
Travelling Salesperson Problem for
dynamic systems

Sleiman Itani ∗ Emilio Frazzoli ∗ Munther A Dahleh ∗

∗ LIDS, Massachusetts Institute of Technology, Cambridge, 02139 USA
(ssolomon@mit.edu).

Abstract:
In this paper, we study the following version of the Travelling Salesperson Problem: Find the
fastest closed trajectory for a controlled dynamic system such that its output visits all points
in a given (finite) set. We present an algorithm that, if the n points are randomly sampled from
a uniform distribution, produces an output trajectory the expected duration of which scales
within a constant factor of the optimum asymptotically in n.

1. INTRODUCTION

The problem we are tackling in this paper has two com-
ponents; the first is the dynamic system and the second
is the Travelling Salesperson Problem (TSP). Problems
similar to this, that inject the kinematics or dynamics
into the study of the TSP or similar problems, are gaining
more attention in the literature. Historically, the TSP has
generally been studied as a combinatorial optimization
problem, and its objective has been to minimize the length
of a tour through a given set of points. Recently though,
the properties the system that has to tour the points have
been considered; and the TSP has been recently studied
for the Dubins vehicle [1, 10], the double integrator [2], the
Reeds-Shepp car, and the differential drive robot [7].

With all the advances in robotics and the growth of inter-
est in Unmanned Aerial Vehicles (UAV’s), the applications
that need a fusion of dynamics and optimal path planning
through a set of points are countless. The possible use of
robots and UAV’s in search and rescue missions, surveil-
lance and many other applications that require optimized
planning of a route make the problem we are tackling
important for the near future. In addition to that, studying
the TSP for dynamic systems might also offer insight
to the solution of different path planning problems for
dynamic systems. Lastly, injecting the dynamics into the
TSP is a natural step in the evolution of the research
on the TSP and similar problems, where the constraints
on the system that will tour the points are added to the
optimal path planning problem that was historically solved
without those constraints.

In this paper, we model the dynamic systems with state
space models that are affine in control. The class of systems
that are affine in control is very general, and can be used to
model a wide range of vehicles, robots and other machines.
This makes this class of systems an interesting and natural
family of models to introduce into the framework of the
TSP. Systems that are affine in control have been widely
studied in the literature, due to their elegance, simplicity
and wide scope. Much of the research on such systems
targets their reachability and steering properties; those

aspects of dynamical systems are very interesting for
problems that seek an optimal path through a set of points.

Our previous work [10] and the work of K. Savla et al.
[1] studied similar problems for the Dubins vehicle. It was
proved that the expected length of the optimal TSP tour
for the Dubins vehicle is Θ(n2/3) 1 , where n is the number
of points the vehicle is required to visit. That result was
reached by incorporating the structure of the motion of
the Dubins vehicle [3, 4, 6] into the TSP problem and
using that structure in the design of the algorithm. We
also solved other vehicle routing problems for the Dubins
vehicle, like the Dynamic Repairman Problem. Our work
here is in some sense a generalization of the first part of
that work to a much richer class of systems.

The rest of this paper is organized as follows: In Section
2 we introduce the notation, prepare the ground for our
study by citing some relevant results, and define the
problem rigorously. Section 3 studies the area of the small-
time reachable set and local point-to-point steering of the
dynamic system. The understanding of those sub-problems
is essential for the problem at hand. Section 4.1 provides
the lower bound on the expected TSP time for a system
that is affine in control, and in Section 4.2 introduces an
algorithm that produces a tour whose time is within a
constant factor of the bound in Section 4.1. Section 5 has
the conclusions and the future work.

