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Abstract
This research determined the ability of different metrics to capture behav-
ior of land use simulation outputs driven by adjustments to neighborhood
rules, the defining component of transition potential based Cellular Au-
tomata land use models. Following a series of tests, the metric clumpiness,
when used to evaluate the class housing low density, exhibited the most
ideal behavior defined to capture adjustments to neighborhood rules.
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1. Introduction

Land use, both urban and rural, evolves from a series of incremental land
use changes over time. These changes are the result of a dynamic anthro-
pogenic system where people make land use decisions in response to a
number of factors including: the vicinity to other land uses; access to re-
sources and services; and the suitability of land for certain activities. The
analysis of these factors facilitates the development of more effective
planning policies for the assessment of the impacts of future scenarios. Of
the tools available for such assessment, Cellular Automata (CA) based
land use models are popular because of their ability to reproduce complex
dynamics from a simple rule structure, because they incorporate socio-
economic and biophysical processes that drive land use change.

Numerous Land Use Cellular Automata (LUCA) models have been de-
veloped for scenario assessment. As the application of LUCA models has
grown, spatial modelling frameworks have been developed for generic use
that are applied to different case studies as part of decisions support sys-
tems (Van Delden et al., 2011). One class of LUCA model that has been
applied extensively as part of decision support systems is transition-
potential based constrained CA land use models (Van Delden et al., 2011),
which use a number of different factors to calculate the likelihood of land
use at a particular location in the future.

The development of widely used spatial modelling frameworks has mit-
igated the need to design case-specific models, providing major time sav-
ing advantages and better testing and verification of model concepts and
mechanisms. As such, the emphasis is now on calibration, the adaptation
of the existing frameworks to particular case studies (Hewitt et al., 2014).
The common current calibration procedure for transition potential based
LUCA models is manual, which is time and knowledge intensive. Given
the benefits these models provide, there has been a recent push to automate
the calibration process, specifically the parameter tuning stage.

The objective of parameter tuning is to generate model simulations that
replicate observed data as accurately and realistically as possible through
the manual adjustment of model parameters. Methods for the assessment
of the quality of the parameter tuning process range from visual interpreta-
tion performed by experts (Barredo et al., 2004) to methods based entirely
on analysis by spatial metrics, making the process more objective and re-
peatable (Hagen-Zanker, 2009). Metrics are generally classified as measur-
ing either locational accuracy or landscape structure (Van Vliet, 2013).
However, as there are a large amount of metrics available to characterize
all elements of simulation results, particularly for landscape structure, cur-
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rent manual parameter tuning methods tend to make use of both visual in-
terpretation and metrics (Van Delden et al., 2012).

The use of spatial metrics has facilitated the development of automated
parameter tuning methods using optimization. This approach uses an au-
tomated procedure that changes LUCA model parameters such that the dif-
ference between spatial metrics calculated for both simulation derived land
use maps and actual land use maps is minimized, called a fitness function.
However, as highlighted in Table 1.1, previous studies that have intro-
duced automated procedures for calibrating LUCA models have all used
different metrics. In addition, the metrics that have been used in automated
procedures are not consistent with those suggested for a manual calibration
procedure. While it is known that calibration success is dependent on the
quality of metrics used to assess model parameterizations, to date previous
studies have not investigated the performance of calibration with respect to
metric choice.

Table 1.1 Different metric combinations used to assess model performance

Reference Calibration Mode Metrics
(García et al., 2013) Automatic, Genetic Algo-

rithm
 Global Index a

 Number of Patches
b

 Mean Patch Area b

 Edge Density b

(Li et al., 2013) Automatic, Genetic Algo-
rithm

 Percentage of
Landscape b

 Largest Patch In-
dex b

 Landscape Division
b

(Van Delden et al., 2012) Manual  Kappa Simulation a

 Clumpiness Index b

 Fractal Dimension
b

 Rank Size Distribu-
tion b

 Enrichment Factor
b

 Visual inspec-
tion/interpretation a,

b

a. Measure of locational accuracy
b. Measure of landscape structure
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There is clear space to investigate the performance of calibration with
respect to metric choice, incorporating the present knowledge of visual in-
terpretation and metrics used as part of manual calibration processes to en-
hance automated calibration. One approach is formally defining the appli-
cation of different metrics to capture what experts interpret intuitively
during manual parameter tuning. Based on visual interpretation or a spatial
metrics, an expert knows intuitively how to improve the simulated pattern
and adjusts parameters accordingly. However, there is limited formal defi-
nition of how parameters should be adjusted based on spatial metrics. As
highlighted by Table 1.1 there is little consistency between different ap-
proaches.

