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Abstract 

Over the past few years, urban modelers have focused their efforts into 

making more elaborate simulations, which yield more explanatory power 

by merging together an increasing amount of urban features. In particular, 

the integration of Land-Use and Transport Interactions (LUTI) was a key 

step for urban models. The calibration of these increasingly complex simu-

lations has become a very challenging task, making pure mathematical 

models inaccurate because of the many assumptions they rely on. This pa-

per aims to extend the tools available to modelers in calibrating LUTI 

models, in order to manage this problem in a more efficient manner. This 

paper proposes a metaheuristic approach which considers the calibration 

problem as a global optimization problem, without relying on assumptions 

on the model. The chosen optimization algorithm is the Particle Swarm 

Optimization (PSO). It gradually improves the parameters of the model by 

testing and comparing the results with survey-based observations. 
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1. Introduction 

In the current economical context, the management of urban areas is be-

coming more and more critical. For a more accurate decision making, ur-

ban modelers have developed various simulation models which allow test-

ing the impact of potential policies on the city. Over the past few years, 

modelers have focused their efforts into making more elaborate models, 

which yield more explanatory power by merging together an increasing 

amount of urban features. Perhaps the biggest step in this process was the 

combination of land-use and transportation models into a single model in 

the late 1950s and onwards (Hansen 1959; Lowry 1964), which mimics the 

evolution on both sides and, more importantly, the interactions between 

them. This kind of integrated model is called Land-Use Transport Integrat-

ed (LUTI) model. The main objective of a LUTI simulation is to make 

forecasts of an urban area’s evolution in the context of a given scenario, 

which is a collection of policies to test. This scenario is evaluated through 

the simulation, allowing to assess the benefits of the considered policies 

and helping to determine the best option for the decision makers. 

 

 

 
Fig. 1: Land-Use/Transport feedback cycle (from (Wegener and Fürst 

1999)) 

 

In (Wegener and Fürst 1999), the authors identify the main components 

and interactions of a LUTI model. These interactions are summarized in 

figure 1 (drawn from (Wegener and Fürst 1999)). The interface between 

Land-Use and Transport is clearly defined: the land-use generates local-

ized activities, which impact the way the transportation infrastructures are 
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used. The transportation system simulates the congestion of the network, 

and the resulting travel times alter the accessibility measures to the fea-

tures of the city, which will in turn influence how the city actors (house-

holds, companies, etc.) make their decisions. In short, the figure shows that 

these models involve a lot of different aspects, and how complex their in-

teractions are. 

Although LUTI models are getting more notoriety, they are still mar-

ginal because of their lack of precision, particularly at small scales. This 

lack of precision makes it hard to draw conclusions about the results of the 

simulation. In order to increase the accuracy of the simulation, the calibra-

tion of the model should be treated very carefully. However, only a few re-

search or practice works have taken any particular attention to the matter. 

Instead, they focus on each individual submodel and calibrate each of them 

independently using essentially statistical estimation (Haller et al. 2008; 

Kakaraparthi and Kockelman 2011). This is a logical extension of the state 

of the knowledge of the LUTI modelers: they used to run each submodel 

independently. Nevertheless, when integrating models together, this meth-

od comes to its limits.  

This paper aims to extend the tools available to modelers in calibrating 

LUTI models, so to manage this problem in a more efficient manner. In 

particular, instead of relying solely on model estimations, this paper pro-

poses to use metaheuristical optimization to calibrate the whole LUTI sim-

ulation. The advantage with global optimization approaches is that they 

avoid the definition of an estimation model, which rapidly becomes intrac-

table when the number of interacting submodels increases. The proposed 

metaheuristic is a Particle Swarm Optimization (PSO) algorithm. This pro-

cedure explores the space of possible parameter configurations to find the 

best one, based on comparisons between the simulation results and ob-

served data of the real system. 

The next section details the problem of calibrating LUTI simulations, 

and presents the global optimization procedure. Then, in Section Error! 

Reference source not found., the PSO and its application to the calibra-

tion problem are explained. Some concluding remarks and perspectives to 

this work are given in Section Error! Reference source not found.. 

