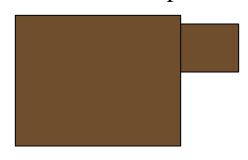
Spin Dependent Limits from DRIFT

Daniel Snowden-Ifft Cygnus 2009 June 11, 2009

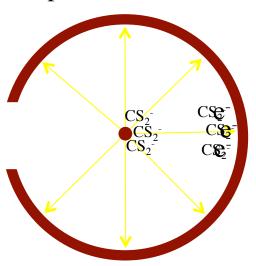
PI - D.P. Snowden-Ifft Undergraduates – J. Landers and J. Fox Post-Doc – K. Pushkin (until recently) and J.-L. Gauvreau

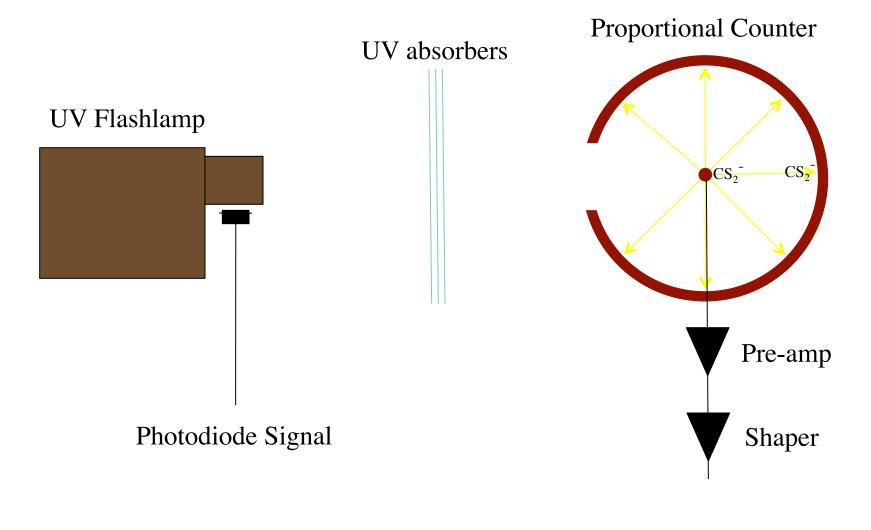
PIs – D. Loomba and M. Gold Graduate Students – E. Miller and L. Zschaechner Post-Doc – E. Lee

PIs - N.J.C. Spooner and E. Daw Associates—S.M. Paling and M. Robinson Graduate Students — M. Pipe

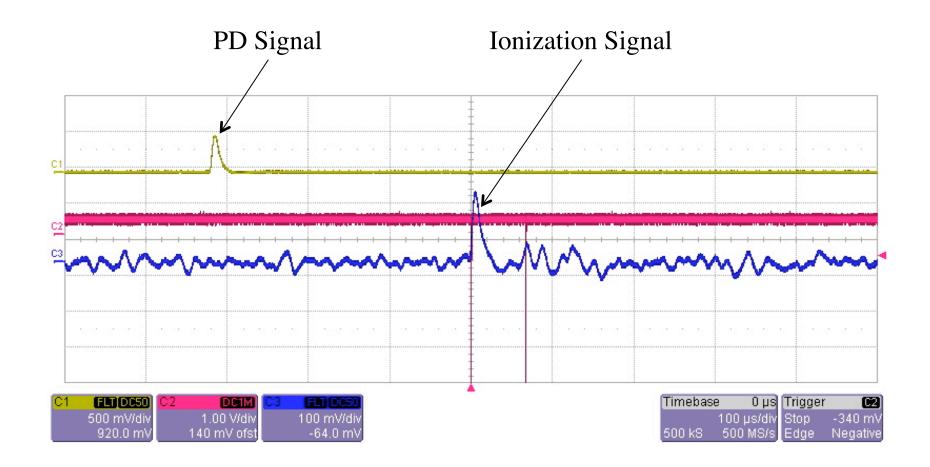

PI - A.S. Murphy

DRIFT with spin


- CF₄ is an attractive candidate.
- Will it work? In the context of DRIFT the question is can we make a mixture which has a significant amount of CF₄ and preserve negative ion drift.
- We have explored various CS₂-CF₄ mixtures as well as other scintillation gas mixtures.