Ideally the optimal parameters obtained using automatic calibration pro-
cedures with metrics as fitness functions should generate results that are
realistic, and thus represent processes correctly by the parameter values
obtained. Presently this is better achieved using manual calibration meth-
ods. Thus, the impact the selection of different metrics has on the optimal
parameters obtained as part of automated calibration processes must be
understood. A first step in this process is the development of an under-
standing of the relationships between certain model parameters and met-
rics. Thus, the main objective of this paper is to determine the ability of
different metrics to capture behavior of land use model simulation outputs
driven by adjustments to different model parameters. Ideally, these links
will enhance understanding when posing parameter tuning as an optimiza-
tion problem, allowing for improvement on previous automation attempts.

2. Methodology

In order to investigate the relationship between optimal parameters and
different metrics, a sensitivity analysis approach was followed. The sensi-
tivity of the difference between simulated and observed metrics was calcu-
lated, using a manually calibrated model as a baseline with a set of param-
eter values that were considered optimal, which were systematically
perturbed as part of the testing regime. This method had three components:

- A land use model;
- A number of metrics to investigate; and
- A series of tests that perturbed different parameters within the land

use model.
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2.1 Cellular Automata Land Use Model and Case Study Application

This study used the constrained CA, transition potential based land use al-
location model Metronamica (Van Delden and Hurkens, 2011) that has
three types of land use classes: passive, which only change as a result of
other land use dynamics; active, which are actively modelled based on ex-
ogenous demands; and static, which do not change but influence dynamics.
As a constrained LUCA model, the demand for each land use class is de-
fined exogenously. For each time step, representing one year, land use
classes are allocated based on locations with the highest potential. Poten-
tial is calculated for each land use class for each cell based on transition
rules shown in Equation 2.1:

Pk,i= v × Ak,i × Sk,i × Zk,i × Nk,i (2.1)

Where Pk,i is the potential for land use k in cell i, v is a scalable random
perturbation term, Ak,i is the accessibility, the effect of the nearness and
importance of different types of transport networks and infrastructure, for
land use k in cell i, Sk,i is the suitability, the effect of a location’s physical
properties, for land use k in cell i, Zk,i is the zoning status, the influence of
policy and restrictions, for land use k in cell i, and Nk,i is the neighborhood
rule, defining the interactions of land use classes, for land use k in cell i,

Neighborhood rules are functions that define the interactions between
cells based on their distance to the location of interest. Existing land use
patterns influences future land use patterns in three ways: through the iner-
tia of land uses in a location; through the ease of conversion from one land
use to another; and the attraction or repulsion effects exerted by land uses
situated in the neighborhood of a location (Van Vliet et al., 2013b). This is
reflected in neighborhood rules having two distinct regions as shown in
Figure 2.1: Inertia/conversion, the effects that land uses exert at the point
of interest, and attraction/repulsion, the effect exerted at a cell distance of
greater than zero.

Fig. 2.1 The dissociation of neighborhood rules into different components, the
point of inertia/conversion (dot) and the attraction/repulsion relationship (line)

Distance

Influence
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Multiple neighborhood rules are required for a Metronamica applica-
tion, equal to the product of the total number of land use classes and the
number of function land use classes. Rules were classified into two groups
as shown in Table 2.1. First, rules were classified as persistence if they de-
fined the interaction of a land use with itself. These neighborhood rules
have an inertia point at a cell distance of zero. Second, rules were classi-
fied as change if they defined the interaction between different classes of
land use. These neighborhood rules have a conversion point at a cell dis-
tance of zero. By this classification scheme there were 10 persistence and
81 change neighborhood rules.

