Reference: Useful Menus

While editing a program, navigate to any of these menus to add certain functions or variables to the program.

FRGM	For all of your programming needs.
Qetalog (2nd 0	The most useful menu! Contains literally everything, in alphabetical order! Type a letter to jump to that section, or press the UP arrow to go straight to punctuation marks.
URPS	Variables! Did you know you can store strings in Y_{1} or $S t r 1$?
MODE	Insert commands into your program to change the mode. Need degrees instead of radians? Need Function mode instead of Parametric mode?
LIST (2nd STAT)	List names, list operations.
DRFW (2nd PRGM	Drawing functions, pixel manipulation, picture storage/recall.
HATETX (2nd x^{-1})	Matrix names, matrix math functions.
MEM (2nd +)	On a TI-84, use this to Archive or UnArchive programs. Note, the TI83 has two types of memory: RAM and ROM. RAM is fast, but is cleared when the calculator crashes - archive your programs into ROM to save them against crashes! For the TI-83, which only has RAM, just be sure to keep your batteries fresh.
FORMAT (2nd 2 OOM	Modify various formatting parameters of the graphing window.
zoom	Modify the zoom of the graphing window. Note: to set Xm in and its friends, instead use WhPs.
AHGLE (2nd APPS)	Convert from degrees to radians.
STAT	Statistics tools: regressions and statistical tests.
पISTR (2nd URES	Statistics distributions.
STATPLOT Q $\mathrm{Q}^{\text {nd }} \mathrm{Y}=\mathrm{y}$	Control statistics plots. For example: Floticsetter, Li, L2, :
	Other Useful Tricks

$2^{\text {nd.-MLFHA }}$ for alpha-lock: Types in all caps; also, scroll up/down the program much faster. $2^{\text {nd.-.-DEL }}$ for insert mode: Insert characters instead of deleting; this is how you insert newlines. CLEFE to clear entire lines. DEL to delete single characters.
L to make custom-named lists: e.g. $\operatorname{LSTUFF}, \mathrm{L}, ~ L Y$ - these behave exactly like the standard lists L_{1} : $L 2$; etc. Find this L in the CATRLOG.
Do you have LtIgelf in your APFS? If so, turn it on! Then, you can press the [+] button when hovering over any function to read about the arguments that function uses.

Example Programs

```
FrgmSOUAREIT
    "Infut "X? ", X
    MDisF XZ
FHgmQURDR
    "Infut "H? ", H
    #Infut "E? ": B
    "Infut "C? ", C
```



```
    MisF X
    :(E-\sqrt{}{CE}-4HC)
    \squareisF %
FrgmEUIL
    whoile 1
            "InFut "": X
            "DisF K+rendInt(-1,1)
        "End
FrgmDELTHIHK
    :While 1
            "Infut "", %
            #If X=4
            :Then
                :5->%
            #End
            MDisF %
        :End
FHGmLISTSYRY
    |D,0,0,0,0)->\mp@subsup{L}{1}{}
    :7->L_L1)
    :S->L
    #DisF L_
    MisF dim(Li
FrgmHMSTERY
    :1,1%->\mp@subsup{L}{1}{}
    : S->H
    Mbile H\leq100
    "L
    : +1 +N
    End
```


A Guessing Game

This program uses recursion - specifically a technique called binary search - in order to guess your number as fast as it can.

```
FrgmguESSER
    :1->L
    :100->H Thigh bound
    :DisF "THINK OF F NUME-"
    :DisF "ER BETUEEN 1 AHD
    :DisF "100. DON'T TELL!"
    FFuse
    :FrgmGUESSFH
FrgmGLESSFH
    "DisF ""
    If L=H
    "Then
        "Disf "YOUR NU|EER IS:"
        #DisF L
    "Else
        Mint((L+H)/2)->G Mmake a guese
        "DisF "WHAT HEOUT THIS?"
            "DisF "my guESS IS:"
            MDisFG
            :Puse
            "Menuc"YOUR HUMEER IS"; "GREATER"; A;
                    "SHALLER": B, "EQUAL": D
            :Lbl A
                :G+1->L rcheck the tof helf
                :FHEmGUESSF
            |Goto a
            :Lbl E
                :G-1->H rcheck the bottom half
                :FHImGUESSFN
            Moto a
            :Lbl C
                "DisF "YHY! I guEsSED YOUR HUHBER!"
                Goto 0
            :Lbl 0
    End
```