UV Flashlamp



Proportional Counter

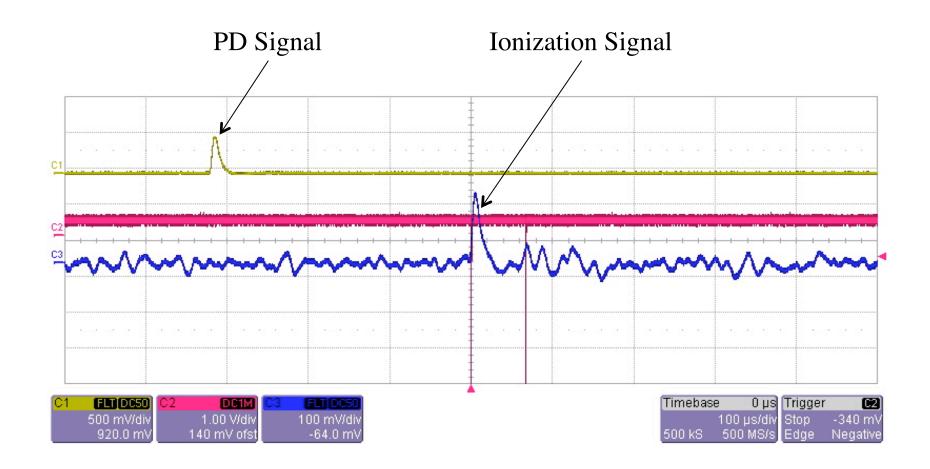
Ionization Signal

We can measure the size of a single electron.

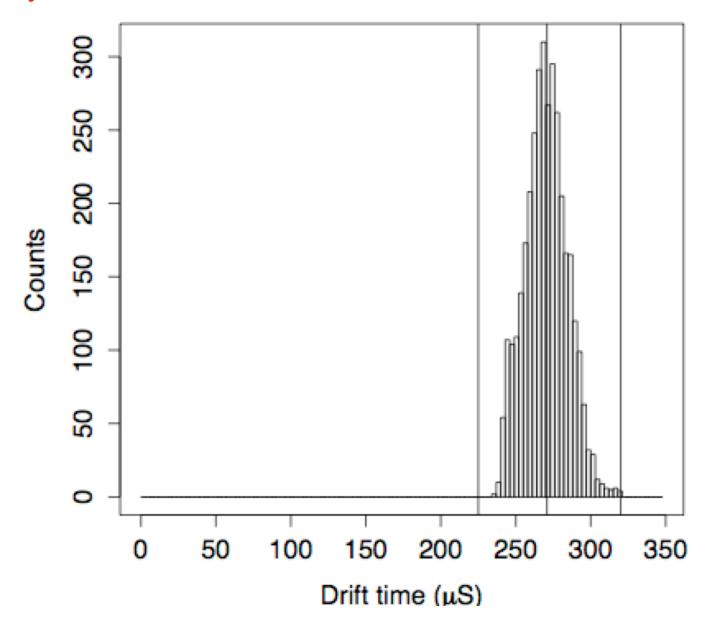
W Value

We know what the ionization yield, Y_{SE} , is for a single electron...and we can measure the size of the event, $\langle \Sigma_{SE} \rangle$, produced.

