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Abstract—A network of nodes communicate via noisy
channels. Each node has some real-valued initial measure-
ment or message. The goal of each of the nodes is to
acquire an estimate of a given function of all the initial
measurements in the network. As the main contribution of
this paper, we obtain a lower bound on computation time
that must be satisfied by any algorithm used by the nodes
to communicate and compute, so that the mean square
error in the nodes’ estimate is within a given interval
around zero. This utilizes information theoretic inequalities
reminiscent of those used in rate distortion theory along
with a novel ‘perturbation’ techniques so as to be broadly
applicable.
To understand the tightness of the bound, we consider

a specific scenario where nodes are required to learn a
linear combination of the initial values in the network
while communicating over erasure channels. We develop a
distributed quantized algorithm whose computation time
essentially scales as that implied by the lower bound.
In particular, the computation time depends reciprocally
on ”conductance”, which is a property of the network
that captures the information-flow bottleneck. As a by
product, this leads to a quantized algorithm for computing
separable function in a network with minimal computation
time.

I. INTRODUCTION

We consider a network of nodes communicating via
noisy channels. Each node has some real-valued initial
measurement or message. The goal of each of the nodes
is to acquire an estimate of a given function of all the
initial measurements in the network.

We seek to understand the limitations imposed by the
communication constraints on the nodes’ performance
in computing the desired function. The performance
is measured by the mean square error in the nodes’
estimates of the desired function. The communication
constraints consist of (1) the topology of the network,
that is, the connectivity of the nodes, and (2) the noisy
channels between nodes that communicate. In order to
capture the limitation due to the communication con-
straints, we assume that that the nodes have unlimited

computation capability. Each node can perform any
amount of computation as well as encoding and decoding
for communication.

The formulation we consider lends itself to Informa-
tion Theoretic techniques. We use Information Theoretic
inequalities to derive lower bounds on information ex-
change necessary between nodes for the mean square
error in the nodes’ estimates to converge to zero. We
use the Information Theoretic technique is to determine
a lower bound on computation time that must be satisfied
by any algorithm used by the nodes to communicate and
compute, so that the mean square error in the nodes’
estimates is within a given interval around zero. The
bound is in terms of the channel capacities, the size of the
desired interval, and the uncertainty in the function to be
computed. To obtain this bound, as one of the important
technical contribution of this paper we develop a novel
‘perturbation’ technique as explained in section VI-C.
This allows us to apply our method to obtain non-trivial
lower bound for any functional computation setup.

In section VII, we apply the lower bound developed
in this paper to a specific scenario where we find
our bounds to be asymptotically tight. Specifically, we
consider a scenario where nodes are required to learn a
linear combination of the initial values in the network
while communicating over erasure channels. Our lower
bound suggests that in this scenario, the computation
time depends reciprocally on “conductance.” Conduc-
tance essentially captures the information-flow bottle-
neck that arises due to topology and channel capacities.
The more severe the communication limitations, the
smaller the conductance.

To establish the tightness of our lower bound, we de-
scribe an algorithm whose computation time matches the
lower bound. The algorithm that we describe here can in
fact be more generally used for distributed computation
of separable functions, a special case of which is the sum.
The desired function, a sum, is simple, and the algorithm
that we describe has computational demands that are not
severe. So, the time until the performance criterion is
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met using this algorithm is primarily constrained by the
limitations on communication.

Indeed, we show that the upper bound, on the time
until this algorithm guarantees the performance crite-
rion, depends reciprocally on conductance. Hence, we
conclude that that a lower bound we derive using In-
formation Theoretic analysis is tight in capturing the
limitations due to the network topology. Alternatively,
one can interpret this tightness as the fact that the
algorithm we describe here is the fastest with respect
to its dependence on the network topology, as quantified
by the conductance. Thus our distributed quantized al-
gorithm answers an important question of recent interest
of designing the fastest possible distributed algorithm
for separable function computation (e.g. see works on
consensus, linear estimation and distributed control [22],
[23], [1]).

A. Related work
Existing results include algorithms with upper and/or

lower bounds on the time for the nodes to reach
agreement or compute a certain quantity with given
accuracy, when communication is subject to topological
constraints, but perfect when present [2], [3], [24],
[23]. Another set of work investigates algorithms for
computation when communication is unreliable. The
channels in the network are explicitly modelled. The
researchers propose an algorithm that will perform the
desired computation while satisfying some performance
criterion. For example, in [9], each node in the network
has one bit. Nodes broadcast messages to each other
via binary symmetric channels. The goal is for a fusion
center to compute the parity of all the bits in the network.
Gallager proposes an algorithm that can be used while
guaranteeing a desired probability of error. He exhibits
an upper bound that is a constant multiple of the bits
that must be transmitted per node. Recently, it has been
shown in [11] that this algorithm is optimal. The authors
produce an algorithm-independent lower bound that is of
the same order as the upper bound.

Many different formulations and corresponding
bounds can be found in the literature. Two examples
are [8], [13]. In [8], the authors derive Information
Theoretic bounds on the number of bits that must be
exchanged for nodes communicating via noiseless chan-
nels to acquire each other’s data. In [13], the authors
present lower bounds to the number of messages that
must be communicated by two sensors to a fusion center
that must determine a given function of the nodes’
data. However, the transmitted messages are real-valued
vectors and the lower bound is on the sum of the di-
mensions of the message functions. Several formulations

and results relevant to computation in wireless sensor
networks can be found in a detailed survey by Giridhar
and Kumar [10].

Our approach and, hence results, are quite different.
We capitalize on Martins’ successful use of Information
Theoretic tools in [14], [15], [16], [17] to character-
ize fundamental performance limits of feedback con-
trol systems with communication constraints. We use
Information Theoretic inequalities, reminiscent of those
of Rate-Distortion theory, in a different setting with
different objectives. In particular, we have a network of
nodes whose objective is to compute a given function
of the nodes’ data, rather than to communicate reliably
to each other their data. As noted earlier, in order to
make our bounds widely applicable, we develop a novel
perturbation technique.

The Information Theoretic approach captures funda-
mental performance limitations that arise in the network
due to the communication constraints. This happens
because the analysis is independent of the communi-
cation algorithm used by the nodes. The lower bound
we derive in this paper enables us to characterize the
effect of the network structure on algorithm running
time. For nodes exchanging information over erasure
channels to compute the sum of their initial conditions,
the lower bound is indeed tight in capturing the network
constraints.

B. Organization
In the next section, we describe the problem formula-

tion and necessary formalities. In section III we state two
main results of this paper. The first result is about lower
bound on computation and the second result is about
application of this lower bound along with a lower bound
achieveing quantized algorithm for computation of linear
combination of numbers. In section IV we illustrate
how network topology, through conductance, affects the
computation time using specific network structure. We
compare our quantized algorithm with the popular linear
iterative algorithms. The comparison suggests that for
network structures with small conductance our algorithm
convincingly outperforms the popular algorithms.

In section V we recall useful Information Theoretic
definitions and properties. In section VI we prove our
main theorem on the lower bound. We use information
theoretic inequalities with a novel perturbation argument
(introduced in section VI-C) to obtain non-trivial bound
on computation for any function of interest. Next, we
discuss the scenario for which our results are tight. In
section VII-A we derive the lower bound that scales
reciprocally with conductance. In section VII-B we de-
scribe an algorithm that can be used to compute the sum
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via erasure channels. We derive an upper bound on its
computation time; we show that this upper bound also
scales inversely with conductance. This establishes the
optimality of our quantized algorithm for computation
of summation in terms of its dependence on the graph
structure.

II. PROBLEM FORMULATION AND MAIN RESULTS

A network consists of n nodes, each having a random
initial condition or value. We represent the initial condi-
tion at node i by the random variable Xi(0). Let X(0)
represent the vector of all the initial condition random
variables, [X1(0) . . . Xn(0)]′. Each node is required to
compute a given function of all the initial conditions.
That is, node i is required to estimate Ci = fi(X(0)).
We let C = [C1 . . . Cn]′. Suppose that nodes 1 to m
belong to set S. Whenever we use a set as a subscript
to a variable, we mean the vector whose entries are
that variable subscripted by the elements of the set. For
example, CS = [C1 . . . Cm]′.

We assume that time is discretized into intervals, and
enumerated by positive integers, {1, 2, . . . }. During each
time step, a node can communicate with its neighbors. At
the end of time-slot k, node i uses the information it has
received thus far to form an estimate of Ci. We denote
this estimate by Xi(k). Let, Xk

i denote the finite se-
quence of estimates at node i, {Xi(1),Xi(2), . . . Xi(k)}.
The estimates of all nodes in the network at the end
of time slot k are denoted by the vector X(k) =
[X1(k) . . . Xn(k)]′. And, the estimates of nodes in set
S are denoted by XS(k) = [X1(k) . . . Xm(k)]′.

The nodes communicate via noisy channels. The net-
work structure is described by a graph, G = (V,E),
where V is the set of nodes and E is the set of edges,
(i, j). If node i communicates with node j via channel
with capacity Cij > 0, then (i, j) ∈ E. If (i, j) /∈ E,
we set Cij = 0. 1 We assume that all channels in the
network are independent, memory-less and are operating
in discrete-time. For each channel, one channel symbol
is sent per unit time. Each node generates an input for
its encoder every τ time units. For simplicity, we assume
that τ = 1. Thus, by the end of time k, each node
has generated its kth estimate based on the k received
symbols. Let this be denoted as Xi(k) at node i.

To capture the limitations arising exclusively due to
the communication structure, we assume no limits on the
computational capabilities of the nodes, such as limited

1Note that we use bold capitalized Cij for channel capacity, where
the two letters in the subscript indicate that the channel is from node i
to j. Constrast this with our notation for the function to be estimated
at node i, Ci, which is not boldface and is followed by a single-letter
subscript.

memory or power. The estimate Xi(k) is generated by
node i using some function of its initial condition, Xi(0),
and the messages it has received by the end of the k th

time slot. We make no assumptions on this function,
except that it be measureable. Similarly, the messages
that the node communicates with other nodes are a
function of the node’s initial condition and messages it
has received in the past. We make no assumptions on this
function, except that it be measureable. The relationship
between the node estimates and communicated symbols
is made mathematically precise when need arises, in
Appendix I.