Table 2.1 A simplified representation of the classification scheme used to group
different neighborhood effects. Persistence rules define land use class self-
interaction, change rules define inter-class interaction

Land use Class Residential Industrial Agricultural
Residential Persistence Change Change
Industrial Change Persistence Change
Agricultural Change Change Persistence

Neighborhood rules are considered the defining element of a LUCA
model (Van Vliet et al., 2013b). By expressing the influence exerted on
land use dynamics by both the land use in a location and the land uses in
neighboring locations, neighborhood rules have the greatest influence over
model outputs. Thus, this research focused exclusively on the parameters
of the neighborhood rules.

A Metronamica application for the Randstad area, a conurbation of the
four largest cities in the Netherlands and the surrounding area, was used as
a case study. The application was manually calibrated prior to testing.
Simulations were run from a period of 2000 to 2030. The land use for the
year 2000 and for a simulation to the year 2030 is shown in Figure 2.2,
with the corresponding land use classes and categories shown in Table 2.2.
There were a total of 16 land use classes, 10 of which were functions. Thus
the application had 160 possible neighborhood functions that could be de-
fined. 91 were manually calibrated prior to testing (detailed previously).
Ten result maps were generated using the calibrated parameters to serve as
synthetic data.
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Fig. 2.2 The Randstad region investigated, simulated from 2000 (left) to 2030
(right)

Table 2.2 The Randstad region land use class categorization and color code

Class Category Color
Other agriculture Vacant
Pastures Vacant
Arable land Vacant
Greenhouses Function
Housing low density Function
Housing high density Function
Industry Function
Services Function
Socio cultural uses Function
Forest Function
Extensive grasslands Function
Nature Function
Recreation areas Function
Airport Feature
Fresh water Feature
Marine water Feature

2.2 Metric Classification

Due to the inherent uncertainty and complexity of land use change pro-
cesses, it is not appropriate to validate a land use model exclusively on the
ability to reproduce historic land use changes. This results in over-
calibration at the cost of realism (Kok et al., 2001). Instead, a more com-
prehensive validation approach is required where land use models are
evaluated on the ability to be accurate and realistic (Hagen-Zanker and
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Marten, 2008). Within this scope, metrics are classified as quantifying ei-
ther locational accuracy or landscape structure, alternately termed predic-
tive and process accuracy respectively (Brown et al., 2005).

Predictive accuracy assesses whether land use changes are allocated cor-
rectly (Van Vliet et al., 2013a). Process accuracy assesses how realistically
a pattern has been simulated. Two types of process accuracy metrics are
currently used. First are landscape metrics derived from landscape ecology
(McGarigal, 2014) that are sub-categorized as measuring one of four com-
ponents of a landscape: area/edge/density, shape, contagion/interspersion
and diversity (Peng et al., 2010). Second are metrics derived from com-
plexity science such as Zipf’s law (Gabaix, 1999) and residential rank-
cluster-size distribution (White, 2006).

For this research landscape metrics derived from landscape ecology
were tested. Eight different metrics were selected, based on the subcatego-
rization scheme used in landscape ecology to determine if this distinction
was meaningful in a land use modelling context. Table 2.3 summarizes the
different metrics used, providing the sub-category and a brief description.
The calculation of the metrics was performed using the Map Comparison
Kit (http://mck.riks.nl/). The formula for each metric can be found in the
reference given.