We then expose the proportional counter to Fe-55 X-rays and we measure the size of the event, $\langle \Sigma_{55} \rangle$, produced. The ionization yield for Fe-55, Y_{55} , is then,


$$Y_{55} = \frac{\left\langle \Sigma_{55} \right\rangle}{\left\langle \Sigma_{SE} \right\rangle} Y_{SE} = \frac{\left\langle \Sigma_{55} \right\rangle}{\left\langle \Sigma_{SE} \right\rangle}$$

Fe-55 produces X-rays of energy E55 = 5.9 keV so,


$$W = \frac{E_{55}}{Y_{55}}$$

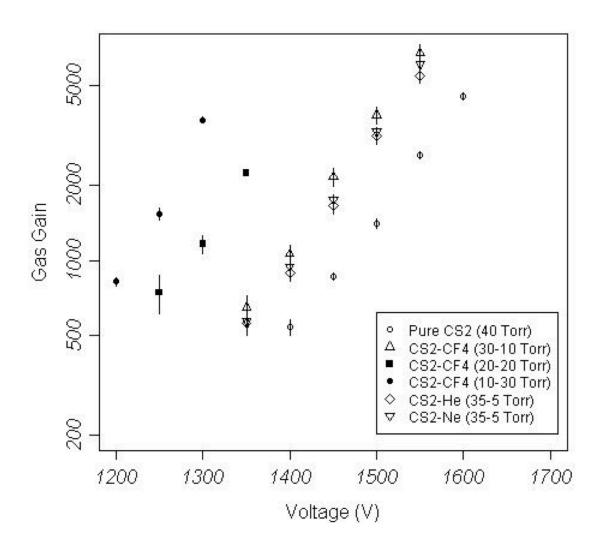
W Value

Gases, (Torr)	Voltage, V	Ionization yield	W-value, eV	W-value, eV Pure CS ₂ (other works)
Pure CS ₂ , (40)	1600	237 ± 7	24.9 ± 0.8	24.7±0.7[18] 26.0±0.5 [19]
CS ₂ -CF ₄ , (30-10)	1550	234 ± 6	25.2 ± 0.6	
CS ₂ -CF ₄ , (20-20)	1350	202 ± 7	29.2 ± 1.0	
CS ₂ -CF ₄ , (10-30)	1300	179 ± 5	33.0 ± 1.0	
CS ₂ -He, (35-5)	1550	249 ± 8	23.7 ± 0.8	
CS ₂ -Ne, (35-5)	1550	253 ± 8	23.1 ± 0.8	

We can measure the drift time of a single electron.

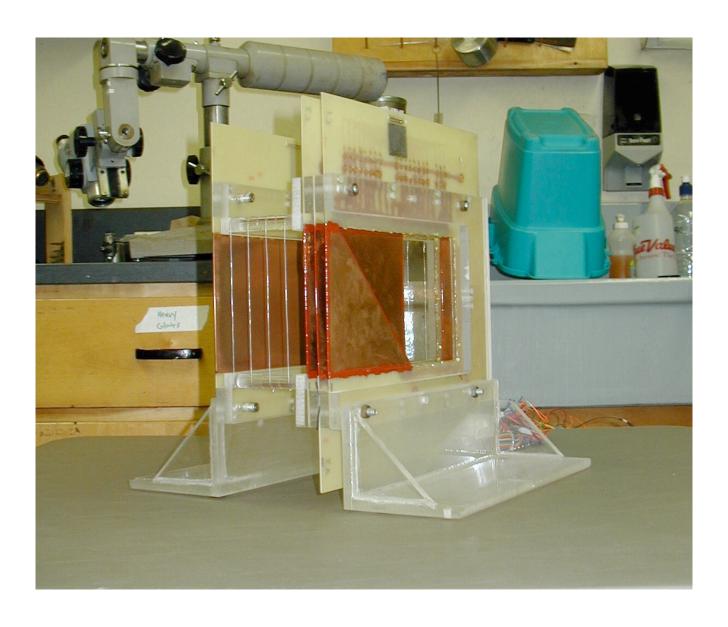
Because of the 1/r field inside of the proportional counter we have to assume,