We consider two mean square error criteria. The
operator ‖ · ‖ is to be interpreted, when the argument
is a vector, C , as ‖C‖2 =

∑
C2

i .

R1. E(‖X(T ) − C‖2) ≤ β2−α, and,
R2. E(Xi(T ) − Ci)2 ≤ β2−α, for all i ∈ {1, . . . , n},
where β, α ∈ R+\{0}.

The first criterion requires that as the number of nodes
increases, the per node error is also smaller. It suggests
that as the number of nodes, n, increases, we require the
mean square errors at each of the nodes, E(Xi(k)−Ci)2
to decrease like 1/n. This criterion is appropriate if, for
example, the initial values at the nodes are independent
and each node is to estimate the average of the initial
values in the network. As the number of nodes increases,
the variance of the average decreases. In circumstances
where this does not happen, the second criterion may be
more appropriate.

The “computation time” is the first time at which
the desired performance criterion holds. We seek a
lower bound on the computation time, T, that holds if
the desired mean square error criterion, R1 or R2, is
satisfied. That is, if R1 or R2 holds, then how large must
T be?

A. Features of the formulation

Our formulation (and results) are appropriate for net-
works with severe communication constraints. These
include cases where

1) channel capacities are diminished, due to loss of
transmission power, for example, or,

2) network topology creates information-flow bottle-
necks.

We place few assumptions on how the nodes com-
municate and compute their estimates. Namely, each
node can use only its own initial measurement and
past received messages. But, we do not specify how
the node makes its computation or exchanges messages.
Hence, our lower bound reveals the smallest time that
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must elapse before it is possible to acheive the perfor-
mance desired, over all communication and computation
schemes that satisfy our assumptions. The necessity of
having this time elapse arises due to network topology
and channel capacities.

III. MAIN RESULTS

We state the formal statements of the main results of
this section. There are two main results of this paper. The
first result, stated in section III-A describes a general
lower bound on computation time. The second result,
stated in section III-B establishes the tightness of this
lower bound in the specific scenario of the distributed
computation of summation. This involves specializing
the lower bound of section III-A and developing a
quantized algorithm with the computation time matching
thus developed lower bound.

A. Result I: Lower bound
The first main theorem of this paper provides a lower

bound to computation time as a function of the accuracy
desired, as specified by the mean square error, and the
uncertainty in the function that nodes must learn, as
captured by the differential entropy.

Theorem III.1. For the communication network de-
scribed above, if at time, T, the mean square error is in
an interval prescribed by α, E(Xi(T ) − Ci)2 ≤ β2−α,
for every node, then T is lower bounded by

T ≥ max
S⊂V

L̄(S)∑
i∈Sc

∑
j∈S Cij

,

where Sc = V \S and,

L̄(S) = h(CS |XS(0)) − |S|
2

log 2πeβ + |S|α
2

.

This theorem captures the fact that the larger the
uncertainty in the function to be estimated, or the larger
the desired accuracy, the longer it must take for any
algorithm to converge.

B. Result II: An optimal summation algorithm

Setup. Here we consider a specific scenario of the
general formulation described in section II. As before,
we have a network of n nodes each having a random
initial condition denoted by Xi(0). Here we assume
that these initial values are distributed independently and
uniform at random in the interval [1, B+1]. Here B > 0
is a constant and should be treated as problem parameter.
Each node wishes to compute the same quantity C ,
where C =

∑n
j=1 βjXj(0). Finally, let Xi(k) denote

the estimate of node i at the end of time k under any
computation algorithm.

As before, nodes will communicate over noisy chan-
nels that are independent and discrete-time memory-
less. In addition, we assume that these are block-erasure
channels. Specifically, if a node i sends a channel symbol
to node j then it is successful with probability pij

independently of everything else. The channel symbol is
of logM bits, where we shall decide value M later. Thus
effective capacity of channel between nodes i and j is
Cij = pij log M . We assume that pij = pji. Further, we
assume that the matrix P = [pij ] is a doubly stochastic
matrix.

Definition III.2 (Conductance). The conductance of a
capacitated graph G with edge capacities Cij, (i, j) ∈ E
is defined as

Φ(G) = min
S⊂V,0<|S|≤n/2

∑
i∈S,j /∈S Cij

|S| .

The conductance, Φ(G) captures the information
bottle-neck in the capacitated graph G. It depends on
the connectivity or toplogy of the graph along with the
channel magnitude. We use the word ‘conductance’ as it
co-incides with the notion of conductance or ‘cheeger’
constant for a Markov chain based on a symmetric and
doubly stochastic matrix P on the network graph G.

Specifically, consider a Markov chain with irreducible
and aperiodic probability transition matrix P on n nodes
of graph G. The P may not be necessarily symmetric
or doubly stochastic. It is, however always stochastic
since it is a probability matrix. It is well known that
such a Markov chain has a unique stationary distribution
π = [πi] (cf. Perron-Frobenius Theorem). For such a P ,
its conductance which is denoted by Φ(P ) is defined as

Φ(P ) = min
S⊂V,0<|S|≤n/2

∑
i∈S,j /∈S πipij

π(S)
,

where π(S) =
∑

i∈S πi. In general, the Φ(P ) is used
to bound the mixing time of the Markov chain with
transition matrix P . Let H(P ) be the mixing time of
the Markov chain (based on notion of stopping time),
then the following is a well known bound:

Ω
(

1
Φ(P )

)
= H(P ) = O

(
log n

Φ2(P )

)
.

Now, in our setup we have P as symmetric and doubly
stochastic. In such a case the stationary distribution π
is uniform. That is, πi = 1/n for all i. Therefore, the
conductance can be simplified to

Φ(P ) = min
S⊂V,0<|S|≤n/2

∑
i∈S,j /∈S pij

|S| .
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Thus, Φ(G) = Φ(P ) log M . In this sense, the Φ(G) is
related to the standard definition of conductance utilized
in the context of Markov chain theory.

Let A represent a realization of the initial conditions,
A = {X1(0) = x1, . . . ,Xn(0) = xn}. The performance
of an algorithm, H, used by the nodes to compute an
estimate of f(x, V ) =

∑n
j=1 βjxj at each node, is

measured by the algorithm’s (ε, δ)-computation time,
T cmp
H (ε, δ). It is the time until the estimates at all nodes

are within a factor of 1± ε of f(x, V ), with probability
larger than 1 − δ. The definition follows, where ŷi(k)
denotes the estimate of f(x, V ) at node i at time k.

Definition III.3. For ε > 0 and δ ∈ (0, 1), the
(ε, δ)-computing time of an algorithm, H, denoted as
T cmp
H (ε, δ) is defined as

T cmp
H (ε, δ) = sup

x∈Rn

inf {k :

P(∪n
i=1{ŷi(k) /∈ [(1 − ε)f(x, V ), (1 + ε)f(x, V )]}) ≤ δ} .

Here, the probability is taken with respect to ŷi(k).
This is random because nodes communicate over noisy
channels.
Lower bound. Consider any algorithm, H, that guaran-
tees that for any realization of the initial values, with high
probability each node has an estimate within 1±ε of the
true value of C, at time T. The Information Theoretic
lower bound maintains that such algorithm must have
a computation time, T = T cmp

H (ε, δ), that is inversely
proportional to conductance.

Theorem III.4. Nodes communicate in order for each
node to compute a linear combination of all initial values
in the network. Any algorithm that guarantees that for
all i ∈ {1, . . . , n},

P
(
|Xi(T ) − C| ≤ εC

∣∣∣A
)
≥ 1 − δ,

must have

T ≥ 1
Φ(G)

log
1

Bε2 + 1
B

2
n + κδ

,

where, Bε2 ∈
[
0, 1 − 1

B

2
n − κδ

]
, and κ is a constant.

Again, the probability in this theorem is taken with
respect to the measure on Xi(T ), conditional on A, and
induced by the randomness due to communication over
channels.
Upper bound: Through an algorithm. Next, we provide
an algorithm that guarantees, with high probability, the
nodes’ estimates are within the desired ε-error interval
around the true value of the sum. We provide an upper

bound on this algorithm’s computation time. The com-
putation time is inversely proportional to conductance.

Theorem III.5. Suppose that node i has an initial
condition, xi. There exists a distributed algorithm APQ

by which nodes compute a linear sum, f(x, V ) =∑n
j=1 βjxj, via communication of quantized messages.

If each quantized message is log M bits and log M =
O(log n), the quantization error will be no more than a
given γ = Θ( 1

n), and for any ε ∈ (γf(x, V ), γf(x, V )+
1
2) and δ ∈ (0, 1), the computation time of the algorithm
will be

T cmp
APQ(ε, δ) = O

(
ε−2 log eδ−1 log nδ−1 log n

Φ(G)

)
.

So, setting δ = 1
n2 in the above bound, we have

T cmp
APQ

(
ε,

1
n2

)
= O

(
ε−2 log3 n

Φ(G)

)
.

The computation time of this algorithm depends on
the network topology, via the conductance of the graph,
in the same reciprocal manner manifested by the lower
bound. Thus, we conclude that the lower bound is
tight in capturing the effect of the network topology on
computation time. Conversely, the algorithm’s running
time is optimal with respect to its dependence on the
network topology, as captured by the conductance.

IV. MOTIVATION: CAPTURING THE EFFECT OF
TOPOLOGY

The conductance of a graph, Φ(G), is a property that
captures the bottle-neck of information flow. It depends
on the the connectivity, or topology, of the graph, and the
magnitudes of the channel capacities. The more severe
the network constraints, the smaller the conductance. It
is also related to time it takes for information to spread
in a network; the smaller the conductance, the longer it
takes.

A. Conductance: Two examples
Consider two networks, each has n nodes. We calcu-

late conductance for two extreme cases of connectivity
shown in Figure 1. On the one hand, we have severe
topological constraints: a ring graph. Each node may
contact only the node on its left or the node on its
right. On the other hand, we have a case of virtually
no topological constraints: a fully connected graph. Each
node may contact every other node in the network.

