximizing of global and 

local factors.  

UrbA tries to select cells with the best score at each time-step using a 

utility function as the following formula:  

, , ,c c ci j i j i j

t t t
score n g  (1) 

where
,ci j

t
score is the profitability score of urban development assigned to cell 

ci,j at time t,
,ci j

t
n is the local urban development probability according to 

neighborhood effects on the cell and
,ci j

t
g is the global probability according 

to geo-physical and socio-economic factors. We assumed that
,ci j

t
n and

,ci j

t
g  

have the same relative weight. Indeed, the integration between local and 

global parameters is normally done using the same weight for both (e.g. 

Mustafa et al. 2014; Poelmans 2010; Wu 2002). When UrbA selects an ara-

ble or grassland cell to develop, FarmA will make a decision to sell or main-

tain it. In this paper, we assumed that FarmA imitates the land-use of neigh-

bors and also tends to maximize short-term profits. Therefore, it is highly 

affected by its urban neighbors. We assumed that the FarmA cell is im-

pacted, in terms of agriculture profits, by a negative spatial externality gen-

erated by urban cells. This externality results in a loss ω by the neighbor 

urban cells. 

, ,

1/
c ci j i j

t t
nu   (2) 
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where
,ci j

t
 is the loss of agriculture profitability and

,ci j

t
nu urban neighbor-

hood effects on the agriculture land. FarmA will then compare the loss value 

with profitability of urban development at time t as follows: 

,

1

ci j

t
FarmDecision


=

{
 

 accept,   
,ci j

t
 >

,ci j

t
score

reject,  
,ci j

t
 ≤

,ci j

t
score

 (3) 

Three criterion layers, namely, NBW (
,ci j

t
n ), Ag-UrbW (

,ci j

t
 ) and UDA (

,ci j

t
g ) have been generated.  

NBW and Ag-UrbW layers 

In human-based systems, the idea of locality is hard to define clearly, since 

agents are aware of their surroundings in a wide space. Thus, it is desirable 

to set a neighborhood large enough to capture the operational range of the 

local processes being modelled (White and Engelen 2000). In some land-

use change models (e.g. Poelmans 2010; White and Engelen 2000; Wu 

2002) the neighborhood is defined as all surrounding cells within a radius 

between three to eight cells. In this paper, we consider a search window of 

5x5 cells Moore neighborhood. The neighboring weights are based on the 

calibrations reported on another study (Poelmans and Van Rompaey 2010) 

that defines the interaction effects, representing push and pull forces, be-

tween different land-use classes that done for the northern part of Belgium. 

The CA models are based on a purely microscopic approach, i.e., they are 

originally built upon a basic unit of behavior. Hence, it reasonably captures 

the interaction between land and developer at a very local scale. CA address 

the change in space as state changes and simulate the state changes through 

immediately neighboring cells (Wu 2002). 

A pure CA model has been applied to set the NBW factor for each cell at 

time t according to the following formula: 

,

1 1

ci j

i Ni N

t

i i

n
dx lxdw



 

   (4) 

where N is a number of neighbors and wlxd is the weighting parameter ap-

plied to land use l at position x in distance zone d. 
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CA model is applied also to set Ag-UrbW. We considered the effect of 

urban neighbors using the same search window of 5x5 cells with the follow-

ing formula:   

,

1 1

ci j

i Ni N

t

i i

nu
dx urbxdw



 

   (5) 

where wurbxd is the weighting parameter applied to urban land-use. All pa-

rameters are based on the calibrations reported on Poelmans and Van 

Rompaey (2010).   

UDA layers 

The UDA is driven by different factors such as slope, accessibility, popula-

tion growth, employment potential, investment in infrastructure, etc. (Al-

Ahmadi et al. 2009; Cammerer et al. 2013).  

A binomial logistic regression (logit) model has been therefore developed 

in order to measure the relative contribution of each factor, focusing on 

changes from non-urban to urban cell. This type of regression analysis is 

usually employed in estimating a model that defines the relationship be-

tween one or more independent variable(s) to the binary dependent variable. 

