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Abstract 

Big data is here: urban infrastructure systems are being instrumented to pro-

vide continuous reports on their performance; buildings are monitoring and 

reporting occupancy and energy use; distributed water and air quality sen-

sors are providing real time information on dozens of environmental param-

eters. Cell phone location data is providing a detailed view of the activity 

patterns for millions of urban residents. However, when the utility of big 

data is discussed almost all of the examples provided are short-term man-

agement applications. There are very few examples of big data being used 

in long range planning. This paper discusses why big data is particularly 

well suited to short term management applications and identifies the factors 

that have limited its use for longer range planning. This paper also provides 

examples of how big data can be abstracted in ways that are useful for long 

range planning, and how these uses differ from the short-term management 

applications that are so commonly discussed.  
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1. Urban Big Data 

Traditional structured data sets can be thought of as a large cube. Like a 
simple flat file, big data sets can consist of a large number of rows (or 
observations) that are described by a large number of fields (or variables).  
Many big data sets add a third temporal dimension that includes recurring 
observations over time, sometimes on a second by second basis. Many of 
these data sets can be joined to variables in other structured data sets using 
some common identifier. Since many of these records are tagged with 
geolocation or a time stamp, and sometimes both, time or location can often 
be used to join otherwise unrelated data sets. In addition to this traditional 
structured data, we now have vast amounts of unstructured data (e.g. drone 
videos, Tweets, Facebook posts, YouTube videos, Foursquare check-ins, 
surveillance videos and much more).  As shown in Figure 1, while 
unstructured, much of this new data incudes time or location information 
that allows it to be linked to the more structured data. The world has rapidly 
moved from a data poor environment to a data abundant environment. 

If you live in a metropolitan area, think of all the cars on the roads in your 
metro area at rush hour. Assume that each of those cars contains a cell phone 
or two. Each of those phones is keeping track of its location on a second by 
second basis and reporting it back to its network (Herrera et al., 2009). Even 
today, Google, Waze and other mapping services are polling the location of 
these cell phones and using that information to produce real time traffic 
maps. These maps can help drivers change their routes to avoid congestion 
and are already improving traffic flow incrementally. Now imagine storing 
all that data for a year, or maybe twenty, and using it to identify recurring 
patterns of congestion and how drivers adapt to it. 
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Figure 1: The Big Data Stew on Structure and Unstructured Data 

 
 

All those rush hour vehicles are traveling over a dense network of freeways, 

roads and streets. Google, Apple and Baidu have these networks defined so 

precisely that your cell phone can tell you to move into the left lane to turn 

left in fifty feet. Simultaneously, these systems are dynamically tracking the 

position of tens of thousands of vehicles. Now imagine that very soon all 

those cars will join the Internet of Things (IoT) (Gartner, 2013). Smart ve-

hicles will be monitoring and recording the behavior of the engine and the 

car’s other major systems, as well as your driving, braking and acceleration 

behavior. Analysis of this data will allow your car to adjust its systems to 

match your driving behavior (and report it to your insurance company, if 

you choose to share it to decrease your insurance rate).  

 

Each car will also have sophisticated communication capabilities. The car 

will be able to communicate with other vehicles, sensors in the roadway and 

various destinations. Sensors embedded in the roadway will let the driver 

and vehicle know about current traffic patterns, congestion and weather con-

ditions. Much like the Positive Train Control system being deployed to reg-

ulate the speed of trains in dangerous areas, embedded roadway sensors will 

be able to slow vehicles at busy pedestrian intersections and school zones. 

Your vehicle will be also able to contact the parking deck at your destination 

to find available parking spaces. These advanced communication capabili-

ties will assist drivers and allow vehicles to operate in a semi-autonomous 

manner. Even though Google has recently deployed self-driving, autono-

mous vehicles, we believe that hybrid human-cyber vehicles will predomi-

nate for the next decade or more. There will be few completely autonomous 

vehicles, but many vehicles will operate with a form of urban cruise control 
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that is an extension of today’s crash avoidance and blind spot detection tech-

nologies. This urban cruise control system will manage much of the car’s 

operation, but can be overridden by the driver, much like the automatic pilot 

on an aircraft.   