Table 2.3 Summary of tested metrics

Metric Sub-category Description
Patch size a Area/Edge/Density The average size of patches

for the entire landscape
Edge density c Area/Edge/Density The average length of edge

segments in the landscape
relative to the total land-
scape area

Shape index b Shape A measure of the geomet-
ric complexity of the
patches composing the
landscape

Fractal dimension b Shape A ratio of complexity
comparing how detail in a
pattern changes relative to
the scale it is measured

Interspersion and juxtaposi-
tion of edges b

Contagion/Interspersion The extent to which patch
types are interspersed with-
in the landscape

Clumpiness c Contagion/Interspersion The proportional deviation
of the proportion of like
adjacencies involving the
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corresponding class from
that expected under a spa-
tially random distribution

Shannon’s diversity index c Diversity The proportional abun-
dance of each patch type
relative to the abundance
of that patch type in the
landscape

Simpson’s diversity index c Diversity The proportional abun-
dance of each patch type
relative to the abundance
of that patch type in the
landscape

a. Leitão et al., 2006
b. Hagen-Zanker, 2006
c. McGarigal, 2014

Certain spatial metrics can only be calculated for land use classes, and
not aggregated for the entire landscape. Of the metrics selected, clumpi-
ness required selection of such a class. For the research performed, the
class housing low density was selected for this purpose. This selection was
based on the assumption that urban regions were the major investigative
purpose of the case study used, and this class was the best proxy for urban
regions. However, this definition was arbitrary and is not necessarily trans-
ferable, as different application of the model will not always have the spec-
ified class or be constructed around investigating urban regions.

2.3 Testing Procedure

To determine if an identifiable relationship existed between the neighbor-
hood rules of a transition potential based, constrained CA model and the
landscape ecology metrics selected for testing (or the general sub-
category) a procedure was designed using a one-at-a-time sensitivity anal-
ysis approach. The procedure varied components of the neighborhood
rules, and measured the difference between observed and simulated metric
values, to explore the relationship between parameter values and metrics.

Tests were designed using the different categorizations and components
of the neighborhood rules that could be manipulated. The different tests,
listed in Table 2.4, were designed to alter various components of the
neighborhood rules as follows: Persistence, inertia point; change, conver-
sion point; persistence, tail; conversion, tail. Using a one-at-a-time sensi-
tivity analysis approach parameter values were varied about percentage in-
tervals, from 20% to 300% in 20% intervals, of the manually obtained
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calibrated values. The manually obtained (optimum) parameters were used
to generate optimum metric values against which the difference between
perturbed metrics was calculated. Therefore, the minimum difference was
expected at the 100% interval.

Table 2.4 Tests performed for evaluation of different components of neighbor-
hood rules

Test Name Explanation
1 Persistence Tail pt. 2 Percentage variation of the point of the tail at a

cell distance of 2 for the 10 persistence functions
2 Persistence Tail pt. 1 Percentage variation of the point on the tail at a

cell distance of 1 for the 10 persistence functions
3 Persistence Tail Percentage variation of all points on the tail (cell

distance 1-8) for the 10 persistence functions
4 Persistence Inertia Percentage variation of the inertia point (cell dis-

tance 0) for the 10 persistence functions
5 Persistence All Percentage variation of all points for the 10 per-

sistence functions
6 Change Tail Percentage variation of all points on the tail (cell

distance 1-8) for the 81 change functions
7 Change Conversion Percentage variation of the conversion point

(cell distance 0) for the 81 change functions
8 Change All Percentage variation of all point for the 81

change functions

Testing was performed by inputting the values for each neighborhood
rule based on the test being conducted into an Excel spreadsheet. A PHP
script was used to extract the inputs from the spreadsheet and input these
as neighborhood rules that were run through the command line version of
Metronamica. The stochastic nature of the model (random component
from transition potential equation) meant multiple runs for the same set of
parameters were required. Thus each iteration of the neighborhood rule in-
tervals was run ten times. A second PHP script was used to generate a log
file to store result maps that were used for evaluation. The MCK was used
to calculate metric values for each result map. Post processing compared
the results by calculating the difference for the ten synthetic data maps and
ten simulated maps. Thus, 100 difference measurements were calculated
per interval per test.
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3 Results

Determining the ability of different metrics to capture behavior of land use
model simulation outputs driven by adjustments to different model param-
eters required the definition of trends in the fitness function (difference be-
tween simulation and data metric values), referred to hence forth as ideal
behavior, as optimal. It was expected that the difference between metrics
calculated for data and for simulated outputs would be minimized for all
metrics for the manually calibrated parameter combination (100% of the
calibrated value). Therefore further definition was required to distinguish
better performing metrics. For behavior to be considered ideal, two further
trends in the difference between metrics calculated for simulations and da-
ta were expected in model results, shown in Figure 3.1 (a). The first was
that a steep, linear gradient towards the optimum parameter combination,
to make the search for the optimum solution faster, unlike Figure 3.1 (b).
Second, behavior was considered ideal if there was only one sign change at
the optimum parameter combination, which implied that only a single op-
timum solution existed, unlike Figure 3.1 (c).