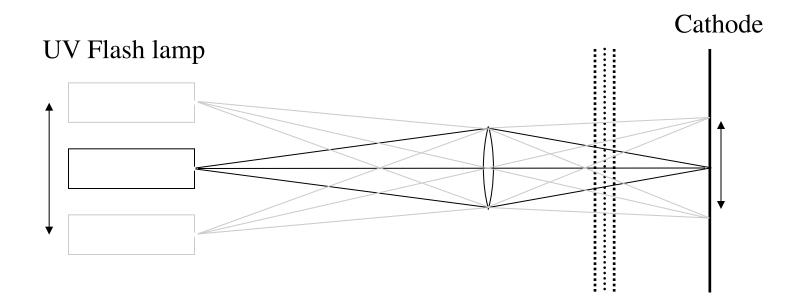
$$v = \frac{\mu E}{p}$$

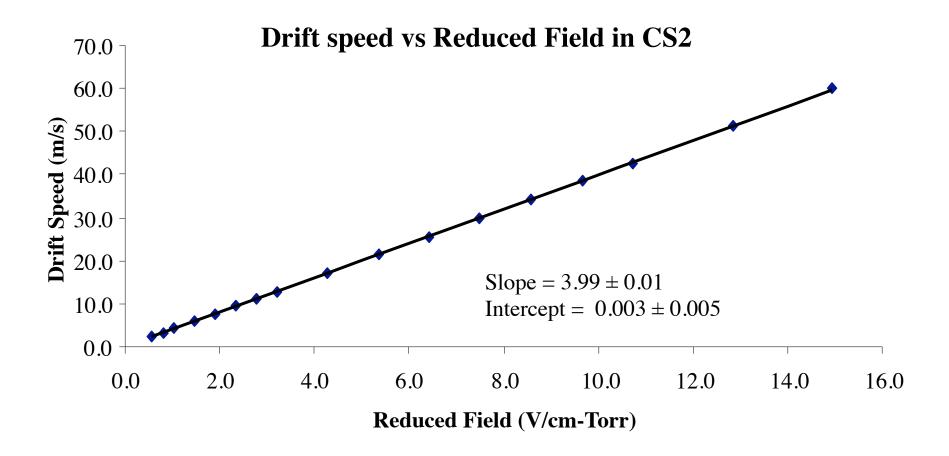

With this assumption

$$\mu = \frac{p \ln(\frac{b}{-})}{2\Delta t \Delta V} (b^2 - a^2)$$

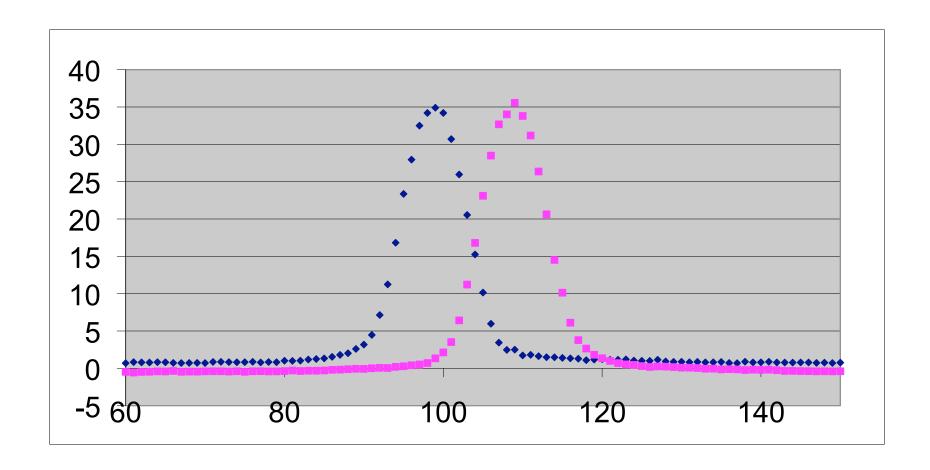
Gases, Torr	Voltage, V	Drift time,	Reduced	Reduced
		μs	mobility,	mobility,
			μ	μ
			μ (cm ² atm/Vs)	(cm ² atm/Vs)
				(other works)
Pure CS ₂ , (40)	1600	270.8±0.2	0.54 ± 0.02	0.52 ± 0.02
				[5]
CS ₂ -CF ₄ , (30-10)	1550	250.1±0.2	0.60 ± 0.02	
CS_2 - CF_4 , (20-20)	1350	251.0±0.3	0.69±0.02	
CS_2 - CF_4 , (10-30)	1300	222.0±0.3	0.81 ± 0.03	
	1.5.5.0	2.2.2.2.2.2	0.60.00	
CS_2 -He, (35-5)	1550	252.0±0.3	0.60 ± 0.02	
CS ₂ -Ne, (35-5)	1550	248.2±0.3	0.61 ± 0.02	