The input dependent variable (Y) is a binary map of real non-urban/urban 

changes between 1990 and 2000 and the independent variables (Xn) are se-

lected urban growth driving forces in the study area. The model considers 

distance to four road classes, distance to major cities, slope, access to jobs 

and zoning as Xn for the logit. Logit analysis yields coefficients for each Xn 

based on a sample of data (observations). These coefficients are then inter-

preted as weights in a formula that generates a UDA map depicting the prob-

ability of each cell to be developed into urban as: 

,

exp( )

1 exp( )ci j

n n

t n

n n

n

X

g
X

 

 




 




 (6) 

where α is the intercept and βn are the regression coefficients. The model 

was calibrated using a random sample in order to minimize the spatial auto-

correlation after standardization of the Xn. The goodness-of-fit was evalu-

ated using Relative Operating Characteristic (ROC) procedure.  
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2.3.2. Handling uncertainty  

In this paper, we put a strong focus on handling uncertainties to simulate 

urban growth in 2100. Land-use change models are always subject to uncer-

tainties due to limited human knowledge, complexity of urban system and 

limitation of technology. In our research, we only consider uncertainty due 

to the future values of the exogenous factors that are not well predictable by 

nature. There is another type of uncertainty that propagated due to errors in 

the model’s inputs. As mentioned earlier, in this paper, we focus on the un-

certainties due to global factors. 

The UDA layer is computed based on the coefficients of the selected driv-

ers of development attractiveness that represent agents' behaviors. These co-

efficients are based on a maximum likelihood estimation procedure. In order 

to capture an enormous range of agents’ behaviors, in terms of attractive-

ness, an MCS algorithm is launched to generate 1000 different sets of coef-

ficients. Each set of coefficients represents a random of 8000 observations 

(4.5% of the study area with an equal number (4000) of 0 (no-change) and 

1 (change) values of the independent variable Y). By using a range of possi-

ble values for the coefficients, we can capture a more realistic picture of 

agents’ responses. Selecting a value from the 1000 different sets of coeffi-

cients to compute different UDA layer at each time-step can be done by 

using a measure of central tendency or by selecting a value from the samples 

randomly. The mean value of the 1000 coefficients, through one run of the 

model, were -0.0003, -0.0288, -0.0210, -0.3967, -0.4971, 0.0001, 0.5773 

and 2.4871 for slope, distance to road class1, road class2, road class3, road 

class4, distance to city, access to jobs and zoning, respectively.  

Fig. 2 shows that the distance to roads, slope and zoning have extreme 

variation in responses, whereas other variables seem to have less variation 

in responses. In order to better capture these kinds of variation, the model 

randomly selects a value of each coefficient set. In other words, at each time-

step, the model will be supplied with a new UDA that may represent normal 

or extreme responses. A stochastic process of this kind never repeats itself. 

Several runs would be necessary to get a full idea of the distribution of dif-

ferent outputs. This process does not ensure that the degree of uncertainty is 

changeable over the entire simulation period from 1990 to 2100. That is not 

the case in reality as the far future involves more uncertainties. Our contri-

bution here is to handle uncertainty degree with time. To this end, in addition 

to MCS, we proposed to introduce a uniform random variable in our model. 

At each time step, the computed score for each cell is used to determine 

whether a transition takes place or not by comparing it with a uniform ran-

dom number that is drawn over a fixed range associated with cells score and 

CUPUM 2015
 Mustafa, Saadi,Cools & Teller 

284-10



if the number is less than the appropriately cell score, a transition to urban 

land takes place as the following formula:  

,

1

ci j

t
change


=

{
 
 

 
         urban,  

,ci j

t
score ≥ unifrand

non-urban,  
,ci j

t
score < unifrand

 (7) 

where
,

1

ci j

t
change


is the change decision at next time-step and unifrand is a 

uniform random value within range (minimum, maximum). Wu (2002) de-

fines this range between the minimum and maximum probability scores.  

 

Fig. 2. Logit coefficients (y axis) for a sample of 250 runs (x axis)  
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We propose that this range controls the degree of uncertainty with time. 

To do this, the agents sort their score list for the cells in descending order, 

with the most suitable cell at the top of the list. Normally, agents then select 

the top-scoring cells from their sorted list and develop them until meet the 

requested demand without considering uncertainty. In the case of uncertain-

ties, agents will select randomly one cell in the set of cells with best scores, 

the size of which is initially determined by the demand and subsequently 

increased to include more possibilities.  

The maximum range of unifrand is fixed to the score of top-scoring cell 

and the values of minimum are a cumulative increment of 1% (rand0.01), 

10% (rand0.1), 20% (rand0.2), 50% (rand0.5), 100% (rand1), 500% 

(rand5) or 1000% (rand10) of the score assigned to the last requested cell 

to develop at time-step tn in the sorted list. Further, it takes the minimum 

score of cells (rand_min).  

For instance, considering rand0.01 case, there are 473 cells (4730 change 

between 1990 and 2000; 473 per time-step) should be changed each time-

step. The sorted score list has values between 1 (the top rank) and 0, and 

therefore the maximum value of unifrand is 1 and the minimum is the score 

of the cell 473, 473+5 (473x0.01~5), 478+5, etc at time-step 1, 2, 3, etc. In 

other words, the model selects the best scored cells at the beginning and then 

enters more cells in the selection competition with time. This way, our 

model is a truly deterministic model at the beginning and turns slowly to 

stochastically model with time-steps.  