Fig. 3.1 Idealized representations of different trends expected as results.
(a) Exhibits ideal behavior because of a steep gradient towards a single op-
timum solution. (b) Does not exhibit ideal behavior because the trend is
not a steep, linear gradient. (c) Does not exhibit ideal behavior because
there are multiple sign changes.

To summarize, when calculating the difference between observed and
simulated data, ideal behavior was exhibited by a difference between simu-
lated and observed metric values that:

- Had a steep, linear gradient to the calibrated value; and
- Had a single sign change at the calibrated value.

Difference

% of Calibrated
Value

Difference

% of Calibrated
Value

Difference

% of Calibrated
Value

(a) (b) (c)

100% of
Calibrated
Value

100% of
Calibrated
Value

100% of
Calibrated
Value
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With ideal behavior defined results were interpreted to distinguish
which landscape structure metrics were better suited to identifying parame-
ter changes in neighborhood functions. Results were compiled graphically
for each metric used, sorted by test.

Fig.3 2. The average difference of the patch size measured for simulated and ob-
served data for variations of neighborhood rule components

As shown in Figure 3.2, the trends between the differences in patch size
exhibited non-ideal behavior of the gradient towards the calibrated value.
Also, there was an unexpected increase in the difference for tests four and
five despite parameters closer to the optimal parameter set. Also for tests
two, three and six the difference had no sign change, whilst tests one had
more than one.
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Fig. 3.3 The average difference of the edge density measure for simulated and ob-
served data for variations of neighborhood rule components

As shown in Figure 3.3, the difference in edge density only exhibited
ideal gradient trends for test two and three. Although other tests exhibited
steep trends, they were not smooth, for example the local minimum in test
four. All tests resulted in a single sign change except for test one.
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Fig. 3.4 The average difference of the shape index measured for simulated and ob-
served data for variations of neighborhood rule components

The trends in the differences for shape index, shown in Figure 3.4, did
not exhibit ideal behavior. The gradients were not ideal for any of the tests
performed and only tests two, three and four had a single sign change.
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Fig. 3.5 The average difference of the fractal dimension measured for simulated
and observed data for variations of neighborhood rule components

As Figure 3.5 shows, gradient trends in the difference for fractal dimen-
sion were only ideal for test two. Other tests exhibited inconsistent gradi-
ents, and test one had no sign change, and tests four, seven and eight each
had greater than one sign change.
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Fig. 3.6 The average difference of the interspersion and juxtaposition of edges
measured for simulated and observed data for variations of neighborhood rule
components

The behavior of interspersion and juxtaposition of edges, shown in Fig-
ure 3.6, was not ideal. Only tests two and three resulted in a gradient that
was considered ideal for generating optimal parameters. Tests two, three,
four and six resulted in difference trends with a single sign change.
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Fig. 3.7 The average difference of the clumpiness of the class housing low density
measured for simulated and observed data for variations of neighborhood rule
components

The behavior of the difference in the clumpiness of the class housing
low density for a majority of the tests was ideal. Only test four and five
exhibited non-ideal gradient behavior, and the only test resulting in greater
than one sign change was test four.

As previously stated it was assumed the class housing low density was
the appropriate clumpiness class to measure. This was an important as-
sumption. A class had to be selected for the clumpiness metric to be calcu-
lated, because the metric cannot be calculated for the entire landscape (un-
like all other metrics used). As stated previously, the selection of the class
housing low density was based on the assumption that urban regions were
the major investigative purpose of the case study used, and this class was
the best proxy for an urban region. This definition was arbitrary and not
necessarily transferable. Therefore, to determine how dependent the per-
formance of the metric was to the class being measured, clumpiness was
calculated for different functional land use classes using data from test 4
(adjustments to the inertia points of persistence neighborhood rules). The
results are presented in Figure 3.8.