For the purpose of illustrating the computation of
conductance for the two topologies, suppose that in both
cases, the links from a given node to different nodes
are equally weighted. So, for the ring graph, let Cij =
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C = 1
4 , for all i '= j; for the fully connected graph, let

Cij = C = 1
n , for all i '= j. Assume that for the ring

graph, Cii = 1
2 . If the channels were erasure channels,

this would be the probability that node i makes contact
with no other nodes. For the fully connected graph, let
Cij = 1

n . So, in both cases, we have that the sum of the
capacities of channels leaving a node is 1,

∑
j Cij = 1.

Now, we compute the conductance of the ring graph.
Recall that conductance is

Φ(G) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S Cij

|S| .

Consider any cut that divides the ring graph into two
sets, S and Sc. For any such cut, there will be exactly
two links crossing the cut, going from S to Sc. So,∑

i∈S,j /∈S Cij = 1
2 , and

Φ(G) = min
S⊂V

0<|S|≤n/2

1
2

|S|
.

Since we minimize over all cuts such that |S| ≤ n/2,
the ratio is minimized when the cut divides the ring into
two sets of equal size, and |S| = n/2. So, Φ(G) = 1

n .
Next, we compute the conductance of the fully con-

nected graph. Consider any cut that divides the graph
into two sets, S and Sc. For any such cut, there will be
|S||Sc| links crossing the cut, going from S to Sc. So,

∑
i∈S,j /∈S Cij

|S| =
|S||Sc| 1n

|S|

=
|Sc|
n

=
n − |S|

n

The last equality is minimized where |S| = n/2, so,
Φ(G) = 1

2 .
So, for two networks with the same number of nodes,

the network with the more severe topological constraints
has smaller conductance. In general, for a ring graph, we
have Φ(G) = O( 1

n), while for a fully connected graph
we have Φ(G) = O(1).

C

C = 1
4

C

C = 1
n

Fig. 1. Two ways to connect six nodes: a ring graph and a fully
connected graph.

B. Comparison with iterative algorithms
A popular approach for computing a linear function

of the initial conditions are based on linear iterations.
For example, to compute linear estimator or reaching
consensus, such linear iterative algorithms are popular.
These algorithms assume that nodes can communicate
real numbers between them in each time instance.

For an iterative algorithm based on a doubly stochastic
matrix P , the computation time is proportional to its
mixing time, say H(P ) (e.g. see results by Boyd, Ghosh,
Prabhakar and Shah [3]). As noted earlier, the mixing
time H(P ) (and hence computation time of iterative
algorithm) is bounded as

1
Φ(P )

≤ H(P ) ≤ O

(
log n

Φ2(P )

)
.

Therefore, in order to obtain a quick iterative algorithm,
it is important to obtain P with small mixing time H(P ).
The standard approach of finding such a P is based on
the method of Metropolis [18] and Hastings [12]. This
results into a symmetric and doubly stochastic P on G.

Now, for expander graphs the resulting P induced by
Metropolis-Hasting method is likely to have Φ(P ) =
Θ(1) and hence mixing time is O(log n) which is
essentially fastest possible. For example, for complete
graph the resulting will be P = [1/n]. Therefore, as
discussed earlier it has Φ(P ) = Θ(1). Thus, algorithm
based on linear iterations or our algorithm have essen-
tially optimal computation time. It should be noted that
our algorithm (described later) is quantized. However,
quantized version of the linear iterative algorithm is far
from obvious and an important open question to the best
of our knowledge.

Now the graph topologies such as those arising in
wireless sensor network deployed in some geographic
area [3], [7] or a nearest neighbor network of unmanned
vehicle [21], do possess geometry and are far from
being expanders. One of the simplest example of graph
with geometry is the ring graph that we considered
above. The Metropolis-Hastings method will lead to a
P as discussed in section IV-A. As discussed, it has
Φ(P ) = Θ(1/n). But the mixing time scales at least
as Ω(n2). That is, mixing time scales like 1/Φ2(P ) and
not 1/Φ(P ). More generally, for any symmetric P , the
mixing time is known to be at least n2 (e.g. see [3]).
Thus, the linear iterative algorithms based on symmetric
P have computation time scaling as n2. In contrast, our
quantized algorithm will have computation time scaling
as n (which is 1/Φ(P )) for the ring. Now the diameter
of the ring graph is n and obviously no algorithm takes
less than n or no P can have mixing time smaller than
this diameter n.
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In the general, it can be checked that diameter of a
graph G is at most 1/Φ(P ) for any irreducible proba-
bility matrix P . Also, it can be checked that for graphs
with bounded degree and geometry, the P induced by the
Metropolis-Hasting method have diameter scaling like
1/Φ(P ). By graph with geometry, precisely we mean
a graph with polynomial growth – number of nodes
within distance r for any given node scales as O(rd)
for some fixed constant d. Now Diaconis and Saloff-
Coste [6] established that for graphs with geometry
the mixing time of any symmetric doubly stochastic P
scales like at least D2, where D is the diameter of
the graph G. Therefore, linear iterative algorithm will
take computation time scaling like D2. In contrast, our
algorithm will take computation time 1/Φ(P ) which will
be equal to diameter D for P given by the Metropolis-
Hastings’ method.

In summary, our algorithm will provide the best pos-
sible computation time scaling with respect to graph
structure for both expander graphs and graphs with
geometry.

V. INFORMATION THEORETIC PRELIMINARIES

The differential entropy of C is denoted by h(C).
The mutual information between X and C is denoted
by I(X;C).

When indicated, we will need to use the most general
definition of mutual information. It can be used when the
random variables are arbitrary ensembles, not necessarily
both continuous or both discrete. We repeat this defini-
tion from [20, p.9]. The conditional mutual information
is similarly defined; see [20, Ch. 3].

Suppose X and C are random variables that take
values in the measurable spaces (ΩX , SX) and (ΩC , SC),
respectively. SX denotes the sigma algebra of subsets of
ΩX . Let the probability distributions of X and C be PX

and PC . Let PXC be the joint distribution of X and C.
The mutual information between X and C is

I(X;C) = sup
∑

i,j

PXC(Ei × Fj) log
PXC(Ei × Fj)
PX(Ei)PC(Fj)

,

where the supremum is taken over all partitions {Ei} of
ΩX and partitions {Fi} of ΩC .

In the remainder of this section, let C and X be
continuous random variables. The definitions for mutual
information and differential entropy for this case are
repeated from [4, Ch.9].

Let X and C have the probability densities p(x) and
p(c). Let their joint density be p(x, c). Then their mutual
information is defined as

I(X;C) =
∫

p(x, c) log
p(x, c)

p(x)p(c)
dx dc.

The differential entropy of C is defined as

h(C) = −
∫

p(c) log p(c) dc.

The conditional differential entropy h(C|X) is

h(C|X) = −
∫

p(x, c) log p(c|x) dx dc.

The following properties of differential entropy will
be used.
(1) Conditioning reduces entropy, h(C|X) ≤ h(C).

Equality holds if C and X are independent.
(2) Differential entropy, h(X), is maximized, over all

distributions with the variance V ar(X) = σ2, by
the normal distribution. If X had a Normal distri-
bution, it would have entropy 1

2 log 2πeσ2. Hence,
for any distribution of X with V ar(X) = σ2,

h(X) ≤ 1
2

log 2πeσ2.

Further, if X is a vector of random variables, X =
[X1 . . . Xn]′, then

h(X1, . . . ,Xn) ≤ 1
2

log(2πe)n|Z|,

where Z is the covariance matrix of X and |Z| is
the determinant of Z .

Next, the following properties of mutual information will
be needed.
(1) Mutual information can be written in terms of

differential entropies as

I(X;C) = h(C) − h(C|X).

(2) By the chain rule for mutual information,

I(X1,X2, . . . Xn;C) =
n∑

i=1

I(Xi;C|X1, . . . Xi−1).

(3) By the data processing inequality, if Y = f(C)
for any (measurable) function f , then I(C;X) ≥
I(Y ;X).

Finally, when the argument in h(·) is a vector of length
n, for example, C = [C1, . . . , Cn]′, it is interpreted as
the joint differential entropy h(C1, . . . , Cn). Similarly,
when the arguments in I(·; ·) are vectors of length
n, for example C and X, it is to be interpreted as
I(C1, . . . , Cn;X1, . . . ,Xn).
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VI. PROOF OF THEOREM III.1

In this section, we present the proof of Theorem III.1.
The core idea is to characterize the information flow be-
tween arbitrary “cut-sets” of the network. A cut divides
the network into two sets, S and Sc = {1, . . . n}\S.
Suppose that nodes 1 to m belong to set S and nodes
m+1 to n belong to set Sc. So, the estimates of the nodes
in set S at time T are XS(T ) = [X1(T ) . . . Xm(T )]′.
The initial conditions of the nodes in sets S and S c

are denoted by XS(0) = [X1(0) . . . Xm(0)]′ and
XSc(0) = [Xm+1(0) . . . Xn(0)]′.

The quantity that will play a central role in the
proof of Theorem III.1 is the mutual information term,
I(XS(T );XSc(0)|XS(0)). This is mutual information
between the estimates of the nodes in set S and the initial
conditions of the nodes in set S c, assuming that all nodes
in S have each other’s initial conditions. Leading up to
the proof of Theorem III.1, we prove 3 lemmas related
to I(XS(T );XSc(0)|XS(0)).

In the first of our series of lemmas, we bound from
above I(XS(T );XSc(0)|XS(0)), by the mutual informa-
tion between the inputs and the outputs of the channels
that traverse the cut.

Lemma VI.1. For a given cut in the network, and
corresponding cut-sets Sc and S,

I(XS(T );XSc(0)|XS(0)) ≤
N∑

l=1

I(VS(l);USc(l)|US(l)),

where N is the channel code block length, USc is a
vector of the variables transmitted by the encoders of the
nodes in Sc and VS is a vector of the variables received
via channels by the decoders of the nodes in S. The (l)
refers to the lth channel use.