 

Automobile manufacturers have already begun to develop these capabilities 

in cars on the road today. Mercedes Benz has developed “collision preven-

tion assist” that uses radar to scan the environment to assess if vehicles are 

stopped or slowed ahead of the moving vehicle. This assist mechanism alerts 

drivers to take action by braking, and responds by increasing the intensity 

of the braking based on the distance between the car and the obstacle ahead. 

Additional technologies available in Mercedes vehicles include “attention 

assist”, “active blind spot assist” and “active lane keeping assist.” Other car 

manufacturers are employing similar technology for parking assist that al-

lows a car to autonomously park itself using cameras, sensors and radar to 

detect the proximity of surrounding objects and parked cars. Ford, Toyota, 

Hyundai, and Land Rover  currently offer these technologies in their late 

model cars and SUVs. Each of these assisted driving technologies can act 

autonomously if the driver does not respond to audio, visual, and tactile 

prompts from the car. These technologies represent capabilities that will be 

required by fully autonomous vehicles, but will first be implemented as fea-

tures to assist drivers rather than replace them. These technologies are al-

ready on the road today.  

 

To improve safety and optimize traffic flow, the cars will also communicate 

with each other. Typically, each car will be exchanging data with three to 

four dozen nearby cars about its speed, position and destination. This com-

munication between vehicles combined with autonomous control features 

will allow vehicles to operate with reduced headways. By eliminating the 

response time required for human braking, vehicles can be spaced more 

closely, thereby increasing the capacity of existing highways (Dickerson, 

2015). Mercedes Benz is already selling cars with “distronic plus” that uses 

an adaptive cruise-control feature to pace the car’s speed with the flow of 

traffic and autonomously brake to avoid collision. Perhaps more significant 

than the impact these automobile technologies will have on individual driv-

ers is the impact they could have on future infrastructure projects. It has been 

estimated that traffic congestion delays could be eliminated in metro Atlanta 

within the next ten years by utilizing technologies such as urban cruise con-

trol, mobile applications for ride-sharing, and HOV to HOT lane conversion 

on the fly (Dickerson, 2015).  
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All this data can be aggregated up to the system level to predict impending 

congestion. A centralized traffic control system will operate smart signage, 

entrance metering and stoplight timing so as to minimize overall congestion, 

energy use and air pollution. Sophisticated signage and vehicle communica-

tion systems will re-route traffic to compensate for temporary disruptions to 

the system such as accidents, chemical spills, terrorist threats or natural haz-

ard events, such as mudslides, earthquakes or street flooding. The system 

will actually be able to learn and get better at managing the system over time 

as it applies machine-learning techniques to understand and improve a 

whole series of operational parameters that affect overall transportation sys-

tem performance. Intelligent systems, sensors and communication will 

make the transportation system safer, more efficient and more resilient and 

can do so “at a fraction of the cost of a road-intensive solution” (Dickerson, 

2015).  

 

There will a separate freight system that is optimized to reflect daily and 

seasonal changes in demand for various products.  It will coordinate air, rail, 

and truck systems into a seamless multi-model system. Large retailers like 

Amazon, WalMart , Home Depot and the major grocery chains will monitor 

and analyze their sales data to forecast demand, so they can stage products 

throughout their supply chains to provide their customers with near imme-

diate delivery of the goods they want.  Shipping companies like UPS and 

FedEx have already optimized their routing algorithms to eliminate time and 

energy wasting left turns and minimize the time spent idling at stoplights. 

Last mile delivery of prepared food or groceries will be provided by services 

like Zifty and Instacart that deliver restaurant meals directly to households.  

This will be especially important with an aging population with limited mo-

bility. Big data will facilitate the movement and distribution of goods and 

connect customers more directly to the supply chain and manufacturing sys-

tems. 

 

Transit systems will also be improved by the collection and use of highly 

detailed data.  Applications like NextBus already use GPS and wireless net-

works to communicate the arrival time of buses at bus stops. Transit swipe 

cards provide detailed data on riders’ origins and destinations by day and 

time (Batty, 2014). Car sharing services like ZipCar, ride sharing services 

like Uber and Lyft and bike sharing programs provide even more detailed 

data about individual travel patterns. These travel records can be also be 

linked to purchase patterns and demographic characteristics via credit card 

transaction records and Twitter, Weibo and Foursquare location data. Most 

of this individual data will remain private, but it will be aggregated and dis-

tributed in various forms, much as today’s targeted marketing data is. 
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Now combine all this structured data with the feeds from surveillance cam-

eras, red light cameras, drones and all the posted video, image and text data, 

that contain time and location tags and we begin to see the magnitude of the 

data that is becoming available. Individual photos and videos can be knitted 

together to provide a comprehensive and dynamic image of the city.  Com-

bining this unstructured data with the vast amounts of structured data pro-

vided by intelligent systems and you have not just big data, but urban big 

data. 