3. Model calibration and validation 

The most common method of calibrating urban growth models has been by 

sensitivity analysis. In this method, the model is run with different of pa-

rameter values and the results are compared.  

First, the ten different UDA maps that produced between 1990 and 2000 

in one run have been evaluated using ROC. The ROC compares the out-

comes of Eq. 6 to a map with the observed changes of the urban land be-

tween 1990 and 2000 and its value should range between 0.5 (random fit) 

and 1 (perfect fit). ROC values range from 0.781 to 0.789. ROC values 

higher than 0.70 are considered as a reasonable fit (Cammerer et al. 2013; 

Jr and Lemeshow 2004). 

The validation of the model is the process of measuring the accuracy of 

the simulated result against real world observations (Mustafa et al. 2014). 

To produce a large number of simulations requires heavy computation. In 

our case study we have a grid of 579x1027 cells, and the model algorithm is 
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very computationally intensive. As a result, we could run the model 4500 

times with different ranges of unifrand (500 runs for each).  

The different runs of the model performance without introducing 

unifrand (no_rand) and with different ranges of unifrand of 2000 are com-

pared to the real 2000 land-use map in order to assess the best way to handle 

the increment degree of uncertainty with time-steps. 

In order to evaluate our model, we used one of the common methods to 

compare two maps, a cell-to-cell agreement due to location. This method 

produces a stringent test of simulation as it measures on a cell basis. Urban 

growth model validation might also rely on evaluating how a model simu-

lates spatial properties, e.g., landscape compactness and isolation. The over-

all agreement due to location for a number of previous studies is ranging 

between 92.7% and 76% for the all urban cells (Poelmans 2010; Wu 2002). 

One simulation of no_rand runs shows an accuracy of 92.5% for all urban 

cells.  

Fig. 3 shows simulated 2100 urban growth and pattern comparison be-

tween 2100 simulations using rand0.1 (correlated pattern) and rand_min 

(scattered pattern). 

Table 1 lists the cell-to-cell accuracy of only newly simulated urban cells 

in 2000. As shown in table 1, rand0.1, presenting the best result with a mean 

accuracy 33.648%. no_rand and rand0.01 achieving 33.646% and 33.643% 

respectively. The result reveals a downward trend in accuracy with other 

parameters. 

Table 1. Accuracy (%) for newly urban cells of 2000 (simulated vs. real) of 500 

runs for each parameter 

 1 2 3 4 5 6 7 8 9 

Min 33.38 33.30 33.24 33.07 32.66 31.95 27.74 25.84 22.11 

Max 33.87 34.06 34.16 34.10 33.98 33.38 29.73 29.03 24.80 

Mean 33.65 33.64 33.65 33.56 33.23 32.54 28.80 27.20 23.54 

SD 0.12 0.15 0.17 0.20 0.25 0.27 0.41 0.50 0.46 

. 1.no_rand, 2. rand0.01, 3.rand0.1, 4.rand0.2, 5.rand0.5, 6.rand1, 7.rand5, 

8.rand10, 9.rand_min, SD.standard deviation 

Finally, we proposed to simulate 2100 urban growth using rand0.1 as it 

gives one of the best results and also represents a reasonable increment of 

uncertainty with time.  
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Fig. 3. a. Real land-use map of 1990, b. Simulated land-use map of 2100 using 

rand0.1, c. Simulated pattern of 2100 using rand0.1, d. Simulated pattern of 2100 

using rand_min 
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4. Discussion and conclusions 

Urban growth models simulate a situation in the future. Bearing in mind 

the high level of complexity of urban environments, such models should be 

built on a robust modeling strategy. 

In this paper, we proposed a CA-AB integrated model to capture the re-

lation between developer and landscape at different spatial scales in order 

to simulate a 2100 expected growth pattern. Dealing with uncertainties in 

this kind of modelling becomes essential. 

An MCS algorithm has been employed here to analyze the most suitable 

way to introduce the appropriate degree of randomness. A cell-to-cell loca-

tion validation technique has been used to evaluate the model results. It pro-

vides statistical information of how well allocation procedures succeeded. 

The results bring to light that the model accuracy is highly affected by com-

bining stochastic and deterministic components. 

Finally, this paper points to the need to perform analyses of urbanization 

process that best suits the dynamics of our analyzed area. However, there 

are some urban driving forces that might be lacking. Future work will fo-

cused on including more variables to build UDA layer and to handle uncer-

tainties due to local factors. 
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