2. LUTI calibration 

2.1 Context 

LUTI models are composed of heterogeneous submodels, which interact 

with each other on many levels. Each submodel has a set of parameters 
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which need to be calibrated. The calibration of LUTI models is hard for 

several reasons. First, the number of submodels that are involved, and their 

interactions, makes it difficult to devise a complete and tractable model for 

the calibration. The model also uses a huge quantity of data that needs to 

be processed. The simulation run is therefore very time consuming, espe-

cially in the transportation affectation step, and it doesn’t allow for thou-

sands of trials of parameters values. Moreover, modeling an urban system 

involves simulating people’s behavior, which is impossible to predict ex-

actly. Statistical estimation doesn’t apply very well here because of the 

many assumptions it makes about the nature of the problem and its data, 

which are in contradiction with the complexity and the highly retroactive 

effect of each submodel with the others. In this paper, a more general ap-

proach is proposed. 

Similarly to Abraham’s classification (Abraham 2000) of estimation 

methods, several approaches to LUTI models calibration can be envi-

sioned. The most simple is the piece-wise procedure, where each submodel 

is calibrated independently. The interactions between submodels are not 

taken into account, so there is no guarantee that the overall model would 

even be fit. Another simple and common one is the limited view or black 

box approach. This is a purely holistic manner of solving the problem, 

where all the parameters are tuned at the same time. Both techniques can 

be combined, resulting in the sequential procedure. First a piece-wise cali-

bration is used, then a black box one is conducted in order to ensure that 

the overall model is fit. The simultaneous approach is the most theoretical-

ly appealing one, but also the most difficult to set up. Like in the sequential 

approach, both the individual submodels and the overall model are taken 

into account, but they are calibrated at the same time. However, this re-

quires observed data for the intermediary steps of the model, which is not 

always available. 

In simulation in general, it is common to perform calibration using op-

timization-based techniques, and in particular metaheuristics for optimiza-

tion (Valente et al. 2008; Fehler et al. 2004). This practice usually gives 

good results, although it may be criticized, for it is often used in a black 

box manner. 

2.2 Process 

The proposed calibration process relies on an iterative procedure. The 

model is expected to be able to reproduce a given state from an earlier 

known state of the system. Several values of the parameter vector are tried 

in succession, and the one that gets the model the closest to the known fi-

nal state is considered the best, and kept. Thus, calibration requires a way 
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to compare the simulation output to the observed situation: the objective 

function. It also requires input data  at date  that describes the initial 

state, and observed data  at any given date  to compare with.  

The calibration algorithm sets the model parameters, and runs it on the 

period . Then, it compares the observed data  to the simulated 

data  from the model’s output, and measures an error  between 

them. The goal is eventually to minimize this error to an acceptable 

threshold. LUTI calibration then amounts to finding a good objective func-

tion and calibration algorithm. This process is summarized in figure 2. 

 

Fig. 2 : LUTI Calibration process 

This process can lead to either black-box or simultaneous calibration. If 

the comparison between the observed and simulated data produces a single 

value, then it is a black-box calibration. However, if the algorithm allows 

calibrating multiple objective functions (as in Multi-Objective Optimiza-

tion), then it is possible to define one objective function for each submodel 

by comparing different aspects of the output. The resulting procedure 

would then be simultaneous. 

This paper’s proposal uses a standard PSO implementation, which falls 

into the black-box category: it calibrates all parameters at once without dis-

tinction. However, the architecture and agent-oriented implementation fa-

vor a simultaneous variant, as will be described in Section Error! Refer-

ence source not found.. 

2.3 Software Architecture 

No general LUTI tools have reached a consensus in either the research 

community or among practitioners. Instead, a common approach is to 

combine existing well-known tools from both the transportation and the 

land-use simulation fields. In this paper, the authors use the Open Platform 
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for Urban Simulation (OPUS (Waddell et al. 2005)) for the land-use part, 

and PTV Visum1, a commercial software, for the transportation part. 

OPUS is fully written in Python, while Visum can be controlled through a 

Python API. A first task consisted in the development of a software inter-

face between them.  

This interface is dedicated to the development of Calibration and/or 

Validation procedures. It has been designed to assist in two operations:  

• The data transfers between the land-use and transport parts: generation 

data, and accessibility measures, to allow a full LUTI model run in single 

unified step,  

• The design and automated run of a whole Calibration and/or Validation 

procedure, by scheduling the essential tasks to achieve it.  

This interface contains three main components, pictured in figure 3. 