2. Beyond Management 

But notice that the illustrative examples above are about the operation of 

existing systems.  The systems may be able to learn and improve and even 

evolve over time, but few of us would be willing to surrender our ability to 

shape the urban environment, which will soon house 80 percent of our spe-

cies, to a set of operational algorithms. Optimization approaches have long 

been found inadequate when it comes to designing and planning the com-

plex interacting systems that comprise an urban area (Harris, 1999). That 

requires values to guide the tradeoffs required to choose among competing 

and conflicting priorities. Big data provides a way to build and test theories 

about cities and advance our ability to model the urban area and the behavior 

of households, firms and institutions within it. We can use urban big data to 

build, test and advance our theoretical framework of how cities grown and 

develop (Bretagnolle et al, 2006). A strong theoretical foundation is neces-

sary to intentionally modify urban systems and settlement patterns to im-

prove the environmental, economic and social conditions in which humans 

live. This requires a set of models that can help link potential interventions 

to intended outcomes.  Big data can help us do this better with fewer unin-

tended consequences, but it cannot be a substitute for causal models that 

connect specific policy interventions to outcomes. 

 

In his widely cited “End of Theory” article Anderson (2008) argued that 

with the advent of big data, we can simply observe the patterns and correla-

tions in the data and will not need to build explanatory models.  For the last 

200 years science has operated by developing hypotheses, constructing 

models, collecting data to test those models. Anderson argues that we no 

longer need to know why people and systems behave as they do, just that 

they do. No causal models are required because “with enough data, the num-

bers speak for themselves.”  Other scholars have followed this line of think-

ing, while considering the challenges that big data poses for researchers and 
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theoretical constructs (Boyd and Crawford, 2012; Graham and Shelton, 

2013; Lazer, et. Al., 2014). If we now have virtually all the data necessary 

to describe the function of an urban area, why do we need to build a model 

of that system?  This position might possibly make sense, if we are only 

concerned with the short-term management of urban systems.  We can ob-

serve the key parameters and optimize the performance of the system by 

responding to real time data feeds. Some have suggested that optimizing 

urban systems so they run smoothly may be the best that urban planners can 

hope for. While useful for short-term management, this is not adequate to 

plan for an uncertain future (Klosterman, 2013).  

 

Urban areas consist of more than just their infrastructure systems and trans-

portation networks. These systems underpin a tapestry of urban develop-

ment comprised of a complex mixture of land uses. This patterns of land 

uses changes over time, but at a rate that is orders of magnitude slower than 

the transportation operational adjustments described above. The land use 

pattern can be guided to create an urban area that better meets the needs of 

the residents of the urban area. But shaping that land use pattern over time 

is not a simple optimization problem like managing the flows on a transpor-

tation network. To plan the future of the complex interacting systems that 

comprise an urban area requires a theoretical understanding of how various 

systems are related to each other and how they are influenced by exogenous 

factors (Batty, 2013). Big data can help us develop and test theories about 

how the urban systems works, but it cannot substitute for the theoretical 

foundation needed to plan for an uncertain future. 

 

Nearly forty years ago by Chapin and his associates (1979) developed a con-

ceptual model of the urban landscape and the way it shapes the behavior of 

urban occupants.. This model can be useful in thinking about how to marshal 

big data to support planning decisions.  The urban activity system model 

provides a micro-level, bottom-up framework for understanding peoples’ 

use of and movement within an urban area.  Although sit has been around 

for quite some time, this theoretical framework provides a useful guide to 

how we can harness big data to create a 21st century planning paradigm. We 

will briefly discuss this theoretical model below. 
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3. Urban Activity Systems 

Chapin and his colleagues developed a human-centered view of the city 

based on human activity patterns. This approach provided a framework to 

describe how households, firms and institutions interact with a fixed pattern 

of land uses and infrastructure to meet their economic and social objectives. 