Fractal Drawing
Frgmtreendin
: $9.4 \rightarrow$ Kmin
$: 9.4 \rightarrow \mathrm{Mmax}$
: $\mathrm{Q} \rightarrow \mathrm{ymin}$
$: 12.4 \rightarrow 4 \mathrm{max}$
:Axesoff
:ClrDrew
Degree
:Infut "DEFTH? ":
:Infut "LENGTH? ": L
Imput "frgle? ", H
:Infut "MULTIFLIER? ": M
:Infut "ERFHCHES? ", N
: $\mathrm{B} \rightarrow \mathrm{K}$
: $0 \rightarrow$:
$: 90 \rightarrow 0$
$A=45^{\circ} N=3$
:Frgmprilree
FrgmDRFlUTREE
$: \% \rightarrow L_{1}\left(1+d i m\left(L_{1}\right) \quad\right.$ Fush all the old variables
:Y $\mathrm{H}_{\mathrm{L}}\left(1+\mathrm{dim}_{\mathrm{L}}(\mathrm{L})\right.$)
$: \theta \rightarrow L_{1}\left(1+d i m\left(L_{1}\right)\right.$
$: L_{-L}\left(1+d i m\left(L_{1}\right)\right.$
$: \operatorname{lom}_{1}\left(1+d i m\left(L_{1}\right)\right.$
$: I_{-1}\left(1+d i m\left(L_{1}\right)\right.$
Line $X, Y, X+L \cos (\theta), Y+\operatorname{Lsin}(\theta)$
:If D>0
:Then
$: \square-1 \rightarrow \square$
$: x+L \cos (\theta) \rightarrow \gamma$ New $\mathrm{K}, \mathrm{K}, \mathrm{y}$, L , and θ
$: Y+\sin (\theta) \rightarrow U$
$: \mathrm{MLL} \rightarrow \mathrm{L}$
$: \theta-\operatorname{HF} \sim \rightarrow \theta$
:For $\mathrm{CI}, 1, \mathrm{H}$
:FHIMDRALTREE $: \theta+A \rightarrow \theta$
End
: End
"Licdim(L) $) \rightarrow I \quad \sim$ Fof all the old variables.".
$: L_{1}\left(d i m\left(L_{1}\right)-1\right) \rightarrow \square$
" $L_{1}\left(\operatorname{dim}\left(L_{1}\right)-2\right) \rightarrow L$
$: \mathrm{L}_{1}\left(\mathrm{dim}\left(\mathrm{L}_{1}\right)-3\right) \rightarrow \theta$
$: L_{1}\left(\operatorname{dim}\left(L_{1}\right)-4\right) \rightarrow 4$
"Lodim(Lis-5) $\rightarrow X \quad \%$ and delete the end of L_{1}

A RECURSIOH:

In-Class Exercises

1. Write a program that asks the user for the two side lengths of a right triangle - named A and B then computes the length of the hypotenuse, $\sqrt{ }\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)$. Save it to the variable C , and also Disp it.
2. Write a program that calculates the sum $1+2+\ldots+100$. Save it to S, and also Disp it.
3. Write a program that puts the first 10 odd numbers $(1,3, \ldots)$ into L_{1} and the first 10 even numbers $(2,4, \ldots)$ into L_{2}.

Challenges to Try

General Programming Practice

- Make yourself more math tools, like the QUPDF program we wrote! What's a problem that you need to quickly solve a lot in your classes?
- For example: Make a program that takes in certain facts about a triangle - its side lengths, for example - and computes the angles, the area, and other facts. You'll want to use trigonometry, the law of sines, the law of cosines, Heron's formula, etc.
- Another example: Make a program that converts any base-10 number into a base-2 number.
- Make a math quiz game! Quiz yourself on multiplying numbers, squaring numbers, finding sines and cosines of simple angles, and more.

Guessing Game Program

- Modify our guessing game program so that it counts the number of guesses it takes.
- Modify our guessing game program so that it lets you specify the values of L and H.
- Math problem for you: If there are N possible numbers that you can choose (in this case, $\mathrm{N}=100$), how many guesses does the program need to find your number?

Fractal Program

- Modify the fractal-drawing program so that draws dot-marks at the very tips of each branch.
- Can you draw any other fractals using recursion? Sierpinski triangle? Koch curve? Dragon curve?
- Currently it uses depth-first search: when we draw out the branches, it goes first to the deepest twigs, before coming back to fill in the next of the larger branches. If the depth is large, it takes a while before we can see any fractal at all! Try modifying it so that it instead uses breadth-first search: for example, if $\mathrm{N}=3$, first it does the largest 3 branches, then the next largest 9 , then the next largest 27 , and so on.

Cause-the-Errors Challenges

These are some of the errors you might encounter if you make a mistake while writing a program. Here's a fun reversal on the usual ways of the world: try making programs to cause each of these errors! How many can you make?

ERR: ARCHIVED
ERR: ARGUMENT
ERR:EAD GUESS
ERR:BOUHD
ERR: BREAK
ERR:DATA TYFE
ERR:DIM MISHATCH
ERE:DIVIDE By g
ERE: DOTHIN
ERR: ILLEGRL NEST
ERR: IHCREMEHT
ERE: IHURLID
ERR:INURLID DIM
ERR:ITERATIOHS
ERR:LABEL
ERE: MODE
ERR:HO STGN CHHG
ERR:NOHREAL RHS
ERE: OUERFLOU
ERE:SIHGULAR MAT
ERR: SINGULARTY
ERR:STAT
ERE:STAT FLOT
ERE: SYHTHK
ERR:TOL HOT MET
ERR: UHDEFTHED
ERE:WIHDOU RFHGE
ERE: ZOOM

Consult http://tibasicdev.wikidot.com/errors for hints.

Internet Resources

Turing Machines

Lego Turing machine: http://vimeo.com/44202270
Minecraft Turing machine: https://www.youtube.com/watch?v=1X21HQphy6I
Conway's Game of Life Turing machine: https://www.youtube.com/watch?v=My8AsV7bA94

TI-84 Programming

On making a simple program: http://www.manning.com/mitchell/PTIsample ch01.pdf TI-84 features: http://education.ti.com/sites/US/downloads/pdf/TI83-84 reference guide.pdf Wikibooks tutorial: http://en.wikibooks.org/wiki/TI-Basic 84 Programming ticalc.org tutorial: http://www.ticalc.org/programming/columns/83plus-bas/cherny/

Fractals and Recursion

Draw fractals: http://recursivedrawing.com/
Draw fractals: http://sciencevsmagic.net/fractal
"Stack Hacking: Programming Recursion in your TI-84."
Chelsea Voss, Splash 2014
csvoss@mit.edu