The first one is dedicated to running the LUTI model. For each software, a 

manager automatizes the most common operations. These operations are 

called from a specific object called an Interaction, which handles the 

communication between Land-Use and Transport and eventually defines 

the workflow of the LUTI model. The Interaction can take a set of run pa-

rameters as input, which are then used to parameterize the submodels in 

the context of calibration, for example. It outputs the raw results of the 

model. 

A second layer is added on top of the Interaction, for the definition of 

Calibration and/or Validation procedures. This layer consists in Phases, 

which call the Interactions with specific parameters. A Phase may for ex-

ample correspond to the process of calibration or validation. The calibra-

tion Phase uses the Interaction as an objective function of the LUTI model, 

it then only has to set up an optimization algorithm around it, such as the 

one described in Section Error! Reference source not found.. A Scheme 

can schedule the various considered Phases, so that a change in the LUTI 

model design can be quickly and automatically evaluated. 

The last component is a graphical user interface which allow the mod-

eler to overview, determine and potentially guide the calibration proce-

                                                      
1 http://vision-traffic.ptvgroup.com/fr/produits/ptv-

visum/ 
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dure. 

Fig. 3 : Software Interface 

3. Particle Swarm Optimization 

3.1 Principles 

In this paper, a Particle Swarm Optimization (PSO) (Eberhart and Kenne-

dy 1995; Clerc 2010) algorithm has been developed for the calibration of 

LUTI models. PSO is a population-based metaheuristic that tries to mimic 

the behavior of a swarm of individuals (particles) working toward an ob-

jective, like foraging bees, for example. A PSO algorithm requires two el-

ements: a space to search in, and a collection of particles. The Search 

Space is an n-dimensional space containing all possible solutions for the 

problem: every possible value of the vector of parameters. It is required 

that each solution can be associated to a single value which indicates its 

quality. This value is called the fitness value and what provides it is called 

the objective function. The particles are objects that move across the search 

space and communicate with each other. Each particle has a current posi-

tion  and velocity , and retains its best solution  found so far: the posi-

tion which gave the best fitness value. At each iteration of the algorithm, 

the particles are attracted toward a promising neighboring area in the 

search space, retrieve the fitness value of their current position, and com-

municate their best known solution  to a few other particles. This way, 

they move together toward the best solutions, while retaining a wide explo-

ration around these solutions so that it doesn’t stick to local optima. Figure 

Error! Reference source not found. pictures the behavior of a PSO on a 

very simple problem, when each particle communicates its information 

immediately to every other one in the  

 

Fig. 4 : Behavior of the PSO solving the sphere function 𝑓(𝑥1, 𝑥2) =
(𝑥1)

2 + (𝑥2)
2, considering immediate transfer of the information 
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Even though metaheuristics are meant to be general solving methods, 

their effectiveness might differ depending on those problems’ nature. PSO 

has several advantages: it is efficient with most types of problems, includ-

ing ones with continuous parameters, multiple local optima, very accident-

ed search spaces, discontinued functions, or a dynamic search space (Clerc 

2010). Although being a population-based approach, it doesn’t require 

many individuals to converge (Das et al. 2008), and thus demands less 

simulation calls than, say, a genetic algorithm. Given the time consump-

tion of one LUTI simulation call, this is especially valuable. PSO has also 

been extensively used in Multi-Objective Optimization (Lalwani et al. 

2013; Liu et al. 2011), which allows for further developments toward sim-

ultaneous calibration by using one objective function per submodel. PSO 

can also very easily be distributed over a computer network and thus its 

computation can be further accelerated. 

Parameter-free implementations of PSO exist, however they might re-

quire some time at the beginning of algorithm to self-calibrate. Since PSO 

is used as a calibration algorithm itself, the PSO-related parameters should 

not influence the final results of the LUTI model very much, so a paramet-

ric version is not a problem. Therefore, it is not necessary to spend time 

calibrating the PSO algorithm itself, instead the parameters are set to fixed 

a priori values, coming from general best practices. 

3.2 Design Choices 

As a first try, a standard PSO design (Riccardo et al. 2007) has been im-

plemented. This implementation contains a single swarm of 10 particles. 

The particles communicate their best known solution at each iteration of 

the algorithm, and each particle informs 3 other ones on a pattern that is 

defined prior to the algorithm run. It is ensured that the information from 

one particle can reach every other one after several iterations. 