2. NOTATION AND PROBLEM STATEMENT

In this paper, we model the dynamic systems that we are
studying with state space models that are affine in control
and have an output in R2. Thus they are described as
follows:

ẋ = g0(x) +
m∑

i=1

gi(x)ui, (1)

y = h(x),
1 We say a function f(n) is O(g(n)) if ∃c, N > 0 such that f(n) ≤
cg(n) ∀ n > N , we say f(n) is Ω(g(n)) if g(n) is O(f(n)) and we say
f(n) is Θ(g(n)) f(n) is O(g(n)) and Ω(g(n)). We say f(l) is o(g(l)) if

liml→0
f(l)
g(l)

= 0 (for functions) or limn→∞ f(n)
g(n)

= 0 (for sequences)

x(0) = x0,

x ∈ Rp, y ∈ R2, ui ∈ U,

U = {u(.) : R→ [−M,M]}.
We are interested in studying the TSP tour of such
systems, and how the dynamics of the system affect
the expected value of the optimal time duration. These
statements will be made more rigorous in the following
section.

2.1 Problem Statement

Given a dynamic system that is modelled as (1), a closed,
bounded region R (assumed to be rectangular with height
H and width W , without loss of generality) in the output
space of the system, and a set of points P = {pi ∈
R, i = 1, ..., n}. We study CP , the fastest output curve
of system (1) that passes through all of the points in P .
More specifically, we are interested in the expected time it
takes the system to trace CP if the pi’s are randomly and
uniformly distributed over R. We also seek an algorithm
that produces an output curve the expected time duration
of which scales in terms of n like the optimum does (for
large n).

Next, we introduce some terminology and definitions for
systems that are affine in control; most of these definitions
are classical in the literature [8] [9]. We start by introduc-
ing the most basic object we need, the reachable set of a
dynamic system.
Definition 1. Reachable set:

Given T ≥ 0, the reachable set from state x0 for a dynamic
system is the set RT (x0) of states x such that ∀ x1 ∈ RT ,
∃ u∗1, u

∗
2, ..., u

∗
m ∈ U such that:

x(0) = x0, x(T) = x1,

x(t) ∈ RT ∀ t < T.

This is the set of states that are reachable in exactly T .
We define the set of states reachable in time less than or
equal to T by:

R≤T (x0) = ∪0≤t≤T RT (x0).

We extend the previous definition to the output space, and
so we define the output-reachable set from a state x0 to
be the set OT (x0) of points

y = h(x), x ∈ RT (x0),
and

O≤T (x0) = ∪0≤t≤T OT (x0).

We turn to some important properties of some systems
that are affine in control.
Definition 2. Small-time Locally Controllable Systems:

A system is small-time locally controllable at x0 ∈ Rp if
∃ T > 0 such that

x0 ∈ Interior(R≤t(x0)) ∀ t such that 0 < t ≤ T.

We call a system small-time locally controllable if it is
small-time locally controllable at all x ∈ Rp.

We also extend the previous definition to the output
space, and say that a system is output small-time locally
controllable at x0 if ∃ T > 0 such that

h(x0) ∈ Interior(O≤t(x0)) ∀ t such that 0 < t ≤ T.

Definition 3. Vector Fields:

For all the purposes of this work, a vector field f(x) is an
infinitely differentiable mapping from Rp to Rp.

Given a vector field f and a function w : Rp → R, we
denote the derivative of w along f by :

Lfw(x) =
p∑

i=1

∂w(x)
∂xi

fi(x).

Given a vector field f and g : Rp → Rq, we call the
derivative of g along f the new Rp → Rq function:

Lfg(x) =
∂g

∂x
f(x).

Note that the ith component of Lfg is the derivative of
the function gi along f . Thus the use of similar notation
should not be confusing.

A simple piece of notation that we will use is the function
xj(x) which extracts the jth component of x. Notice that

Lfxj(x) = fj(x).

Also, we use sf,T (x0) to denote the integral curve of f
passing through x0 (if it exists) at time T , so sf,T (x0) is
the solution of the differential equation

d

dt
x(t) = f [x(t)], x(0) = x0

at the time T .

We now solve two sub-problems whose solution is essential
to our study. One is helpful in finding a lower bound on
the expected time the system needs to trace CP , and the
other is an important piece of our algorithm to produce
an output curve whose time duration is close to the lower
bound.