Members of households live, work, shop and play in the midst of a complex 

set of land uses that provide them with a wide variety of opportunities. A 

household locates itself in order to meet those needs as well as it can given 

its budget constraints. Similarly, firms locate their plant and equipment to 

balance their needs to import raw materials and ship finished products in 

and out, while employing workers and attracting customers to their location. 

In the short run these actors operate within a fixed pattern of land uses and 

infrastructure. But, over time the urban area will change its size, shape and 

form.  The community can shape and re-shape the urban landscape to make 

it easier for actors to meet their needs.  Planners and policy makers have the 

opportunity to make the urban landscape “more user friendly” over time 

through infrastructure investments and changes in the land use pattern. In 

Chapin’s time we did not have the means to collect the data necessary to 

understand these complex patterns or to analyze the data if it had been avail-

able. Urban big data makes this possible. 

 

Historically, communities have made urban planning decisions with limited 

information and a fairly crude understanding of how various factors interact.  

This has produced some successes, such as the elimination of tenements and 

separating residential uses from noxious industrial activities. But it also pro-

duced some unpleasant surprises, like the social isolation, increased energy 

use, and other environmental impacts that have resulted from the decentral-

ized monocultures that characterize the current suburban land use pattern 

(Duany and Plater-Zyberg, 2001). 

 

But now urban big data provides the opportunity to understand the nuances 

of these systems and to find correlation and causality that was simply not 

possible with occasional sampling through small surveys. We can now get 

a detailed view of how people, firms and institutions use urban space and 

more rapidly identify the complex patterns of behavior that characterize an 

urban area. 

3.1 Travel Behavior 

Metropolitan Planning Organizations (MPOs) regularly conduct household 

travel surveys to update their regional travel demand models. These surveys 
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help MPOs understand travel behavior within their region and examine 

changes in travel behavior over time.. Although household travel survey 

practices vary among MPOs, their cost and effort limit their scope and fre-

quency. For example, the Atlanta Regional Commission (ARC) conducts its 

travel survey about once every ten years. Its most recent survey was con-

ducted in 2011. This survey collected information from 10,278 households 

across the 20 country metro region (ARC website). The previous survey was 

conducted in 2000.  The Atlanta metropolitan area grew by more than 1.6 

million people and saw the development of several major residential and 

employment centers between these two surveys. 

 

Although the data collection and sampling methods use in these surveys are 

widely accepted, the expense and time required to gather travel information 

from households means that each MPO can only survey a limited sample of 

households within their region. Given that travel behavior can now be col-

lected through a variety of mechanisms and sensors, it appears that the 

household travel survey is ripe for redesign and reinterpretation in the age 

of big data. Travel behavior is a fundamental component of long range trans-

portation planning, and as such it impacts our ability to forecast travel in 

regions and to plan for medium and long-range infrastructure investments 

and land use change.  The characteristics of current household travel surveys 

that are frequently critiqued include: small sample sizes, misleading repre-

sentation of certain household types (often over-weighted for households in 

more rural and suburban counties or underweighted for households living in 

mixed use, higher density areas), and the expense and time required to com-

plete even a limited survey. Response rates for travel surveys are also typi-

cally low—for example, the response rate for the ARC Regional Travel Sur-

vey (2011) varied from 5.9% to 34% across counties. This response rate is 

relatively high compared to similar metro regions across the Country (ARC, 

Regional Household Survey Report, 2012).   

 

Recognizing that travel diaries do not represent the best available data col-

lection method, the ARC and other metro areas have begun to incorporate 

Global Positioning System (GPS) devices into their survey procedures. In 

the recent ARC travel survey, GPS devices were deployed to 1% of the sur-

vey respondents and collected travel data for seven days. This data is typi-

cally less burdensome on the respondent (data is automatically tracked by 

device in car or on a person) and more accurate than travel diaries.  The 

ability of travel data to be tracked with wearables now makes this type of 

data collection both more prevalent and less expensive. Comparisons of 

GPS travel data with travel diary data have shown that travel diaries typi-

cally omit 10% to 20 % of household trips. 