The particle movements follow the rectangular distribution (Clerc 

2010), which is the reference implementation for PSO in its random varia-

tion. The rectangular distribution uses equation (1),  is the position of the 

particle,  its speed,  the particle’s self best and  the particle’s known 

best. The two constants are  and  (taken from general 

indications by (Clerc 2010)): 

 

(1) 
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When the particle’s self best is also the particle’s known best, the speed 

equation becomes equation (2) so that one single solution is not given a too 

important weight, thus keeping more diversity in the exploration. 

 

  (2) 

3.3 Implementation 

The PSO algorithm has been developed using SARL (Rodriguez et al. 

2014), a holonic agent-oriented language. Agent-oriented programming 

focuses on implementing the behavior of independent interacting agents, 

rather than defining and manipulating objects. This kind of approach natu-

rally provides some high-level features such as distribution, interaction, 

autonomy or dynamic reconfiguration. It focuses on how things happen ra-

ther than what can be done. A holon is a conceptual being that is both a 

whole and a part of something. In terms of agent programming, it allows to 

define agents composed of other agents and able to act either independent-

ly or as the sum of their components. 

PSO translates very easily into agent-oriented design: each particle in-

dependently moves within the search space, makes decisions about its next 

move, and communicates with other particles. Moreover, the holonic ap-

proach naturally encompasses the multi-swarm approaches (Clerc 2003); 

Yen and Leong 2009); Peng et al. 2014), since a swarm can be defined as 

the sum of its particles (or even other sub-swarms). In the context of LUTI 

modeling, each submodel may be represented by a collection of sub-

swarms responsible for its calibration, and the communications between 

super-swarms ensures the feasibility of the global model. However, this 

theoretical model remains to be tested. 

The PSO hierarchy is pictured in figure . 5. Each Model is an aggregate 

of Swarms, which are aggregates of Particles. Thus, the calibration can ei-

ther focus on one single model or submodels, or treat several submodels at 

the same time. A Model holds a collection of parameters, which determine 

the search space. The Particles have a position in the search space, and this 

position determines the value of the parameters. Each (sub)model can be 

calibrated either by a multi- or mono-swarm approach. Communication 

contexts between Swarms, and between Particles of a single Swarm, are 

automatically handled by the holonic design. This paper’s application con-

sists in a single Model and a single Swarm, and a Particle’s position gives 

the value for every considered parameter of the model.  
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Fig. 5 : Holonic PSO hierarchy. The arrows represent the communica-

tion between agents 

 

The SARL software manages a list of simulation calls with the corre-

sponding parameter values. The calibration Phase of the LUTI tool then 

hooks to the SARL software to retrieve these parameter values, uses it to 

run the Interaction, and sends the results back to the PSO. 

4. Conclusions 

This paper explains the challenges of LUTI Calibration and proposes an al-

ternative to the state-of-the-practice methods for solving it. Indeed, the ex-

isting methods have shown their limits. A detailed methodology for the 

calibration of LUTI models, based on a metaheuristics optimization meth-

od, has been given. The Particle Swarm Optimization (PSO) algorithm has 

been chosen to solve the problem, because it is able to converge within a 

few iterations, while keeping the broad exploration of a population-based 

approach. It is also a widely used algorithm, which has proven efficient in 

solving numerous kinds of problems. A holonic multi-agent PSO has been 

implemented and described, and it is currently being applied to the calibra-

tion of a LUTI model of the Greater Paris. 

The method remains to be thoroughly tested on a real case. However, 

one can build on the simulation literature (Valente et al. 2008; Fehler et al. 

2004; Andradóttir 1998) to verify that this kind of approach gives con-

sistent results. PSO comes in many variants, and it is not yet clear to the 
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authors which one would give the best results on LUTI calibration. A ded-

icated comparison would give valuable insight for choosing one. 

Another interesting characteristic about PSO is that it can easily be 

modified to allow interaction with the user. This has a double advantage: 

for the algorithm it becomes easier to handle multi-objective functions, and 

it also has many benefits for the user since it counters the black-box effect 

and allows to manually drive the model toward intuitively interesting di-

rections.  

Last, optimization-based approaches can be coupled to statistical estima-

tion techniques, with estimation being valuable for screening the parame-

ters and properly initializing the optimization algorithm. 
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