3. SMALL-TIME REACHABILITY AND STEERING

This section is divided into two parts: In the first part,
we bound how the area of the output-reachable set O≤T

(definition 1) of system (1) scales in terms of T as T → 0.
In the second part, we study how to steer system (1)
between two points that are close together.

3.1 Small-Time Reachability

In order to study the area of the output-reachable set
(A≤T (y)), we will use a change of coordinates in the output
plane to achieve some simplifying properties.

Let o1 and o2 be the two smallest natural numbers that
satisfy:

f1 = Lgi0
...Lgio1−1

h(x0) 6= 0,

f2 = Lgj0
...Lgjo2−1

h(x0) 6= 0,

and f1 and f2 are linearly independent, where
i0, ..., io1−1, j0, ..., jo2−1 ∈ {0, ..., m}.

We assume o1 ≤ o2 without loss of generality, and define
the new coordinates y∗1 and y∗2 as follows:

(1) y∗2 is the part of f2 that is orthogonal to f1 (i.e.,
f2 − f2.f1

|f2|2 f1).
(2) y∗1 is any unit vector in the output space that is

orthogonal to y∗2 .

After the change of coordinates, y∗1 and y∗2 satisfy the
following properties for s ∈ {1, 2} :

(1)
∀k such that 0 ≤ l ≤ k < os − 1, il ∈ {0, 1, 2, ..., m},

Lgi0
...Lgik

h∗s(x0) = 0.

(2) ∃ i0, i1, ..., ios−1 such that:
Lgi0

...Lgios−1
h∗s(x0) 6= 0.

Here, h has been changed to h∗ because of the change
of coordinates (y∗ = h∗(x) replaces y = h(x)). From
this point on, we will assume that o1, o2, y∗1 and y∗2 are
invariant over x ∈ Rp, and that gi, i ∈ {0, ..., m} and
all of its derivatives (with respect to x) are bounded. We
will drop the ∗ from this point forward to simplify the
notation, assuming that this change of coordinates has
been applied. Note that the change of coordinates does
not affect how the area of the small-time output-reachable
set O≤T scales in terms of T . It only changes it by a factor
that is independent of T .
Theorem 1. Given a system described in (1) and o1 and
o2 as above, ∃ CU , CL > 0 such that:

CL ≤ lim
T→0

A≤T

T o1+o2
≤ CU .

To prove theorem 1, we will first prove that for s ∈ {1, 2},
there exists CUs such that the distance ds(t) that the
output of system (1) can move in direction xs in time t
satisfies the following lemmas:
Lemma 1. ∃T > 0, CUs > 0 such that ∀t ≤ T

ds(t)
tos

≤ CUs . (2)

and then prove that ∃ CLs such that ds satisfies:
Lemma 2. ∃T > 0, CUs > 0 such that ∀t ≤ T

ds(t)
tos

≥ CLs .

The upper bound on the area of the reachable set is
important for the lower bound on the expected time the
system needs to trace CP . The lower bound is useful for
the steering algorithm we will use as a sub-algorithm in
Section 4.2.1.

The following two subsections will have the proofs of
statements (1) and (2). We will start by quoting an
interesting result, which is central to our proof [8]:
Theorem 2. The output of system (1) evolves as follows:

yj(t) = hj(x0) (3)

+
∞∑

k=0

m∑

i0,...,ik=0

Lgi0
...Lgik

hj(x0)
∫ t

0

dξik
...dξi0 ,

Where the integral in (3) is defined iteratively by:

ξ0(t) = t,

ξj(t) =
∫ t

0

uj(τ)dτ,

∫ t

0

dξik
...dξi0 =

∫ t

0

dξik
(τ)

∫ τ

0

dξik−1 ...dξi0 .

Upper Bound on the Area of the Reachable Set
Lemma 3. Given system (1), for s ∈ {1, 2} and os as
described above, then ∃ T, CUs > 0 such that ∀ t < T
and u(.) ∈ U ,

|ys(t)− ys(0)| < CUs
tos .

Proof 1. From the definition of os, we have that ∀k such
that 0 ≤ k < os, il ∈ {0, 1, 2, ...,m},

Lgi0
...Lgik

hs(x0) = 0.