In the second lemma, we bound from above
I(VS(l);USc(l)|US(l)) by the sum of the capacities of
the channels traversing the cut.

Lemma VI.2. Suppose a network is represented by the
graph G = (V,E). The edges of the graph represent
channels with positive capacity. If the channels connect-
ing the nodes are memoryless and independent, then,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij.

The proof of this lemma makes apparent the value of
the conditioning in the mutual information terms. This
conditioning is equivalent to assuming that all nodes
in S have access to all information that is available
at the nodes of the set S, including information about
XS(0). In this way, we capture the information that

is traversing the cut, without including the effect of
information exchanged between nodes in the same set.

Finally, in the third lemma, we bound from below the
term I(XS(T );XSc(0)|XS(0)). We show that this term
is bounded from below by the information that must be
communicated from the nodes of S c to the nodes of S
in order for the nodes of S to compute their estimates,
I(XS(T );CS |XS(0)). We then bound this from below
by an expression that involves the desired performance
criterion and the desired function.

For the mean square error criterion R1, we have the
following lemma.

Lemma VI.3. If E(‖X(T ) − C‖2) ≤ β2−α then

I(XS(T );XSc(0)|XS(0)) ≥ L(S)

where,

L(S) = h(CS |XS(0))−|S|
2

log 2πeβ+
|S|
2

log |S|+|S|α
2

,

and, |S| is the size of the set S, specifically, |S| = m.

The lower bound involves two terms. These are (1) the
desired accuracy in the nodes’ estimates, specified by the
mean square error criterion, and (2) the uncertainty in the
function to be estimated, CS , quantified by its differential
entropy. The larger the desired accuracy, the larger the α
in the mean square error criterion. This implies a larger
lower bound on the information that must be conveyed.
Also, the larger the uncertainty in the function to be
learned by the nodes in set S, the larger the differential
entropy term. Hence, the lower bound is larger.

For the mean square error criterion R2, we have the
following corollary.

Corollary VI.4. If, for all i ∈ {1, . . . , n}, E(Xi(T ) −
Ci)2 ≤ β2−α, then,

I(XS(T );XSc(0)|XS(0)) ≥ L̄(S),

where L̄(S) = h(CS |XS(0)) − |S|
2 log 2πeβ + |S|α2 .

When, for all i, E(Xi(T ) − Ci)2 ≤ β2−α, we again
have a lower bound that depends on the desired accuracy
and the uncertainty in the function to be estimated.
However, L̄(S) is smaller than L(S) due to the weaker
error requirement of R2.

The proofs of Lemma VI.1 and VI.2 are in Ap-
pendix I. In the next sections, we prove Lemma VI.3
and Corollary VI.4. Then, we prove Theorem III.1.

A. Proof of Lemma VI.3 and Corollary VI.4
Recall that the lemma stated that if E(‖X(T ) −

C‖2) ≤ β2−α then

I(XS(T );XSc(0)|XS(0)) ≥ L(S)
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where,

L(S) = h(CS |XS(0))−|S|
2

log 2πeβ+
|S|
2

log |S|+|S|α
2

,

and, |S| is the size of the set S, specifically, |S| = m.
We start the proof by observing the following.

I(XS(T );XSc(0)|XS(0))
(a)
=I(XS(T );X(0)|XS (0))
(b)
≥I(XS(T );CS |XS(0))

where
(a) that is, I(W ;Y,U |U) = I(W ;Y |U), can be veri-

fied by the chain rule for mutual information:

I(W ;Y,U |U) = I(W ;Y |U) + I(W ;U |U, Y )
= I(W ;Y |U),

because I(W ;U |U, Y ) = 0.
(b) follows by the data processing inequality, because

Ci = fi(X(0)).
Second, we obtain a lower bound on

I(XS(T );CS |XS(0)) in terms of the desired mean
square criterion. We have the following series of
inequalities.

I(XS(T );CS |XS(0))
=h(CS |XS(0)) − h(CS |XS(T ),XS(0))
=h(CS |XS(0)) − h(CS − XS(T )|XS(T ),XS(0))
(c)
≥h(CS |XS(0)) − h(CS − XS(T )) (1)

where, (c) follows because conditioning reduces entropy.
Now, because the multivariate Normal maximizes en-

tropy over all distributions with the same covariance,

h(XS(T ) − CS) ≤ 1
2

log(2πe)m|Z|, (2)

where, Z is a covariance matrix whose diagonal elements
are Zii = V ar(Xi(T ) − Ci), and |Z| denotes the
determinant. Recall that S is the set containing nodes
1 to m, so it has size m. Also, XS(T )−CS is a vector
of length m. So, Z is an m by m matrix. Now,

|Z|
(d)
≤

m∏

i=1

V ar(Xi(T ) − Ci)

≤
m∏

i=1

E(Xi(T ) − Ci)2

(e)
≤

(
β2−α

m

)m

. (3)

Here, (d) follows due to Hadamard’s inequality. To see
(e), we have the following proposition.

Proposition VI.5. For γ > 0, subject to
∑m

i=1 yi ≤ γ
and yi ≥ 0,

∏m
i=1 yi is maximized when yi = γ

m .

Now, (e) follows by setting yi = E(Xi(T ) − Ci)2 and
observing that

m∑

i=1

yi = E(‖XS(T ) − CS‖2)

≤ E(‖X(T ) − C‖2)
≤ β2−α,

where the last inequality follows by the assumption of
our lemma.

Finally, using (3) and (2), we bound (1) from below
and obtain L(S).

Proof of Corollary VI.4. Recall that in this corollary, we
had the weaker condition that for all i ∈ {1, . . . , n},
E(Xi(T )−Ci)2 ≤ β2−α. In this case, we show that we
have the smaller lower bound,

L̄(S) = h(CS |XS(0)) − |S|
2

log 2πeβ + |S|α
2

.

To see this, observe that E(Xi(T ) − Ci)2 ≤ β2−α

implies E(‖XS(T ) − CS‖2) ≤ |S|β2−α. So, replacing
β in L(S) of the previous lemma by |S|β yields the
desired result.

B. Proof of Theorem III.1
The proof proceeds in several steps. First, as shown

in Lemma VI.1, for a given cut in the network and
corresponding cut-sets Sc and S,

I(XS(T );XSc(0)|XS(0)) ≤
N∑

l=1

I(VS(l);USc(l)|US(l)),

(4)
where N is the channel code block length, USc is a
vector of the variables transmitted by the encoders of the
nodes in Sc and VS is a vector of the variables received
via channel by the decoders of the nodes in S.

Second, by Lemma VI.2, because we have assumed
that the channels connecting the nodes are memoryless
and independent,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij . (5)

Third, we combine equations (4) and (5) with Corol-
lary VI.4 to obtain

N ≥ L̄(S)∑
i∈Sc

∑
j∈S Cij

, (6)
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Finally, we have that

T ≥ max
S⊂V

L̄(S)∑
i∈Sc

∑
j∈S Cij

,

because (i) (6) holds for any cut, and, (ii) by assumption,
each of the channels transmits one symbol per second,
so T = N.

C. A Technical Difficulty and its Resolution
Making use of the lower bounds derived above in-

volves computing the differential entropy of the random
variables to be learned in the network, specifically,
h(CS |XS(0)), where CS = [C1 . . . Cm].′ If the Ci’s are
different random variables, then the differential entropy
term is well-defined. However, if two entries of CS

are the same random variable, for example if both are
f(X(0)), then h(CS |XS(0)) will be −∞.

But, our technique and lower bound can still be used
in situations where all nodes need to learn the same
function of the initial conditions. In order to have a non-
trivial lower bound, we modify the problem slightly. We
introduce auxiliary random variables associated with the
nodes of set Sc, to be learned by nodes in S. This enables
us to obtain a non-trivial lower bound for the modified
problem, that also holds for our original problem. By
proper choice of the auxiliary random variables, the
lower bound of the modified problem can be made as
large as possible, and hence the best possible approxi-
mation for the lower bound of the original problem. This
procedure is illustrated in Figure 2.

The aforementioned technique will be used in the
next section. In the examples below, we demonstrate
the computation of h(CS |XS(0)) when we introduce the
auxiliary random variables.

Example VI.6 (The Solution). Let nodes {1, . . . ,m},
m ≤ n/2, belong to set S, so that CS = [C1 . . . Cm].′
Let C1 = f(X(0)) and Ci = f(X(0)) + aiεji for i ∈
{2, . . . ,m}. One can think of εji being associated with
a node in set Sc, that is, ji ∈ {m + 1, . . . n}. So, node
ji’s initial condition would be (Xji(0), εji).

Lower Bound

Information Theoretic
Technique

Modified ProblemOriginal Problem

T ≥?

E(Xi(T ) − (C + aεi))2 ≤ ρ + a2V ar(εi)E(Xi(T ) − C)2 ≤ ρ

T ≥

Fig. 2. Diagram illustrating the use of the Information Theoretic
technique to obtain a lower bound in a situation where all nodes learn
C.

Furthermore, we assume that f is separable, meaning
f(X(0)) = fS(XS(0)) + fSc(XSc(0)). Finally, we as-
sume that the Xi(0)’s and εi’s are mutually independent.
Then,

h(CS |XS(0))
=h (fSc(XSc(0)), fSc(XSc(0)) + a2εj2 ,

. . . , fSc(XSc(0)) + amεjm|XS(0))
(a)
=h(fSc(XSc(0)), fSc(XSc(0)) + a2εj2 ,

. . . , fSc(XSc(0)) + amεjm)

(b)
=h(fSc(XSc(0))) +

m∑

i=2

h(aiεji)

(c)
=h(fSc(XSc(0))) +

m∑

i=2

h(εji) + log
m∏

i=2

|ai|,

where,
(a) follows because we have assumed that the X i(0)’s

and εi’s are mutually independent,
(b) follows by the chain rule for differential entropy,

and again using the fact that the Xi(0)’s and εi’s
are mutually independent,

(c) follows using the fact that h(aiεji) = h(εji) +
log |ai|, as shown in shown in [4, Ch.9].

In the next example, we assume that the function f is
a linear function and that the auxiliary random variables
are independent Gaussian random variables. For this
scenario, we then obtain the expression for the lower
bound of Corollary VI.4.

