TPC Readout with GEMs & Pixels

Linear Collider Tracking Directional Dark Matter Detection Directional Neutron Spectroscopy

> Sven Vahsen Lawrence Berkeley Lab

Cygnus 2009, Cambridge Massachusetts

Our (Initial) Motivation

- Main tracking detector at future linear colliders will require exceptional momentum resolution
 - σ_{1/Pτ} ~ 5x10⁻⁵ GeV⁻¹
- Possible with TPC, if
 - >= 200 space points
 - Point resolution
 - $σ_{\chi}$, $σ_{\gamma}$ ~100 μm
 - $-\sigma_z \sim 500 \ \mu m$ (z is beam axis)
- Need improved performance over previous TPCs
- Achievable with pixel-based charge readout?

Existing Prototype

- Small dimensions in *mm!*
- Read out drift charge with Gas Electron Multipliers (GEMs) + pixel chip

Readout of TPC tracking chambers with GEMs and pixel chip. T. Kim, M. Freytsis, J. Button-Shafer, J. Kadyk, S.E. Vahsen, W.A. Wenzel (LBL, Berkeley) . 2008. 12pp. NIM (2008)

Amplification: Gas Electron Multipliers (GEMs)

- Electrons multiplied by avalanching in GEMs
- Off-the shelf GEMs from CERN
 - 5cm x 5cm x 60 μm
 - Hole spacing: 140 μm

- Reliable without sparking with single-GEM gain up to 300 (Ar/C0₂)
- Two GEMS in series: higher gain with less risk of sparking: 500V + 400V → gain = 40000

Simulated and measured gain consistent

Sven Vahsen, Cygnus 2009

Charge Collection: FE-I3 Pixel Chip

- Same FE as in ATLAS pixel detector, Gold/Aluminum plated
- Same DAQ chain as during pixel production
- x/y from pixel coordinate (50x400µm)
- relative z from drift-time (25ns)

- fast-or LVL1 trigger from pixels
- Read out 16 "bunch crossings"
 - 16x 25ns*26 µm/ns = 10.4 mm (Ar/CO₂, 1kV/cm)
- Noise level ~120 electrons
- 2-3 pixels out of 2880 masked
 → no noise hits

Expect good z resolution: fast electron signal & pixel FEs

ATLAS at the LHC: 80 Million Pixels

1744 modules x 46080 pixels = 80 million channels!

The Intended Use Case!

Pixel Detectors only way to do tracking close to beam pipe at LHC

- Perform pattern recognition in very high multiplicity environment
- Distinguishing hits 25ns apart
- Store hits up to 3.2 µs (LVL1 trigger latency)
- Withstand $\sim 10^{15}$ n/cm² (20 years L2, 10 years L1, 3 years L0)
- Be highly reliable: No access for ~10 years

Single Pixel: Detection of a Charged Particle

- With Silicon Sensor: MIP at normal incidence liberates ~20k electron-hole pairs
- In TPC case: Due to GEM; 20k electrons per ionized electron!
- Charge swept into FE preamp, converted to voltage pulse

- Information stored
 - Location
 - Timestamp (25 ns units)
 - TOT (~charge)

FE-I3 Pixel Chip

- ~ 7 years, final version Dec '03
- 2880 Channels, 3.5M transistors
- Each channel
 - internal injection
 - feedback current DAC
 - threshold DAC
 - enable, kill, hitbus
 - LVL1 signal
- Hits stored in end-of-column buffers for up to 3.2 µs
- Read out up to 16 BCs (x25ns)

Position Resolution with Cosmics

- Large sample of cosmic rays
- Require >10 pixel hits

8000

6000

4000

2000

0

0

Y Position (µm)

- 3D track at least 4.5mm long
- Gain=9000, threshold=1800e-

2000

4000

X Position (µm)

LC: diffusion < 100 μm w/ magnet

	track fit residual	Diffusion	$\sigma_{\text{GEM+Pixel}}$
σ _X (μm)	170	110	130
σ _Y (μm)	130	110	70 🖌
σ _z (μm)	240	190	150

Resolution requirements for LC were met even with ATLAS Pixel FE
For LC / DM detection, need to reoptimize, FE geometry, gas mixture, GEM, etc...

June 12 2009

 $\sigma_{\text{Pixel}} = 14$

Cosmic Ray Rate

- Pixel threshold at 5k electrons
- Rate plateaus at gain ~20k
- 20k electrons per primary ionization electron (vs 20k electrons per MIP/layer in ATLAS)
- Suggest system is capable of collecting all the ionization from primary track - even single electrons!
- Caveat: Did not study pixel noise versus GEM gain

TPC Bonus: Track Ionization

- Measurement of specific ionization for particle ID
- Demonstrated two methods
 - 1. Charge / unit track length from Pixel TOT
 - 2. Track gap density distribution

Applicable to Directional WIMP Detection?

- Demonstrated good
 performance
 - simultaneous precise measurement of x,y,Δz/t,dE/dx
 - very good signal/noise (75) and threshold/noise (15)
 - read out all the primary ionization

- Pixels increase costs, but should improve x,y,z,E,dE/dx resolutions

 → improved signal/background separation ?
 - → better sensitivity / target volume ?
- High gain + low noise level \rightarrow low threshold
- Can we get absolute z from diffusion?
- Chip design limitation: Can only read out 16 time bins

Neutron Detection

- Simplified scenario
 - mono-energetic beam of 1 MeV neutrons
 - incident at phi=0, theta=90 degrees
- Simulated detector performance based on measured performance with charged particles
- Adding energy measurement also helps constrain neutron direction

Neutron Detection II

Assuming we can positively identify neutrons without background...

- Recoil energy depends uniquely on recoil angle
- Use angle and energy together in un-binned fit
- 10 nuclear recoils → neutron energy to 3.2%, angle to ~1 degree
- Confirmed by pseudo-experiments, but are assumptions realistic?
- 1) Result needs checking 2) Realistic scenarios much more difficult to resolve!)

Future Plans

- Work targeted at WIMP / neutron detection
- Modify existing 1-chip setup to 10cm drift length
- Characterize performance with nuclear recoils (neutrons) and charged tracks (beta/alpha)
 - $x,y,\Delta z,E,dE/dx$ resolutions
 - noise level, threshold
 - head/tail sensitivity
 - absolute z from x/y diffusion width
 - optimal gas mixture and GEM/Pixel operating conditions
- Validate/tune simulation
- Design (10 cm)³ prototype, optimized for WIMP / neutrons
 Pixel chip: ATLAS FEI3, FEI4, or Timepix/Medipix

Conclusion on GEM + Pixel Readout

- Excellent performance in simple prototype
 - simultaneous precise measurement of x,y, $\Delta z/t$,dE/dx
 - read out all the primary ionization
 - very good signal/noise (75) and threshold/noise (15)
- Meets ILC requirements
- Suitable for Directional WIMP detection and neutron detection?
 - Excellent performance
 - But, expensive (~ $18 / cm^2 = 180 k / m^2$)
 - Pixel chip needs design changes
 - Can we get absolute z from diffusion width?
- Follow up with dedicated WIMP / neutron detection work
- Leading to design of (10cm)³ detector year after