Stellar Streams in the Milky Way: probes of dark matter

Nitya Kallivayalil

Pappalardo Fellow nitya@mit.edu CYGNUS 2009

Outline

- Introduction: Developments over last decade
- Theoretical predictions: stellar streams
- Observations; what's missing
- Methods to fill in missing dimensions
- Preliminary Results
- Conclusions and Next Decade

Last Decade: Theory

- Cosmological N-body simulations reach below Galactic scales
- Predictions: (i) hierarchy of merging dark matter halos

Latest simulations resolve close to 100,000 individual self-bound dark matter clumps within the Milky Way's virial volume

Searle & Zinn (1978); Toomre (1977)

Predictions (cont.): (iii) Hierarchical merging should lead to relics - stellar streams

Last Decade:

Is "missing satellites problem" an observational one?

Observations

Canes Canes Venatici I Venatici II,

> Coma Berenice

SDSS: All sky survey

kurov et al. 2008tes

Why stellar streams are particularly interesting:

• $M >> M_{sat}$: $E_{orb} >> E_{tid} >> E_{bin}$

1) Good probes of the phase space structure of dark matter: "lumpiness" (e.g. Kesden & Kamionkowski 2006)

2) Shape: streams allow us to make a measurement of the shape, q, of the dark matter halo. Different dark matter models predict different q.

How, really, do we constrain the potential of the galaxy from streams? (1) 'lumpiness'

Sagittarius tidal stream: shape

Fellhauer et al. 2006

Sagittarius tidal stream:

Law et al. 2005

- * I arcsecond = I/3600th of a degree.
- * Typical motions of tracers at these distances ~ I-2 milli-arcsecond per year (mas/yr).

* Typical resolution of detectors on modern-day telescopes ~ 100 mas/ pixel.

Goal of current project is to measure proper motions for Sagittarius stream members.

Required Proper Motion Uncertainty

Our strategy: SDSS-Megacam comparison

Strategy (contd.):

Relative astrometry
SDSS gives 'true' x,y
estimate, giving
residuals:
dx = xMMT - xSDSS
dy = yMMT - ySDSS

• RMS of the fit = **21 mas**.

- This is a factor of 7 improvement over the best case positional accuracy in currently available proper motion catalogs (**150 mas**).
- Including the 9-year baseline gives a proper motion error per star of 2 mas/yr.

Conclusions and the Next Decade

- We had a 3-night run in which we targeted ~3 different portions along the Sagittarius stream.
- Large-scale surveys in the next decade will probe larger volume, time domain, order of magnitude more stars, micro-arcsecond astrometry.
- Projected errors of these surveys (SIM, Gaia) at these distances ~ 1-3 mas/yr. Thus we are timely and competitive.
- Stay tuned...

Collaborators

MIT: Robyn Sanderson Paul Schechter Ed Bertschinger Andrew West

Harvard: Anil Seth Matt Ashby Brian Mcleod