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0% 50% 100% 150% 200% 250% 300%

Di
ffe

re
nc

e

% of Calibrated Value

Clumpiness of Housing Low
Density

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

CUPUM 2015
Relationships between Cellular Automata based land use models … 

285-17



Fig. 3.8 The average difference of the clumpiness of three different land use clas-
ses measured for simulated and observed data for variations of neighborhood rule
components

The class industry was selected as another proxy for urban areas. Forest
was chosen for comparison if environmental space was being studied. The
results in Figure 3.8 show trends that still reach optimum solutions for the
calibrated value at 100%. However, what was notable for the clumpiness
measures of the alternative classes used was the presence of random spikes
that totally distorted the gradient of the difference trend. This reinforced
that using the class housing low density was appropriate.
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Fig. 3.9 The average difference of Shannon’s diversity index measured for simu-
lated and observed data for variations of neighborhood rule components

Fig. 3.10 The average difference of Simpson’s diversity index measured for simu-
lated and observed data for variations of neighborhood rule components

As shown in Figures 3.9 and 3.10 the diversity indices of both Shannon
and Simpson behaved almost identically (when adjusted for scale). None
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of the trends in differences exhibited an ideal gradient. Tests one, four, and
five had non-ideal sign change trends for both indices, with greater than
one sign change.

As highlighted in Table 3.1 the metrics clumpiness of housing low den-
sity was comparatively the most ideal metric, based on the percentage of
tests that resulted in trends with ideal behavior. This was due to the fitness
function trends for most clumpiness tests adhering to the definition of an
ideal gradient.

Table 3.1. Summary of results obtained from testing based on ideal behavior

Percentage of tests with ideal fitness function
behavior

Metric Gradient Sign change Both Rank
Patch Size 0.0 % 50.0 % 0.0 % 5th

Edge Density 37.5 % 87.5 % 2nd

Shape Index 0.0 % 37.5 % 0.0 % 5th

Fractal Dimen-
sion

12.5 % 50.0 % 12.5 % 4th

Interspersion
and Juxtaposi-
tion of Edges

25.0 % 50.0 % 25.0 % 3rd

Clumpiness of
housing low
density

75.0 % 87.5 % 75.0 % 1st

Shannon’s di-
versity index

0.0 % 62.5 % 0.0 % 5th

Simpson’s di-
versity index

0.0 % 62.5 % 0.0 % 5th

4. Conclusions and Recommendations

Previous attempts to automate the calibration of LUCA models have se-
lected metrics based on the assumption that any metric can be used in a
fitness function. Whilst it is true that all metric will exhibit optimum val-
ues for a fully calibrated model, this research was designed to more thor-
oughly investigate the relationship between metrics and parameters to
make the process of selection more fully informed. The specific research
objective was to determine if certain metrics derived from landscape ecol-
ogy were more sensitive to variations in neighborhood rules, considered
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the defining element of a LUCA model (Van Vliet, 2013), and thus exhib-
ited ideal behavior for use as part of automated calibration. Ideal behavior
was defined based on graphical interpretation as:

- Having a smooth, steep gradient towards the calibrated value; and
- Having a single sign change at the calibrated value

From interpreting the results it was concluded that clumpiness of the
class housing low density was the metric which exhibited the most ideal
behavior for use as a fitness function. Based on the results, edge density
was the next most appropriate, but exhibited less ideal gradient trends, im-
plying that solutions would take longer to find.

Further research is required on additional case studies, with the use of
historical periods to allow for comparison with real data, to verify the con-
clusions of hits research. Additionally, only landscape metrics have been
analyzed. Further research will also focus on predictive accuracy metrics
and process accuracy metrics derived from complexity science. Finally, the
role of additional processes used as part of calculating transition potential
must be assessed.
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