Example VI.7 (Using the Solution for a Linear Func-
tion). In addition to the assumptions in Example VI.6, let
f(X(0)) =

∑n
j=1 βjXj(0). We assume that εj2 , . . . , εjm

are independent and identically distributed Gaussian ran-
dom variables, with mean zero and variance η. Then, the
differential entropy of εji is h(εji) = 1

2 log 2πeη.
So, substituting in the expression from Example VI.6,

we have that

h(CS |XS(0)) =h




∑

j∈Sc

βjXj(0)



 +
m − 1

2
log 2πeη

+ log
m∏

i=2

|ai|. (7)

To evaluate h
(∑

j∈Sc βjXj(0)
)

, we use the Entropy
Power Inequality, namely, for independent Xi(0)’s,

22h(P
j∈Sc βjXj(0)) ≥

∑

j∈Sc

22h(βjXj(0)),
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which implies that

h




∑

j∈Sc

βjXj(0)



 ≥ 1
2

log




∑

j∈Sc

22h(βjXj(0))



 .

Now, if we assume that each Xi(0) is uniformly dis-
tributed in the interval between 1 and B + 1, Xi(0) ∼
U [1, B + 1], then,

h (βjXj(0)) = log |βj |B.

So,

h




∑

j∈Sc

βjXj(0)



 ≥ 1
2

log



B2
∑

j∈Sc

β2
j





= log B +
1
2

log
∑

j∈Sc

β2
j . (8)

Finally, we evaluate the lower bound of Corollary VI.4
for this scenario. Recall that we had

L̄(S) = h(CS |XS(0)) − |S|
2

log 2πeβ + |S|α
2

,

and |S| = m. Assuming that β = 1 and using equa-
tion (7) together with the inequality of equation (8), we
have that

L̄(S) ≥ log
B

(∑
j∈Sc β2

j

) 1
2 ∏m

i=2 |ai|
√

2πeη
+

m

2
(α+ log η) .

(9)

In summary, our use of basic Information Theoretic
definitions and inequalities has led to a lower bound that
we have applied to a formulation for distributed function
computation. The lower bound on information consists of
a term that arises due to the mean square error criterion
and a term due to the function that is to be estimated.
Using techniques of Network Information Theory, we
have shown how the bound on information can be used
to obtain a lower bound on computation time time.

VII. A TIGHT BOUND: COMPUTATION OF THE SUM
VIA ERASURE CHANNELS

In this section, we use the techniques of the previous
section to find a lower bound on computation time when
nodes compute a sum via erasure channels. We present
a distributed algorithm for computation in this scenario
and provide an upper bound for the run-time of the
algorithm. Both bounds depend inversely on conduc-
tance, which captures the limitations due to the network
topology. Therefore, we conclude that our lower bound
is tight in capturing the effect of the network topology
via the conductance.

A. The Information Theoretic Lower Bound
In this section, we provide the proof of Theorem III.4.

We will use the techniques that we have developed in
section VI. In particular, we will use the results of
Examples VI.6 and VI.7, namely equation (9).

Proof of Theorem III.4. Recall that C =∑n
j=1 βjXj(0). Suppose that we have any realization of

the initial conditions, A = {X1(0) = x1, . . . ,Xn(0) =
xn}. We are given an algorithm that guarantees, for
every such realization, that at time T each node, i, has
an estimate, Xi(T ), of C:

∑n
j=1 βjxj. Furthermore, for

this algorithm, the estimate Xi(T ) is within an ε-interval
of the true value of C, with desired probability. That is,

P
(
|Xi(T ) − C| ≤ εC

∣∣∣A
)
≥ 1 − δ. (10)

The proof proceeds in several steps. The proofs for
steps 1 and 2 follow this proof.

1) Any algorithm that satisfies the probability condi-
tion of equation (10) must satisfy, for small enough
δ, a mean square error criterion:

E(Xi(T ) − C)2 ≤ ε2E(C2) + κδ.

2) Let C1 = C and Ci = C+aεji for i ∈ {2, . . . ,m},
where εj2 , . . . , εjm are independent and identically
distributed Gaussian random variables, with mean
zero and variance η. Let the εji’s be independent
of the initial conditions, Xi(0). Then,

E(Xi(T ) − Ci)2 ≤ ε2E(C2) + a2η + κδ.

3) Next, let S∗ and (S∗)c be the sets for which
∑

i∈S,j /∈S Cij

|S|
is minimized, and assume S∗ is the set with smaller
size, |S∗| ≤ n

2 . For purposes of this proof, we
enumerate the nodes in set S∗ from 1 to m. Then,
let CS∗ = [C1 . . . Cm]′, where the Ci’s are those
of Step 2.

4) Now, we can apply our Information Theoretic
inequalities to this set-up. We think of εji being
associated with a node in set (S∗)c, that is, ji ∈
{m+1, . . . n}. So, node ji’s initial condition would
be (Xji(0), εji). Denote [εj1 . . . εjm ] by ε. Using
the derivations of section VI, we have that

T
∑

i∈(S∗)c

∑

j∈S∗

Cij ≥ I(XS∗(T );X(S∗)c(0)|XS∗(0))

(a)
= I(XS∗(T );X(S∗)c(0), ε|XS∗(0))
≥ I(XS∗(T );CS∗ |XS∗(0))
≥ L̄(S∗),
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where, (a) follows because XS∗(T ) is the vector of
estimates produced by the algorithm, and depends
on the initial conditions, Xi(0)’s, while the εji’s
are independent of Xi(0)’s.
Recall that

L̄(S∗) = h(CS∗ |XS∗(0))− |S∗|
2

log 2πeβ+|S∗|α
2

.

Note that from Step 2, we have that β2−α =
ε2E(C2) + a2η + κδ. So, we let β = 1 and we
have α = − log(ε2E(C2) + a2η + κδ).

5) Next, we compute h(CS∗ |XS∗(0)) given the as-
sumptions of our formulation. Recall that we have
performed these computations in Example VI.7.
We obtained the following:

L̄(S∗) ≥ log
B

(∑
j∈Sc β2

j

) 1
2 |a|m−1

√
2πeη

+
|S∗|
2

(
log

η

ε2E(C2) + a2η + κδ

)
,

where we have substituted in α =
− log(ε2E(C2) + a2η + κδ).

6) Finally, we make the appropriate choice of our
parameters, a and η. Assume, without loss of
generality, that

(∑
j∈Sc β2

j

2πe

) 1
2

≥ 1,

otherwise, we can just scale our choices for a and

η. Let a =
(
η

1
2

B

) 1
m−1

, then,

L̄(S∗) ≥ |S∗|
2



log
1

ε2E(C2)
η + a2 + κδ



 .

Next, let η = B. Then, because m − 1 < n
2 ,

a2 <

(
1
B

) 2
n

.

Observe that E(C2) ≤ MB2, where M is some
integer. So,

ε2E(C2)
η

+ a2 ≤ ε2MB +
(

1
B

) 2
n

.

Combining with Step 4, we have that

T
∑

i∈(S∗)c

∑

j∈S∗

Cij ≥
|S∗|
2

log
1

ε2MB +
(

1
B

) 2
n + κδ

.

Rearranging, we have that

T ≥ 1
2

1
P

i∈(S∗)c
P

j∈S∗ Cij

|S∗|

log
1

ε2MB +
(

1
B

) 2
n + κδ

.

Here, we must have ε2M ∈[
0, 1

B

(
1 −

(
1
B

) 2
n − κδ

))
, in order for the

lower bound to be positive.
Finally, because we had chose our S ∗ such thatP

i∈(S)c
P

j∈S Cij

|S| is minimized, we have that

Φ(G) =

∑
i∈(S∗)c

∑
j∈S∗ Cij

|S∗| .

Remark We show in the next section that our lower
bound is tight in its reciprocal dependence on the
conductance term. So, for fixed n, we have a scaling
law that is tight in the case of severe communication
constraints, such as very small channel capacities due to
low transmission power.

In the case of increasing number of nodes, however, B
must increase exponentially with n for our lower bound
to remain valid. The requirement is a by-product of
using a formulation based on random variables together
with Information Theoretic variables. This requirement
ensures that as n increases, our bound properly captures
the number of bits that are transferred.

When we consider sums of independent identically
distributed random variables, Central Limit Theorem
type arguments imply that as the number of the ran-
dom variables increases, there is some randomness lost,
because we know that the distribution of the sum must
converge to the Normal distribution. However, in a set-
ting where the initial conditions are fixed values, as in the
case of the algorithm we describe below, the addition of
a node clearly will not reduce the information that needs
to be communicated in the network. To counterbalance
the probabilistic effects, we need to have B increase as
the number of nodes increases.

Next, we complete the proof of Theorem III.4 by
proving the statements of Step 1 and Step 2.

Proof of Step 1. We show that for small enough δ,

P
(
|Xi(T ) − C| ≤ εC

∣∣∣A
)
≥ 1 − δ implies E(Xi(T ) −

C)2 ≤ ε2E(C2) + κδ.
First, observe that,

P
(
|Xi(T ) − C| ≥ εC

∣∣∣A
)
≤ δ,

is equivalent to

P
(
(Xi(T ) − C)2 ≥ ε2C2

∣∣∣A
)
≤ δ,

Next, when we condition on A, C is a fixed number. So,
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we have we have that

E
(
(Xi(T ) − C)2

∣∣∣A
)

=
∫ ∞

0
P

(
(Xi(T ) − C)2 ≥ x

∣∣∣A
)

dx

=
∫ ε2C2

0
P

(
(Xi(T ) − C)2 ≥ x

∣∣∣A
)

dx

+
∫ ∞

ε2C2
P

(
(Xi(T ) − C)2 ≥ x

∣∣∣A
)

dx

≤ε2C2 + δκ,

where the last inequality follows
• for the first term, because

P
(
(Xi(T ) − C)2 ≥ x

∣∣∣A
)
≤ 1, and,

• for the second term, because
P

(
(Xi(T ) − C)2 ≥ x

∣∣∣A
)

≤ δ for all
x ∈ [ε2C2,∞). We have also assumed that
for every A, (Xi(T )−C)2 is bounded from above.