Inserting this result in (3) produces:

ys(t) = ys(0)

+
∞∑

k=os−1

m∑

i0,...,ik=0

Lgi0
...Lgik

hs(x0)
∫ t

0

dξik
...dξi0 .

To establish the bound, we use the following two facts:

(1) Since gi(.), xj(.), and their partial derivatives of any
order with respect to x are bounded around x0,
∃M1, M2 such that:

Lgi0
...Lgik

xj(x0) ≤ M1M
k
2 . (4)

(2) Since |uj(.)| ≤ M ,
∫ t

0

dξik
...dξi0 ≤

(Mt)k+1

(k + 1)!
. (5)

Therefore, ∃T small enough such that the sum is conver-
gent.

Using in the bounds from (4) and (5), we get:

xj(x(t))− xj(x0) ≤
∞∑

k=os−1

mM1

M2(k + 1)!
(MM2t)k+1.

and the result directly follows.

The two dimensional version follows directly. Therefore,
given an output y0, we define the order of the area at y0,
o(y0) as:

o(y0) = sup
{x∈Rp:y0=h(x)}

o1(x) + o2(x).

We now turn to the lower bound on the area of the small-
time output-reachable set. The bounds on the individual
motions (in the directions of y1 and y2) are actually what
we are interested in.

Fig. 1. Steering the output locally

3.2 Lower bound on the area of the reachable set and
steering

In this section, we study the implications of statement (2)
on the small-time maneuverability of system (1). We will
leave the proof of statement (2) to the appendix.

Consider the situation in Figure 1, where the system’s
output is steered from ya to yc, and we have δ = |(ya−yc).y2|

|y2|
and d = |(ya−yc).y1|

|y1| . Without loss of generality, we assume
that if there is a drift, it is in the direction of y1 (note that
os, s ∈ {1, 2} corresponding to the fs caused by drift is
1, and so our assumption here doesn’t conflict with our
previous assumption that o1 ≤ o2). The statement that
we want to prove is the following:

Proposition 1. If δ ≤ CL2C
− o2

o1
U1

d
o2
o1 , then ∃Cm > 0 such

that the output of the system can be steered from ya to
yc in time t = Cmd

1
o1 .

Proof 2. It is obvious from (2) that the time needed for
the output to reach L from ya is at most

t1 =
(

δ

CL2

) 1
o2

.

The system’s output could have moved in the y1 direction
(because of drift or as a side effect of the inputs we used
to move in the y2 direction) for a distance

d∗ ≤ CU1t
o1 = CU1C

− o1
o2

L2
δ

o1
o2 = d.

Therefore once the system’s output is at L, it can move
along the y1 direction to get to yc (since that motion is in
the direction of the drift, if there is any). This will take

time t2 ≤ C
− 1

o1
L1

d
1

o1 .

Thus the output can be steered from ya to yc in time

t = t1 + t2 ≤
(

δ

CL2

) 1
o2

+
(

d

CL1

) 1
o1

≤
(

C
1

o1
U1

+ C
− 1

o1
L1

)
d

1
o1 ,

when δ ≤ CL2C
− o2

o1
U1

d
o2
o1 .

Therefore, to steer the output between two points, we
will use motions like the ones in Figure 1. Of course,
we will make sure that δ and d are small and that δ ≤
CL2C

− o2
o1

U1
d

o2
o1 .

4. MAIN RESULT:

We are now ready to present our main result:
Theorem 3. The expected time for system (1) to trace CP

when P has n points is Θ(n1− 1
o1+o2).

The proof is two parts, we will prove a lower bound on
the expected tour time duration in this section and then
provide an algorithm whose expected time is within a
constant factor of that bound in the next.