CUPUM 2015
Moving beyond Operations: Leveraging Big Data… 

194-9



 

3.2 Potential of New Sources of Travel Behavior Information 

Other sources of information on travel behavior include mobile applications 

like Uber and Lyft. Uber is the current leading mobile app that connects 

riders with private drivers willing to share empty seats in their vehicles. 

While serving clients, Uber also collects data regarding how people travel 

through the city (including origin, destination, route, and time). Although 

Uber has recently come under fire for its privacy policies and faces legal 

challenges from traditional taxi companies, the ability to use this type of 

data for long range transportation planning is still worth exploring. This kind 

of data is critical for city and transportation planners to understand because 

it represents travel behavior of specific subgroups at a more fine grained 

level.  

 

Earlier this year, Boston partnered with Uber, in the hopes that the ride-

sharing service could help shine light on the city’s transportation needs. In 

the future, Uber will provide Boston planners with their customer’s trip in-

formation, including trip origin, destination, departure time, distance, and 

duration. However, to protect riders’ privacy, the locations will be aggre-

gated to zip code level. Given this information, planners will have access to 

a variety of detailed travel data that was previously unavailable; for exam-

ple, planners will be able to estimate the travel time between two general 

locations by time of the day. Although the Uber data will have representa-

tion issues (i.e. people who use Uber may not have the same demographic 

and socioeconomic profile as the overall city population) planners still ex-

pect this information to be useful as a way of reflecting the vehicular traffic 

conditions on roads throughout the day. 

 

Boston’s chief information officer, Franklin-Hodge suggests that the Uber 

dataset will become one of the most helpful datasets in terms of informing 

their transportation and planning conversations for long-term development 

initiatives (Enwemeka, 2015). Many cities have also attempted to use data 

from Waze, a crowd-sourced map application, to obtain traffic conditions 

by location and time. Both Uber and Waze data are limited in terms of data 

resolution and population representation. So far, these datasets cannot com-

pletely replace conventional travel surveys. For example, the data available 

from these providers does not include important trip characteristics, such as 

occupancy and purpose. In this regard, the data could be used to supplement 

a household survey, but not yet as a replacement.  
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In addition to the mobile applications discussed above, some studies have 

also explored the possibility of using location based social media data to 

understand people’s activity patterns to inform decision makers in the plan-

ning process. For instance, Hasan et al. (2013) used Facebook, Twitter and 

Foursquare check-in data to understand urban activity and mobility patterns. 

Studies like Hasan’s will be critical as MPOs look to expand their data sets 

for use in developing and refining regional activity based travel demand 

models. Similar to the Uber and Waze data, social media data also have rep-

resentation problems. However, these early attempts to make use of this type 

of data are important examples of how to incorporate big data into the long-

term transportation and land use development process. With the increasing 

market penetration of mobile applications and social media along with a 

maturing legal structure regarding the sharing of such kinds of public data, 

there is no doubt that in the future big data will become an indispensable 

part of long-term transportation planning, especially in the travel demand 

modeling phase.  

 

The Florida Department of Transportation (FDOT) has been an early 

adopter in using data analytics on big data. They have used detailed data 

from road sensors and probe vehicles to identify bottlenecks in their Strate-

gic Intermodal System (SIS), the backbone highways that carry the majority 

of Florida’s intercity traffic.  Bottlenecks are those areas that experience re-

curring congestion. This data set recorded speeds at 5 minute intervals and 

contained 64 million automobile records and 17 million freight records. De-

tailed analysis of this data is guiding transportation system investments and 

improvements to eliminate bottlenecks within the network. 

 

It is clear that more and more detailed data on activity patterns within cities 

is being created and collected by various applications and this trend will 

only increase in the near future.  Capturing this data to paint a dynamic pic-

ture of human activity within an urban area in now within reach. 

 

 

4. Urban Planning with Big Data 

Long range planning is more challenging than short-term management be-

cause it requires anticipating the effect of policy interventions and the 

changing behavior of citizens.  These challenges cannot be met with big data 

alone, instead we must develop theories to explain relationships to forecast 
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and understand the impacts of potential interventions. As shown in the ac-

tivity systems case, big data can certainly help develop theory based on the 

collection of data that more accurately represents current behavior. The 

short-term immediacy of big data makes it useful and compelling for real 

time management applications, but to be useful for planning, this tsunami of 

data needs to be channeled into theoretical frameworks. In this paper, we 

propose using the classic conceptual model of urban activity systems  to 

guide the use of this data for long range planning. 