Finally, we have that

E(Xi(T ) − C)2 = E
(
E

(
(Xi(T ) − C)2

∣∣∣A
))

,

where the outermost expectation is with respect to the
joint distribution of the initial conditions.

Proof of Step 2. We show that if E(Xi(T ) − C)2 ≤
ε2E(C2)+κδ, then E(Xi(T )−Ci)2 ≤ ε2E(C2)+a2η+
κδ, where Ci = C + aεji , and εji has mean zero and
variance η and is independent of all the Xi(0)’s.

E(Xi(T ) − Ci)2

=E(Xi(T ) − C − aεji)
2

=E(Xi(T ) − C)2 + E(aεji)
2 − 2E(Xi(T ) − C)(aεji)

(a)
=E(Xi(T ) − C)2 + E(aεji)

2 − 2E(Xi(T ) − C)E(aεji)
(b)
=E(Xi(T ) − C)2 + E(aεji)

2,

where,
(a) follows because Xi(T ) is the estimate produced by

the algorithm, and depends on the initial conditions,
Xi(0)’s, while εji is independent of Xi(0)’s, and,

(b) follows because εji has mean zero.

B. A Tight Upper Bound: An Algorithm
Next, we describe the algorithm that achieves the

lower bound. That is, we exhibit the reciprocal de-
pendence of the algorithm’s computation time on the
conductance of the graph. Because the function that is
to be computed, the sum, is relatively simple, and the
algorithm requires little computation overhead, the limi-
tations that arise are due primarily to the communication

constraints. In fact, the dependence on the algorithm’s
run-time on conductance arises due to the fact that the
algorithm uses an information spreading algorithm as a
subroutine. Information spreading depends reciprocally
on conductance: the more severe the connectivity con-
straints, the smaller the conductance and the longer it
takes for information to spread in the network.

We describe in detail the problem formulation in
the next section. The algorithm that we describe is
based on an algorithm by Mosk-Aoyama and Shah [19].
In section VII-B.2 we discuss this algorithm and its
applicability to our formulation. In section VII-B.3 we
summarize our main results. In section VII-B.4, we
describe the contributions of [19] in the design of an
algorithm for distributed computation of a separable
function, in a network of nodes using repeated commu-
nication of real-valued messages. In section VII-B.5, we
describe the algorithm when the communicated messages
are quantized, and analyze how the performance of the
algorithm changes relative to the performance of the
unquantized algorithm of [19].
1) Problem Formulation: Let an arbitrary connected

network of n nodes be represented by the undirected
graph G = (V,E). The nodes are arbitrarily enumerated
and are the vertices of the graph, V = {1, . . . , n}; the
enumeration is for the purpose of analysis only as the
computation algorithm does not depend on the identities
of the nodes. If nodes i and j communicate with each
other, then the edge (i, j) belongs to the set E.

Each node i has a measurement or initial value xi(0) ∈
R. We let the vector x represent all the initial values
in the network, x = (x1(0) . . . xn(0)). The goal of
the nodes is to each acquire an estimate of a given
function,f , of all the initial values. In this section, the
function f is separable, defined as follows. Here, 2V

denotes the power set of V .

Definition VII.1. f : Rn ×2V → R is separable if there
exist functions f1, . . . , fn such that for all S ⊆ V,

f(x, S) =
∑

i∈S

fi(xi(0)).

Furthermore, we assume f ∈ F where F is the class
of all separable functions with fi(xi(0)) ≥ 1 for all
xi(0) ∈ R and i = 1, . . . , n.

The performance of an algorithm, C, used by the
nodes to compute an estimate of f(x, V ) at each node,
is measured by the algorithm’s (ε, δ)-computation time,
T cmp
C (ε, δ). It is the time until the estimates at all nodes

are within a factor of 1± ε of f(x, V ), with probability
larger than 1 − δ. The definition follows, where ŷi(k)
denotes the estimate of f(x, V ) at node i at time k.
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Definition VII.2. For ε > 0 and δ ∈ (0, 1), the (ε, δ)-
computing time of an algorithm, C, denoted as T cmp

C (ε, δ)
is defined as

T cmp
C (ε, δ) = sup

f∈F
sup
x∈Rn

inf {k :

P(∪n
i=1{ŷi(k) /∈ [(1 − ε)f(x, V ), (1 + ε)f(x, V )]}) ≤ δ} .

The algorithm described here depends on the nodes’
use of an information spreading algorithm, D, as a
subroutine to communicate to each other their messages.
The performance of this algorithm is captured by the
δ-information-spreading time, T spr

D (δ), at which with
probability larger than 1−δ all nodes have all messages.
More formally, let Si(k) is the set of nodes that have
node i’s message at time k, and V is the set of nodes,
the definition of T spr

D (δ) is the following.

Definition VII.3. For a given δ ∈ (0, 1), the δ-
information-spreading time, of the algorithm D, T spr

D (δ),
is

T spr
D (δ) = inf{k : P(∪n

i=1{Si(k) '= V }) ≤ δ}.

Consider a model where each node may contact one
of its neighbors once in each time slot. If the edge
(i, j) belongs to E, node i sends its messages to node
j with probability pij and with probability pii sends its
messages to no other nodes; if (i, j) /∈ E, pij = 0. So,
the matrix P = [pij ] is a stochastic matrix that describes
the information spreading algorithm. The information
spreading time if this algorithm is derived in terms of
the “conductance” of P.

Definition VII.4. For a stochastic matrix P , the conduc-
tance of P , denoted Φ(P ), is

Φ(P ) = min
S⊂V

0<|S|≤n/2

∑
i∈S,j /∈S pij

|S|
.

2) Background: The algorithm that we describe is
based on an algorithm by Mosk-Aoyama and Shah [19].
In that formulation, each node has a fixed real-valued
initial condition, that is bounded away from zero. Nodes
compute a separable function 2 of the initial values in
the network. The algorithm guarantees that with some
specified probability, all nodes have an estimate of the
function value within a desired ε-interval of accuracy
around the true value. In [19], each node may contact one
of its neighbors once in each time slot. If the edge (i, j)
belongs to E, node i sends its real-valued message to
node j with probability pij and with probability pii sends
its message to no other nodes; if (i, j) /∈ E, pij = 0.

2A linear function of the initial conditions is a separable function.

The algorithm of [19] is a simple randomized algo-
rithm that is based on each node generating an exponen-
tially distributed random variable with mean equal to the
reciprocal of the node’s initial value. The nodes sample
from their respective distributions and make use of an
information spreading algorithm to make computations
and ultimately obtain an estimate of the desired function.

The advantage of this algorithm is that it is completely
distributed. Nodes need not keep track of the identity of
the nodes from which received information originates.
Furthermore, the algorithm is not sensitive to the order
in which information is received. In terms of its per-
formance, the algorithm’s computation time is almost
optimal in its dependence on the network topology, as
the computation time scales inversely with conductance
of the graph representing the communication topology.
For a large class of graphs, conductance grows like
O(1/diameter).

The drawback of the algorithm in [19], however, is
that it requires nodes to exchange real numbers. As
such, the algorithm is not practically implementable.
Below, we quantize this algorithm, so that instead of
sending real-valued messages, nodes communicate an
appropriate number of bits. In the process of quantizing,
we determine the needed number of bits; for now, we call
it log M. Now, node i can send to j a log M -bit message
each time it makes contact. Again, the contact between
the nodes is random: node i contacts node j with prob-
ability pij. This is equivalent3 to node i communicating
to j via a log M -bit erasure channel, where log M bits
are sent noiselessly with probability pij, and there is an
erasure otherwise. In this case, capacity of the channel
is Cij = pij, so, Φ(G) = Φ(P ) log M. We will show
that the effect of communicating bits instead of real-
valued messages is to slow down the original algorithm
by log n; however, the dependence of computation time
on conductance is unchanged.

Another difference between our formulation and the
one in [19], is that we assume that the initial conditions
lie in a bounded interval, [1, B], whereas in [19] there
is no upper bound. We need this assumption to show
that our algorithm will also guarantee that with some
specified probability, all nodes have an estimate of the
function value within a desired ε-interval of accuracy
around the true value. However, due to communicating
a finite number of bits, ε cannot be arbitrarily close to

3In [19], it is assumed that each node can “contact” at most one
other node; but it can be contacted by more than one nodes. Under
independent “erasure” channel model, each node can “contact” more
than one node. However, for our purpose this is only beneficial
as interest here is in “quicker” information dissemination. We will
refrain from discussing this difference in further detail.
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zero.
Finally, we recall that in deriving the lower bound of

the previous section, we had assumed a joint probability
distribution on the initial conditions. However, we will
describe the algorithm for fixed initial-values at the
nodes. If the initial conditions were in fact distributed
according to some joint probability density function,
the algorithm that we describe below can be used for
any realization of the initial values to guarantee, with
the desired probability, the ε-accuracy criterion. So, the
algorithm satisfies the “if” condition in the statement of
Theorem III.4.

As such, the computation time of the algorithm we
describe below must scale reciprocally with conductance.
We provide an upper bound on the run-time and show
that, indeed, it does scale inversely with conductance.
Thus, the contribution of this work includes the non-
trivial quantized implementation of the algorithm of [19]
and its analysis. As a consequence, we obtain the fastest,
in terms of dependence on network topology, quantized
distributed algorithm for separable function computation.
3) Main Result: The main result of this section is

stated in the following theorem.

Theorem VII.5. Let P be a stochastic and symmetric
matrix for which if (i, j) /∈ E, pij = 0. There exists
an algorithm APQ for computing separable functions
f ∈ F via communication of quantized messages. If each
quantized message is log M bits and log M = O(log n),
the quantization error will be no more than a given γ =
Θ( 1

n). Furthermore, for any ε ∈ (γf(x, V ), γf(x, V ) +
1
2) and δ ∈ (0, 1),

T cmp
APQ(ε, δ) = O

(
ε−2 log eδ−1 log nδ−1

Φ(P )

)
. (11)

For example, the bound implied by the above theorem
when δ = 1

n2 is

T cmp
APQ

(
ε,

1
n2

)
= O

(
ε−2 log2 n

Φ(P )

)
.