4.1 TSP time lower bound:

Lemma 4. Let the optimal expected tour time for system
(1) be TTSP . If the points in P are uniformly distributed,
then TTSP is Ω(n1− 1

o1+o2). Where o1 and o2 are as defined
above.
Proof 3. There are three steps in the proof of lemma 4:

Given that the output of system (1) is at a certain point,
let the minimum time needed to travel to a point pi ∈ P
be t∗. To bound E[t∗], we consider P[t∗ > t]. Using the
upper bound on the area of the small time reachable set,
the area reachable in time t is less than CU to1+o2 . Since
the pi’s are uniformly distributed in R, it follows that

P[t∗ > t] ≥ 1− n
CU to1+o2

WH
,

where n is the cardinality of P .

E[t∗] ≥
∫ ∞

0

P[t∗ > τ]dτ

≥
∫ ∞

0

max{0, 1− cτo1+o2}dτ

Where c = n CU

WH .

E[t∗] ≥
∫ c

− 1
o1+o2

0

1− cτo1+o2dτ

= c−
1

o1+o2 − c
1

1 + o1 + o2
c−

1+o1+o2
o1+o2

=
o1 + o2

1 + o1 + o2

(
CU

WH

)− 1
o1+o2

n−
1

o1+o2 .

The expected total travel time is at least n times the
expected time to reach the closest point. Therefore,

E[TTSP] ≥ n
o1 + o2

1 + o1 + o2

(
CU

WH

)− 1
o1+o2

n−
1

o1+o2

= CL
TSP n1− 1

o1+o2 ,
where

CL
TSP =

o1 + o2

1 + o1 + o2

(
CU

WH

)− 1
o1+o2

.

This result means the following: o1 and o2 are a measure of
the “difficulty” of moving in two directions in the output
space. Thus the higher o1 and o2 are, the smaller the area
of the set reachable in time t is, and so the system will
have to travel for a longer time between any two points
on average (specifically between any point and its closest
neighbor in the proof above), and so the expected time to
trace CP will be higher.

4.2 TSP time upper bound:

We now turn to the upper bound of theorem 3, given by
the following lemma:

Lemma 5. TTSP is O(n1− 1
o1+o2).

The proof of lemma 5 is constructive, that is, we provide
an algorithm that produces an output curve CLAfor system
(1) such that the time needed for the system to trace CLA

is O(n1− 1
o1+o2). For simplicity of presentation, we add a

few assumptions here; we assume that y1 is parallel to H
and that ∃ TT > 0 such that between any two points y1

and y2 in R, the system can be steered from y1 to y2 in
time less than TT .

Level Algorithm The algorithm we use to construct the
upper bound is a generalization of our algorithm for the
TSP for the Dubins vehicle [10], mixed with the one in [1].
We assume that o1 ≤ o2, without loss of generality. The
simplest version of the Level Algorithm for system (1) is
as follows:

(1) Set level counter i = 1 and the maximum level

i∗ = log2(n
o1+o2−1

o1+o2)− o1+o2−1
o1+o2

.

(2) Let ki = 2(i−2)(o1+o2) , c1 = C
o1

o1+o2
L2

C
o2

o1+o2
U1

and
c2 = c−1

1 . Cover R with rectangles whose width wi =
c2(kiWH

n)
o2

o1+o2 and length li = c1(kiWH
n)

o1
o1+o2 . Note

that c1 and c2 were chosen so that the area of any

l-rectangle at level i is kiWH
n and wi = CL2C

− o1
o2

U1
l

o1
o2
i .

We call these rectangles l-rectangles.
(3) Visit at least one point in every non-empty l-rectangle

by doing two passes, each of which is as follows:
(a) Move along the rows bottom up, alternating in

direction.
(b) Visit one point in alternating l-rectangles, using

motions as in Section 3.2 .
(4) If i ≤ i∗, increment it by 1 and go to 2.
(5) If i > i∗, use a greedy algorithm to pick up the points

that are left.

Some important points about the Level Algorithm are the
following:

(1) The rectangles are aligned such that their lengths are
along H and their widths are along W .

(2) Each of the l-rectangles of a certain level i is made of
2o1+o2 l-rectangles of the previous level. Its width is
2o2 of theirs and its length is 2o1 of theirs.

(3) The reason we visit a point in alternating l-rectangles
is that in that case we can only use motions like
in Section 3.2. This will guarantee that the time

travelled in each l-rectangles is less than Cml
1

o1
i .

