Scenario Planning: A Proposed Approach for Strategic Regional Transportation Planning

Transportation Research Board 81st Annual Meeting Wednesday, 16 January 2002

Performance and Planning Issues

Christopher Zegras Research Associate Laboratory for Energy & the Environment Massachusetts Institute of Technology Joseph Sussman JR East Professor Civil and Environmental Engineering and Engineering Systems Massachusetts Institute of Technology Christopher Conklin VHB/Vanasse Hangen Brustlin, Inc.

MIT

Outline

- I. A Primer on Scenario Planning
- II. The Houston Platform
- III. Houston: Conclusions & Observations
- IV. Ongoing Work

I. Scenario Planning – A Primer

- What?
 - Scenarios "An imagined sequence of future events"
- Why?
 - To prepare us for uncertain futures, examining multiple sequences/stories because...
 - "the conclusion you jump to may be your own" (James Thurber)
 - Not replace traditional forecasting; rather, help us better prepare for the unexpected
- How?
 - Develop structured, in-depth stories of plausible futures

. MIT

I. Scenario Planning – A Primer

- Origins Royal Dutch Shell in the 1960s, early '70s
 - Frequency and magnitude of forecasting errors increasing
 - Developed a planning approach that could:
 - deal with uncertainty,
 - cover "a wide span of possible futures"
 - be "internally consistent"
- "Stories" to "describe different worlds" not "different outcomes of the same world"
 - · Logical depictions of possible futures
- Organizational Learning the process (scenario planning) as important as the result (the scenarios)
 - "protective" role helping decision makers anticipate and better understand risk
 - "entrepreneurial" role enabling decision-makers discover new strategic options

II. The Houston Platform – Step I

■ Step I: Define the Scope

- Identify strategic options to satisfy mobility demands in Metropolitan Houston over approximately the next 20-25 years
 - Drawing from existing plans, including inter-city nodes, "pushing the envelope"

II. The Houston Platform - Step II

- Step II: Outline Key Local Factors that Influence the Performance of the Options
 - Should be both important to the decision to be made and uncertain.
- Key Local Factors:
 - Health of the local economy
 - · Shifts in environmental attitudes/policies
 - Demographics
 - · Federal/state investments/control
 - Local politics
- These Categories of Key Local Factors are generalizable to other metro areas.

MIT

II. The Houston Platform – Step III

- Step III: Identify the Driving Forces Which Impact the Key Local Factors
 - Social, economic, political, environmental and technological macro-issues, which are most likely external to the area being considered
 - · Again, should be both uncertain & important to decision
- Driving Forces
 - State of the economy global and regional economic integration, trade, capital flows, competition, wages;
 - Finance availability of infrastructure funding, user fees and charging mechanisms, private sector participation;
 - <u>Future Technology</u> ITS, telecoms, vehicle technologies, fuel supply technologies, advances in other modes (rail, shipping);
 - <u>Environment</u> local air pollutants, climate change, endangered species, water pollution, "sprawl"
- Similar to Key Local Factors, these Categories of Driving Forces are generalizable to other metro areas.

II. The Houston Platform - Step IV

Step IV: Develop Potential Combinations of Driver "States" & Select Scenario Plots

- Matrix of the "states" (i.e., good/bad) provides potential driver combinations
- Wack (1985) suggests 3 ultimate combinations to form scenario (story) "plots"

Scenario	Drivers					
	Economy	Finance	Environment	Technology		
United States of N. America	Rapid Growth	Ease of Finance	Environmental Indifference	Little Innovation		
Balkanization	Stagnant	Lack of Finance	Environmental Indifference	Little Innovation		
Earth Day 2020	Rapid Growth	Lack of Finance	Environmental Concern	Innovation		