Recall that by the Information Theoretic lower bound
derived in section VII-A, we have that the computation
time is lower bounded as

T ≥ 1
Φ(G)

log
1

Bε2 + ( 1
B )

2
n + κδ

,

where B is a constant such that for all i, fi(xi) ≤ B.
Because the computation time and graph conductance

are reciprocally related in both this lower bound and the
upper bound in (11), we conclude that our results are
tight in capturing the scaling of the computation time
with respect to the graph conductance. So, our algorithm
is optimal in its dependence on the network topology.

4) Unquantized Function Computation: In [19], a
randomized algorithm is proposed for distributed compu-
tation of a separable function of the data in the network,
so that with some specified probability, all nodes have an
estimate of the function value within the desired interval
of accuracy. The computation algorithm assumes that
the nodes exchange real-valued messages whenever a
communication takes place. The algorithm depends on

• the properties of exponentially distributed random
variables, and,

• an information spreading algorithm used as a sub-
routine for the nodes to communicate their mes-
sages and determine the minimum of the messages.
a) The Algorithm: The following property of expo-

nential random variables plays a central role in the design
of this algorithm. Let W 1, . . . ,W n be independent ex-
ponentially distributed random variables, where W i has
mean 1/θi. Then, the minimum, W ∗ = mini=1,...,n W i,
will also be exponentially distributed, and its mean is
1/

∑n
i=1 θi.

Suppose that node i has an initial value θi. Each
node needs to compute

∑n
i=1 θi. Node i generates an

exponential distribution with mean 1/θi. It then draws
a sample, W i = wi, from that distribution. All nodes
do this. They exchange their samples so that each node
knows every sample. Then, each node may compute the
minimum of the samples, w∗ = mini=1,...,n wi. w∗ is
a realization of W ∗, which is exponentially distributed,
with mean 1/

∑n
i=1 θi.

For the algorithm proposed in [19], the nodes perform
the above procedure on r samples from each node
rather than one. That is, node i draws independently r
samples from its exponential distribution, W i

1, . . . ,W
i
r .

The nodes exchange information using the information
spreading algorithm described below. Ultimately, each
node acquires W ∗

1 , . . . ,W ∗
r , where W ∗

l is the sample-
wise minimum, W ∗

l = mini=1,...,n W i
l . Then, for its

estimate of
∑n

i=1 θi, each of the nodes computes
r∑r

l=1 W ∗
l

.

Recall that as r increases, 1
r

∑r
l=1 W ∗

l approaches the
mean of W ∗

1 , namely 1/
∑n

i=1 θi. It is shown that, for
large enough r, the nodes’ estimates of

∑n
i=1 θi will

satisfy the desired accuracy criterion with the desired
probability.

b) Computation of Minima Using Information
Spreading: The computation of the minimum using
the information spreading algorithm occurs as follows.
Suppose that each node i has an initial vector W i =
(W i

1, . . . ,W
i
r) and needs to obtain W̄ = (W̄1, . . . , W̄r),

where W̄l = mini=1,...,n W i
l . To compute W̄ , each node
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maintains an r-dimensional vector, ˆ̄wi = ( ˆ̄wi
1, . . . , ˆ̄wi

r),
which is initially ˆ̄wi(0) = W i, and evolves such that
ˆ̄wi(k) contains node i′s estimate of W̄ at time k. Node
i communicates this vector to its neighbors; and when
it receives a message from a neighbor j at time k con-
taining ˆ̄wj(k−), node i will update its vector by setting
ˆ̄wi

l(k
+) = min( ˆ̄wi

l(k
−), ˆ̄wj

l (k
−)), for l = 1, . . . , r.

As argued in [19], when an information spreading
algorithm D is used where one real-number is transferred
between two nodes every time there is a communication,
then with probability larger than 1−δ, for all i, ˆ̄wi(k) =
W̄ when k = rT spr

D (δ), because the nodes propagate in
the network an evolving estimate of the minimum, an
r-vector, as opposed to the n r-vectors W 1, . . . ,W n.

c) The Performance: The first of the two main
theorems of [19] provides an upper bound on the com-
puting time of the proposed computation algorithm and
the second provides an upper bound on the information
spreading time of a randomized gossip algorithm. These
theorems are repeated below for convenience as our
results build on those of [19].

Theorem VII.6. Given an information spreading algo-
rithm D with δ-spreading time T spr

D (δ) for δ ∈ (0, 1),
there exists an algorithm A for computing separable
functions f ∈ F such that for any ε ∈ (0, 1) and
δ ∈ (0, 1),

T cmp
A (ε, δ) = O

(
ε−2 log eδ−1T spr

D

(
δ

2

))
.

In the next section, we state a theorem analogous to
this one, but for the case where the nodes are required
to communicate a finite number of bits.

Next, the upper bound on the information spreading
time is derived for the communication scheme, or equiv-
alently, the randomized gossip algorithm, described in
section VII-B.3. We refer the reader to [19] for further
details on the information spreading algorithm, including
an analysis of the case of asynchronous communication.
The theorem relevant to this section follows.

Theorem VII.7. Consider any stochastic and symmetric
matrix P such that if (i, j) /∈ E, pij = 0. There exists
an information spreading algorithm, P, such that for any
δ ∈ (0, 1),

T spr
P (δ) = O

(
log n + log δ−1

Φ(P )

)
.

5) Quantized Function Computation: The nodes
need to each acquire an estimate of f(x, V ) =∑n

i=1 fi(xi(0)). For convenience, we denote fi(xi(0))
by θi, and y = f(x, V ) =

∑n
i=1 θi is the quantity to be

estimated by the nodes. We denote the estimate of y at

node i by ŷQ
i . The Q is added to emphasize that this

estimate was obtained using an algorithm for nodes that
can only communicate quantized values using messages
consisting a finite number of bits.

We assume that node i can compute θi without any
communication. Further, we assume that there exists a
B for which: for all i, θi ∈ [1, B].

Recall that the goal is to design an algorithm such
that, for large enough k,

P
{
∩n

i=1{|ŷ
Q
i (k) − y| ≤ εy}

}
≥ 1 − δ,

while communicating only a finite number of bits be-
tween the nodes. Again, we take advantage of the prop-
erties of exponentially distributed random variables, and
an information spreading algorithm used as a subroutine
for the nodes to determine the minimum of their values.

a) Computation of Minima Using Information
Spreading: We use the same scheme that was described
in VII-B.4 for computation of minima using information
spreading. Now, node i quantizes a value ˆ̄wi

l that it
needs to communicate to its neighbor, j, where node
i maps the value ˆ̄wi

l to a finite set {1, . . . M} according
to some quantization scheme. Then, log M bits have
to be communicated between the nodes before j can
decode the message and update its ˆ̄wj

l . But, when each
communication between nodes is log M -bits, the time
until all nodes’ estimates are equal to W̄ with probability
larger than 1 − δ will still be k = rT spr

D (δ). However,
there will be quantization error. Our choice of M will
determine this error.

b) Summary of Algorithm & Main Theorem: The
proposed algorithm, AQ is summarized below.

1) Independently from all other nodes, node i gen-
erates r independent samples from an exponential
distribution, with parameter θi. If a sample is larger
than an m (which we will specify later), the node
discards the sample and regenerates it.

2) The node quantizes each of the samples accord-
ing to a scheme we describe below. The quan-
tizer maps points in the interval [0,m] to the set
{1, 2, . . . ,M}.

3) Each of the nodes performs steps 1 and 2 and
communicates its messages via the information
spreading algorithm, D, to the nodes with which
it is connected. The nodes use the information
spreading algorithm to determine the minimum of
each of the r sets of messages. After rT spr

D (δ) time
has elapsed, each node has obtained the r minima
with probability larger than 1 − δ.

4) Node i sets its estimate of y, ŷQ
i , to be the

reciprocal of the average of the r minima that it
has computed.
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Here, r is a parameter that will be designed so
that P

{
∩n

i=1{|ŷ
Q
i − y| ≤ εy}

}
≥ 1 − δ is achieved.

Determining how large r and M must be leads to the
main theorem of this section.

Theorem VII.8. Given an information spreading algo-
rithm D with δ-spreading time T spr

D (δ) for δ ∈ (0, 1),
there exists an algorithm AQ for computing separa-
ble functions f ∈ F via communication of quantized
messages. If each quantized message is log M bits and
log M = O(log n), the quantization error will be no
more than a given γ = Θ( 1

n). Furthermore, for any
ε ∈ (γf(x, V ), γf(x, V ) + 1

2) and δ ∈ (0, 1),

T cmp
AQ (ε, δ) = O

(
ε−2 log eδ−1T spr

D

(
δ

2

))
.

Remark Here, we point out that the condition in the
theorem that ε ∈ (yγ, yγ + 1/2) reflects the fact that
due to quantization, ŷQ

i can never get arbitrarily close to
y, no matter how large r is chosen.

Before proving this theorem, it is convenient to con-
sider the algorithm described above, excluding step 2;
that is, with no sample quantization. The derivation of
the computation time of this modified algorithm will lead
to determining the appropriate truncation parameter, m.
Next, we introduce a quantization scheme and determine
the number of bits to use in order to guarantee that the
node estimates of y converge with desired probability;
we find that this number of bits, log M, is of the order
of log n. The details can be found in Appendix II.

Thus, we have shown how a distributed algorithm
for computing separable functions may be quantized so
that the effect of the quantization scheme will be to
slow down the information spreading by log n, while
the remaining performance characteristics of the original
algorithm will be virtually unchanged, especially with
respect to its dependence on conductance. This result is
stated in Theorem VII.8.

Combining the result of Theorem VII.8 with that
of Theorem VII.7 yields Theorem VII.5. Comparison
with a lower bound obtained via Information Theoretic
inequalities in section VII-A reveals that the reciprocal
dependence between computation time and graph con-
ductance in the upper bound of Theorem VII.5 matches
the lower bound. Hence the upper bound is tight in
capturing the effect of the graph conductance Φ(G).