(4) The number of points not visited after the bi∗c level

is nl = O(n
o1+o2−1
2(o1+o2)).

We now turn to the proof that the time the system needs
to trace CLA is O(n1− 1

o1+o2).

Note that because of fact (4), the time needed to clear
the points left after the bi∗cth level will not affect the
order of the time needed to trace CLA (since it is less than

TT (nl +1) = O(n
o1+o2−1
2(o1+o2)). We therefore just need to prove

that the time the system needs to trace CLA over the levels
is O(n1− 1

o1+o2).

Time to trace CLA To bound the time system (1) needs
to trace CLA over the levels, we start by bounding the time
needed to trace CLA in one level. The bound is given by
the following lemma:
Lemma 6. The maximum time needed to trace one pass
at level i is less than:

CmWHl
1

o1
−1

i w−1
i + o(l

1
o1
−1

i w−1
i),

where Cm is the constant from Section
Proof 4. First, we will start by finding the time needed to
trace one row of l-rectangles. We know that the number of
l-rectangles along H are at most H

li
+ 1.

Therefore, since in every l-rectangle the system used curves
as in Section 3.2, the time travelled in traversing one row
is bounded by

Tr = Hl
1

o1
−1

i + l
1

o1
i + o(l

1
o1
i).

To turn from one row to the other, some additional time
bounded by TT is needed.

The number of rows is

Nr ≤ W

wi
+ 1.

To go back to the beginning of first row, the system will
also need some additional time bounded by TT .

Thus the total time to trace one pass over the whole square
is bounded by:

Nr[Tr + TT] + TT

which is equal to:

= CmWHl
1

o1
−1

i w−1
i + o(WHl

1
o1
−1

i w−1
i)

at level i.

Therefore, The length of the time travelled by the vehicle
at any level is bounded by two times the maximum time
travelled in any certain pass over the rows.

Therefore from Lemma 1 and the fact that

wi = c2

(
kWH

n

) o2
o1+o2

,

and

li = c1

(
kWH

n

) o1
o1+o2

,

Tlevel i ≤ 2Cm(WH)
1

o1+o2 (
n

k
)1−

1
o1+o2 + o(n1− 1

o1+o2)

The total time system (1) needs to trace CLA over all of
the levels can be bounded by:

TLA ≤ 2(WH)
1

o1+o2 n1− 1
o1+o2

bi∗c∑

i=1

2(o1+o2−1)(2−i)

≤ 2o1+o2

1− 21−o1−o2
(WH)−

1
o1+o2 n1− 1

o1+o2 (6)

To complete the proof of lemma 5, we have to prove fact
4. The proof is actually close to the one in [1], and will be
skipped here for the lack of space.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the TSP for systems that are
affine in control. We proved limits on the small-time
reachable area, and from those we derived a lower bound
on the minimum expected travel time for a system that
is affine in control to visit n uniformly distributed points.
We also provided an algorithm that produces a tour that
system (1) can trace in time that has the same asymptotic
order in n as the lower bound.

This work can be extended in many directions. Several ve-
hicle routing problems, including the Dynamic Travelling
Repairman Problem (DTRP) [5] and the Dynamic Pickup-
Delivery Problem (DPDP) [11] for systems that are affine
in control are all interesting paths to pursue.

REFERENCES

[1] K. Savla and E. Frazzoli and F. Bullo, “ Traveling
Salesperson Problems for the Dubins vehicle.” IEEE
Trans. on Automatic Control, To appear (2008).

[2] K. Savla and F. Bullo and E. Frazzoli, “ Traveling
Salesperson Problems for a double integrator.” IEEE
Trans. on Automatic Control, To Appear (2007).

[3] L. E. Dubins. “On Curves of minimal length with
a constraint on average curvature and with pre-
scribed initial and terminal positions and tangents.”
American Journal of Mathematics, vol. 79, pp. 497-
516,1957.