, MIT

II. The Houston Platform – Step V

Step V: Flesh Out the Scenario Stories

- Give "full reality" to the scenarios, to leave a clear impression
- Remain faithful to the scenario logic
- Build plausible cause-effect relationships
 Key to internal consistency and organizational learning
- Estimate the driver effects (macro story lines) on the key local decision factors

, MIT

II. The Houston Platform – Step VI

Step VI: Mobility Implications of the Scenarios

- Examine the state of mobility under each scenario
 - Change in the magnitude of activity in the region
 - Change in the spatial distribution of activity in the region
 - Change in the types of activity in the region
- Provides initial portraits of mobility needs in the future to evaluate the various options (from Step 1)
 - Challenge: can certain scenarios develop without options in place (i.e., USNA)?
- We used simple, modeling techniques, but more sophisticated analysis entirely possible

. MIT

II. The Houston Platform – Step VII

Step VII: Options Evaluation

- Required an approach to match scenario planning's multidimensional, holistic and organizational perspective
- Chose multi-criteria analysis to integrate quantitative and qualitative factors
 - a process that can "lead to better communication between the analysts and the decision-makers" (Won, 1990)
- Two general categories of criteria (feasibility & effectiveness), with specific evaluation criteria in each
 - Cardinal numbers for ranking each option by each criteria
 - Summation provides ranking/prioritization
- Again, a basic, first-order approach, that can be made more thorough and detailed (metrics, etc.)

₁₃ MIT

II. The Houston Platform – Step VII

Example structure of the multi-criteria evaluation framework

Criteria Category	Criteria	Strategic Mobility Option				
		Α	В	С	N	
Feasibility	Financial					
	Environmental					
	Institutional					
Effectiveness	Individual Accessibility					
	Freight Mobility					
	Equity					

₁₄ MIT

II. The Houston Platform – Step VIII

Step VIII: Composite Analysis of Strategic Options

- Aggregate the individual multicriteria analysis outputs into a composite matrix
- "Robustness" approach Each option's summed score in each scenario
- "Risk Minimization" approach Each option's lowest score across the scenarios
- Similar top-five options under each approach, slightly different order of prioritization:
 - system maintenance
 - HOV network expansion
 - congestion pricing
 - port expansion
 - light rail

. MIT

III. Houston: Conclusions & Observations

Potential benefits of approach

- A logical planning framework
 - Scenarios require internal consistency, certain things cannot happen together.
- Can help stakeholders identify robust transportation strategies in a time of uncertainty
- Can aid in grasping the "larger picture" range of forces that fall outside scope of "traditional" planning practice

Drawbacks to demonstrated approach

- · Academic setting, unable to see true organizational impacts
- Might meet considerable resistance in established organizations, with institutionalized/codified practices
- Qualitative nature might meet skepticism
 - Can be more closely linked with quantitative methods
- Time constraints limited tests of scenario "goodness"

" MIT

III. Houston: Conclusions & Observations

- Possible refinements to the Scenarios
 - "actor testing" to determine internal scenario consistency
 Stakeholders and their interests/power in time
 - Comparison of pre-determined elements across scenarios
 To ensure that these remain consistent throughout each
 - Development of "indicators" so that we know which future is actually occurring
- Possible refinements to options evaluation
 - Capturing mobility interactions among options (i.e., network effects)
 - A method to more effectively capture uncertainty, complexity and controversy
- Differences with Conventional Approaches?
 - Robustness idea
 - Internal consistency
 - Organizational learning and buy-in
 - Thinking "out of the box", preparing for the truly uncertain

" MIT

IV. Ongoing Work

- Current Application: Mexico City Integrated Program on Urban, Regional and Global Air Pollution
 - Combining Bottom-Up Modeling (activities) with Top Down Models (scenarios – "Future Stories")
 - "Future Stories" serve as organizing principles for complex policy analysis
 - 3 "Future Stories" containing 8 different Driving Forces
 - Will use multi-attribute trade-off analysis to assess option performance
 - Looking at transportation and non-transportation sectors

" MIT