Gain

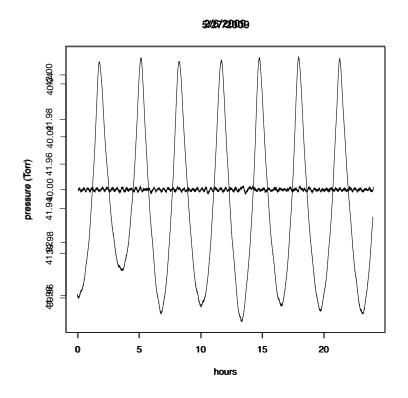

Knowing the size of the event and the amplifier chain allows us to get the gain of a single electron.



Published


Work on the W-value, mobility and gain has now been accepted for publication with NIMA

 $=> \mu = 0.525 + /- 0.005 \text{ cm}^2 \text{ atm/Vs}$



These results we hope to publish by the end of the summer.

Gas Mixture System

For a big DRIFT detector we require a system which can flow a mixture. This was designed and built at Oxy in the Spring of 2009.

Cf-252 neutron source results - Rates

- The gas mixtures were then exposed to a Cf-252 neutron source and recoils recorded.
- Is there any evidence for sensitivity to F recoils? Replacing a CS_2 molecule with a CF_4 molecule increases the number of target nuclei (2 S -> 4 F). Thus, everything else being equal, the rate should go up with increasing CF_4 concentration.
- Voltages for various CS_2 - CF_4 gas mixtures were carefully adjusted so that our Fe-55 calibrations were identical, i.e. Y_{55} * gas gains were identical.
- For 3 different gas mixtures the accepted rate of events (after identical cuts) were calculated and backgrounds rates subtracted.

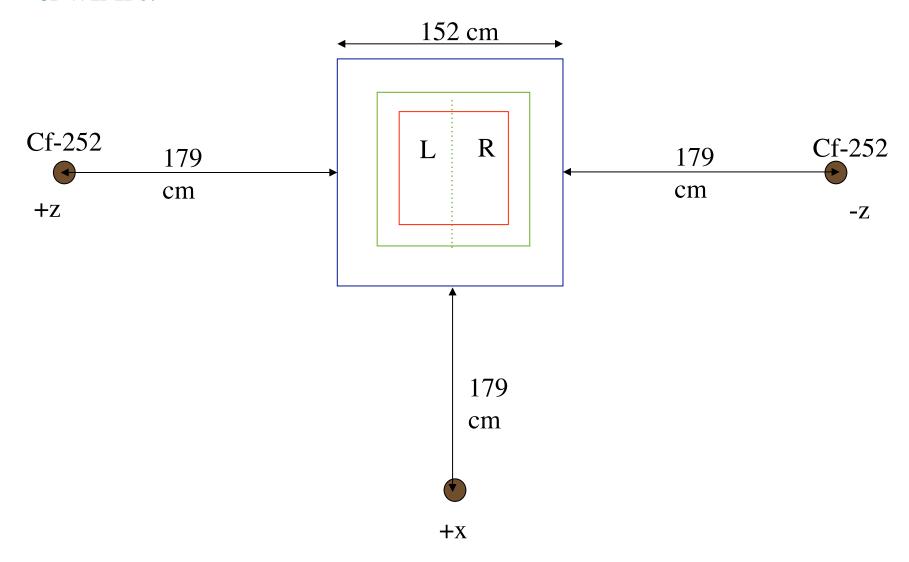
Cf-252 neutron source results - Rates

Mixture	# S and F targets	Rate – Background (Hz)
(CS_2-CF_4)	per 40 gas	
	molecules	
Pure CS ₂	80	0.66 +/- 0.02
30-10	100	0.84 +/- 0.03
25-15	110	0.97 +/- 0.03

The observed rate tracks the increase in target nuclei.