 

So how can we harness the power of big data to go beyond operations? First, 

we need to make these data sets available to the public agencies responsible 

for urban planning.  Big data is too valuable to only serve the commercial 

interests of a small number of corporations that are positioned to collect and 

utilize it. If big data is to serve the public interest, it needs to be made avail-

able to the public agencies entrusted with the long range planning function. 

But, to adequately engage the public, the whole set of stakeholders inter-

ested in setting the goals and policies to guide urban development needs 

access to this data in some form.  Obviously, most of these public agencies 

and certainly small citizen groups and non-profits need access to the data. 

 

Access to data will also require better tools to visualize and analyze this 

information, especially when integrating data with new and existing urban 

models.  Statistical methods that were useful for generalizing from small 

samples to larger populations are no longer appropriate tools.  When you 

have all of the data describing a population or a system, the problem is not 

generalization, but data reduction and abstraction.  Data analysis methods 

familiar to computer scientists have proven to be promising for generating 

understanding in a data-rich environment. These include machine learning 

and data visualization. Machine learning is a core subarea of artificial intel-

ligence; it uses computer algorithms to create explanatory models. There are 

different types of learning approaches, including supervised, unsupervised 

and reinforcement learning. Although some of the technologies may be 

completely new to planners, the actual methods turn out to be quite familiar. 

For example, the regression model is one of the methods that is frequently 

used in supervised learning processes. Planners who work with remote sens-

ing images often apply supervised classification methods to reclassify the 

images into land cover images based on various color bands in the image. 

However, planners may not be familiar with other machine learning meth-

odologies or algorithms, such as unsupervised or reinforcement learning. 

Unsupervised learning tries to identify regularities (or clusters or groupings) 

in the input datasets without correct output values provided by the supervi-
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sors. Reinforcement learning is primarily used in applications where the out-

put of the system is a sequence of actions (e.g. playing chess). In this case, 

what’s important is not a single action, but a sequence of actions that will 

achieve the ultimate goal. When machine learning methods are applied to 

large databases such as big data, it is referred to as data mining. Data mining 

tries to identify and construct a simple model with high predictive accuracy, 

based on the large volume of data. The model is then applied to predict fu-

ture values.  

 

Data visualization also helps data analysts better understand complex data 

sets. Some data visualization techniques, such as multivariate data represen-

tations, table, and graph designs are quite conventional. Temporal simula-

tions can show how complex patterns grow and develop over time. These 

techniques may also be applied in innovative ways to help understand and 

convey the patterns behind complex data. One example is information 

graphics or infographics, which improve human cognition by using graphics 

to improve the visual system’s ability to extract patterns and trends (Few 

2009; Smiciklas, 2012). To effectively present big data interactively, the de-

signer needs to be equipped with knowledge regarding how human beings 

interact with computers, and how different interaction types (i.e., filtering, 

zooming, linking, and brushing) will affect human being’s cognition ability.   

Machine learning and 3D visualization techniques offer promising ap-

proaches to revealing the patterns within big data sets, but concerted efforts 

that link computer scientists and urban planners are needed to connect these 

methods with more conventional tools that planners have mastered to exploit 

big data for urban plan making. 

 

Perhaps most importantly, we, along with others, acknowledge that for any 

data to be usable we will need to employ better privacy safeguards (Tene 

and Polonetsky, 2012). Big data can reveal the most personal aspects of our 

behavior from where we go, to who we visit and what we buy. Aggregating 

data to larger geographic areas, like census tracts may be the solution in 

some cases, but part of the power of big data is that it is highly disaggre-

gated.  Significant attention needs to be paid to finding the proper balance 

between generating and sharing detailed data that may compromise the pri-

vacy of individuals and aggregating that data into groups too general to pro-

vide an enhanced understanding of the urban system and how individuals 

interact with it. 

 

Big data can help us understand the structure and function of urban areas: it 

is important that urban planners recognize that this data can be useful for 

more than just operation and management.  Better access to urban big data 
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along with better analytical tools and more secure privacy protections are 

needed to allow big data to realize its full potential for urban planning, but 

we are hopeful that planners, in partnership with data scientists, are ready to 

accept this challenge. 
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