[4] Erzberger, H., and Lee, H.Q.”Optimum Horizontal
Guidance Techniques for Aircraft.” Journal of Air-
craft, Vol. 8 (No. 2), pp. 95-101, February, 1971.

[5] D.J. Bertsimas and G.J. Van Ryzin. “A stochastic
and dynamic vehicle routing problem in the Euclidean
plane.” Operations Research, vol. 39, pp. 601-615,
1991

[6] Bui X. et. Al, “Shortest Path Synthesis for Dubins
Non-holonomic Robot,” IEEE 1994.

[7] J. J. Enright and E. Frazzoli, “ The Stochastic Trav-
eling Salesman Problem for the Reeds-Shepp Car and
the Differential Drive Robot.” In Proc. IEEE Conf.
on Decision and Control, December 2006.

[8] S. Sastry, “ Nonlinear Systems: Analysis, Stability,
and Control.” Springer-Verlag New York (1999).

[9] A Isidori, “ Nonlinear Control Systems.” Springer-
Verlag Berlin (1989).

[10] S Itani and Munther A Dahleh, “ On the Stochastic
TSP for the Dubins vehicle.” In Proc. American
Control Conference, 2007.

[11] Holly A. Waisanen et. Al, “A Dynamic Pickup and
Delivery Problem in Mobile Networks under Informa-
tion Constraints.” IEEE Trans. on Automatic Control
To Appear 2007.

6. APPENDIX

6.1 Proof of lemma 2

Here, we will prove lemma 2 for the output component
ys, s ∈ {1, 2} in the case where the system is small-time
locally controllable (definition 2). This implies that g0 = 0.
We assume that the change of coordinates in Section 3.1
has been applied.

We will prove that using piece-wise constant inputs, ∃T >
0 such that system (1) can be steered to a distance that is
CLst

os in time t ∀ t ≤ T .
Proof 5. Inputs that allow system (1) can be computed
iteratively. Given t, choose i∗0, ..., i

∗
os−1 such that

Lgi0
...Lgios−1

hs(x0) 6= 0,

and design the inputs uj as follows:

(1) Each uj takes up to os different values, on different
time intervals([0, t

os
], ..., [(os−1)

os
t, t]). We denote the

value uj takes between during the time [(k−1)
os

t, k
os

t]
by uk−1

j .
(2) Set

u0
i∗
os−1

= M, and u0
j = 0, j 6= i∗0,

and the counter l = 1. The rest of the values of ul
j are

calculated iteratively (over l = 1, ..., os−1):

ul
i∗
l

= M,

ul
j = −os

∫ l
os

t

0 dξjdξi∗l−1...dξi∗0

t
∫ l

os
t

0 dξi∗l−1...dξi∗0

(7)

Where the integrals are calculated as in theorem
(2). Note that if both integrals are 0, then we set the
corresponding ul

j to 0. Also, if

os

∫ l
os

t

0 dξjdξi∗l−1...dξi∗0

t
∫ l

os
t

0 dξi∗l−1...dξi∗0

> M,

all of the ul
j can be normalized (for all j and l).

The way the ui’s were designed guarantees that

∫ k+1
os

t

0

dξjk
...dξj0 = 0 ∀ jk, ..., j0 6= i∗k, ..., i∗0.

This can be easily proved by induction over k and using
the design from (7).

Now using the fact that∫ t

0

dξjos−1 ...dξj0 = 0 ∀ jos−1, ..., j0 6= i∗os−1, ..., i
∗
0

in (3) gives:

yj(t) = hj(x0)+Lg∗
i0

...Lgi∗
os−1

hj(x0)
∫ t

0

dξi∗
os−1

...dξi0 (8)

+
∞∑

k=os+1

m∑

i0,...,ik=0

Lgi0
...Lgik

hj(x0)
∫ t

0

dξik
...dξi0 .

From which the result directly follows.

The proof for the case of the locally non-controllable
system is close but more complicated, mainly due to the
fact that the system can’t be steered arbitrarily.

Note that the motion in the two dimensional space (y1, y2)
can be created from motions in one direction. Therefore
the two dimensional result is also easily attainable from
this one.