Cf-252 neutron source results – Recoil lengths

• A crude calculation suggests that F recoils will be longer than S recoils in a given gas mixture.


Mixture (CS ₂ -CF ₄)	S:F ratio	$<\Delta z>$ (cm)
Pure CS ₂	80:0	0.254 +/- 0.002
30-10	60:40	0.277 +/- 0.003
25-15	50:60	0.280 +/- 0.002

The average length increases with increasing concentration of F.

Conclusion – We are definitely seeing F recoils in the data.

A word about directionality

• Recoils tend to align with the direction of the source particles be they neutrons or WIMPs.

A word about directionality

Mixture (CS ₂ -CF ₄)	Neutron	$<\Delta z>$ (cm)
	Direction	
Pure CS ₂	Z	0.254 +/- 0.002
	X	0.244 +/- 0.002
30-10	Z	0.277 +/- 0.003
	X	0.259 +/- 0.002
25-15	Z	0.280 +/- 0.002
	X	0.264 +/- 0.002

As discussed in NIMA, 600, 417 (2009) we find difference between x and z directed neutrons reaffirming our claim for a range component signature (RCS) in DRIFT.

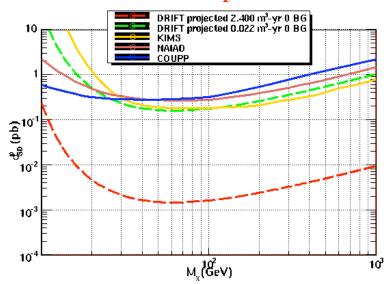
A word about directionality

Mixture (CS ₂ -CF ₄)	Number of	Significance
	events (z/x)	
Pure CS ₂	1092/1447	3.5
30-10	1170/978	5.0
25-15	2726/1586	5.7

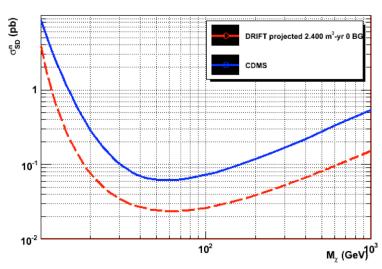
Conclusion – The RCS is at least as good with gas mixtures and may, in fact, be better than with pure CS_2 .

We have also looked at the head-tail signature (HTS), discussed in more detail in APP, 31, 216 (2009), and found it to be slightly improved in the mixtures but not as much as shown above.

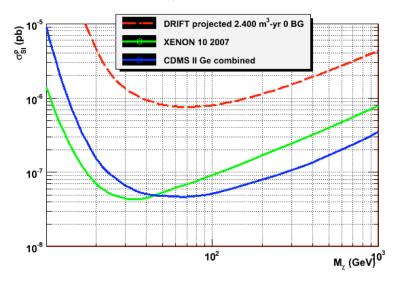
Gas mixture system moved to Boulby


- Installed and operational in 1 day.
 - DRIFT-IIb renamed DRIFT-IId
- Run for several days. Data taking to start next week.

The Plan


- We have recently received renewed funding from the NSF.
- Our plan is to run DRIFT-IId for 3 years starting next week.
- We also plan to leverage off of existing equipment, a spare vacuum vessel in Boulby, for instance, to build DRIFT-IIe.
- We hope to acquire 2.4 m³-years of exposure starting next week.
- Much work remains to find the quenching factor and range for these gas mixtures – Santos.
- What could we expect from this data.

Expected Limits


SD WIMP-p Limits

SD WIMP-n Limits

SI Limits