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we’ve studied a network of n nodes
communicating over noisy channels. Each node has an
initial value. The objective of each of the nodes is to

compute a given function of the initial values in the
network. We have derived a lower bound to the time at
which the mean square error in the nodes’ estimates is
within a prescribed accuracy interval. The lower bound
is a function of the channel capacities, the accuracy
specified by the mean square error criterion, and the
uncertainty in the function that is to be estimated. The
bound reveals that, first, the more randomness in the
function to be estimated, the larger the lower bound
on the computation time. Second, the smaller the mean
square error that is tolerated, the larger the lower bound
on the computation time. Hence there is a trade-off
captured between computation accuracy and computation
time. In addition, the lower bound can be used to capture
the dependence of the convergence time on the structure
of the underlying communication network.

We’ve considered a network of nodes communicating
via erasure channels to compute a sum of the initial
values in the network. Each of the nodes is required to
acquire an estimate that is, with a specified probability,
within a desired interval of the true value of the sum.
We’ve applied our Information Theoretic technique to
derive a lower bound on the computation time for this
scenario. We’ve shown that the computation time is
inversely related to a property of the network called
“conductance.” It captures the effect of both the topology
and channel capacities by quantifying the bottle-neck of
information flow. Next, we’ve described an algorithm
that can be used in this setting of nodes computing
a sum via erasure channels, and guarantees that with
the specified probability, each of the nodes’ estimate is
within the desired interval. We’ve determined an upper
bound on the algorithm’s computation time and show
that it too is inversely related to conductance.

Hence, we conclude that our lower bound is tight in
capturing the effect of the communication network, via
conductance. Equivalently, our algorithm’s run-time is
optimal in its dependence on conductance. That is, we
have obtained a scaling law for convergence time as
a function of a network property, conductance. When
the number of nodes is fixed, this scaling law becomes
tighter as the communication constraints are more severe,
like diminished channel capacities.

APPENDIX I
PROOFS OF LEMMAS VI.1 AND VI.2

In this appendix, we present the proofs of Lem-
mas VI.1 and VI.2, that we used in section VI to derive
the lower bound of Theorem III.1.
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A. Proof of Lemma VI.1

We prove the following inequality:

I(XS(T );XSc(0)|XS(0)) ≤
N∑

l=1

I(VS(l);USc(l)|US(l)),

(A.12)
where N is the channel code block length, USc is a
vector of the variables transmitted by the encoders of the
nodes in Sc and VS is a vector of the variables received
via channels by the decoders of the nodes in S.

Recall that by the assumptions we made in our prob-
lem formulation, the end of the kth time slot corresponds
to time T. So, XS(T ) = XS(k). In this proof, it
is convenient to use XS(k). We need to refer to the
sequence of estimates at node i up until time T. The
most natural way is to enumerate using integers: X k

i =
{Xi(1),Xi(2), . . . Xi(k)}.

For this proof, we use the general formulation for
multi-terminal networks of [4, section 14.10]. let Ui be
transmitted by the node i encoder and Vi be received
by the node i decoder. We denote a sequence of length
N transmitted by i as UN

i = (Ui(1), Ui(2), . . . Ui(N)).
The indices in brackets represent channel use. As be-
fore, if nodes 1 to m belong to S, we have that
VS = (V1, . . . , Vm). Similarly, we have that VS(l) =
(V1(l), . . . , Vm(l)), representing the variables received
after the l-th use of the channel.

We assume that the estimates at node i, X k
i , are a

function of the received messages at that node, V N
i and

its own data, Xi(0), Xk
i = φi(V N

i ,Xi(0)). The message
transmitted by i in the lth channel use, Ui(l), is also a
function of the received messages at that node, V l−1

i and
its own data, Xi(0), Ui(l) = ψi(V l−1

i ,Xi(0)).
As in [4], the channel is a memoryless discrete-

time channel. In our case, for convenience, we
assume the channel to be continuous, represented
by the conditional probability distribution function
p(v1, . . . , vn|u1, . . . , un). However, we note that the in-
equalities below hold even in the case that the channel is
discrete. In this case, the random variable arguments of
I(·; ·|·) would be arbitrary ensembles, and so we use the
general definition for I(·; ·|·) as the “average conditional
information” in [20, Ch.3], and for the conditional en-
tropy, h(X|Y ), we use h(X|Y ) = I(X;X|Y ). All the
equalities and inequalities below will continue to hold.
We refer the reader to [20, Ch.3] for technical details.

The following inequalities proceed in the same manner
as Theorem 14.10.1 in [4]. For convenience, we repeat
the steps here using our notation.

I(XS(k);XSc(0)|XS(0))
(a)
≤I(XS(1), . . . ,XS(k);XSc(0)|XS(0))
=I(XS(1), . . . ,XS(k),XS(0);XSc(0)|XS(0))
(b)
≤I(V N

1 , . . . , V N
m ,XS(0);XSc(0)|XS(0))

=I(VS(1), . . . , VS(N);XSc(0)|XS(0))

(c)
=

N∑

l=1

I(VS(l);XSc(0)|XS(0), VS(l − 1), . . . , VS(1))

(d)
=

N∑

l=1

h(VS(l)|XS(0), VS(l − 1), . . . , VS(1))

− h(VS(l)|XSc(0),XS(0), VS(l − 1), . . . , VS(1))
(e)
≤

N∑

l=1

h(VS(l)|XS(0), VS(l − 1), . . . VS(1), US(l))

− h(VS(l)|XSc(0),XS(0), VS(l − 1),
. . . , VS(1), US(l), USc(l))

(f)
≤

N∑

l=1

h(VS(l)|US(l)) − h(VS(l)|US(l), USc(l))

(g)
=

N∑

l=1

I(VS(l);USc(l)|US(l)).

Above,
(a) holds by the data processing inequality,
(b) holds again by the data processing inequality, be-

cause Xk
i = φi(V N

i ,Xi(0)),
(c) follows by the chain rule for mutual information,
(d) follows by the definition of mutual information,

(or, in the discrete channel case, it follows by
Kolmogorov’s formula [20, Ch.3] and by noting that
the entropy term is well-defined since Vi would take
values in a discrete set),

(e) follows, for the first term, because Ui(l) =
ψi(V l−1

i ,Xi(0)), so it does not change the condi-
tioning; and the second part follows because condi-
tioning reduces entropy,

(f) holds, for the first term, because conditioning re-
duces entropy, and for the second term, because the
channel output depends only on the current input
symbols,

(g) from the definition of mutual information.

B. Proof of Lemma VI.2
In this lemma, we consider a network that is repre-

sented by the graph G = (V,E). The edges of the graph
represent channels with positive capacity. If the channels
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connecting the nodes are memoryless and independent,
we show that,

I(VS(l);USc(l)|US(l)) ≤
∑

i∈Sc

∑

j∈S

Cij.

For simplicity of notation in the rest of the proof,
we omit the braces after the random variables, (l). For
example, instead of VS(l) we write VS .

As we had in the previous lemma, Ui is transmitted
by the node i encoder. Previously, we had not specified
which nodes will receive this code letter. In our set up,
however, there is a dedicated channel between every
two nodes that have an edge between them. So, the
transmitter at node i will send out codewords to each
of the neighbors of i, that is all j, such that (i, j) ∈ E.
We denote the encoder’s code letter from i to j as Uij .
Ui represents all messages transmitted by the encoder of
node i. So, Ui = {Uij}, for all j, such that (i, j) ∈ E.

Similarly, Vi is received by the node i decoder. It
consists of all the digits received by i from its neighbors,
all j such that (j, i) ∈ E. If there is a link from node j
to i, the code letter from node j arrives at the decoder
of i through a channel. We denote the digit received at
i from j as Vji. Vi represents all the received messages;
so, Vi = {Vji}, for all j, such that (j, i) ∈ E.

In order to make our notation in the proof simpler,
we introduce dummy random variables. In particular,
we will use Uij and Vij even if (i, j) /∈ E. Effectively,
we are introducing a link between nodes i and j. But,
in this case, we set Cij = 0. So now, we let Ui =
{Ui1, . . . , Uin} and Vi = {V1i, . . . , Vni}.

The key to the proof is the memorylessness and
independence of the channels. That is, the output of
a channel at any instant, Vij(l), depends only on the
channel input at that instant, Uij(l). Because of this, we
have that

I(VS ;USc |US) ≤
∑

i∈Sc

∑

j∈S

I(Vij ;Uij).

To obtain this expression, we express the mutual
information in terms of the entropy,

I(VS ;USc |US) = h(VS |US) − h(VS |USc , US).

Next, we express the entropy terms using the chain
rule. We assume that nodes 1 to m belong to set S and
nodes m + 1 to n belong to Sc. Then,

h(VS |US) =
m∑

j=1

h(Vj |Vj−1, . . . , V1, US),

and,

h(VS |USc , US) =
m∑

j=1

h(Vj |Vj−1, . . . , V1, USc , US).

Because conditioning reduces entropy, we have that

h(VS |US) ≤
m∑

j=1

h(Vj |US).

For every channel, given its input, the channel output
is independent of all other channel outputs. So,

h(VS |USc , US) =
m∑

j=1

h(Vj |USc , US).

Combining the two inequalities, we have,

I(VS ;USc |US) ≤
m∑

j=1

h(Vj |US) − h(Vj |USc , US).

Now, let j = 1 and consider the expression
h(V1|US)−h(V1|USc , US). Recall that we have assumed
that V1 = {V11, . . . , Vn1}. Also, we have that Ui =
{Ui1, . . . , Uin}. So, US includes {U11, . . . , Um1}.

For the first differential entropy term we have the
following sequence of inequalities.

h(V1|US)
(a)
=

n∑

i=1

h(Vi1|V(i−1)1, . . . , V11, US)

(b)
=

m∑

i=1

h(Vi1|Ui1)

+
n∑

i=m+1

h(Vi1|V(i−1)1, . . . , V11, US)

(c)
≤

m∑

i=1

h(Vi1|Ui1) +
n∑

i=m+1

h(Vi1),

where,
(a) follows by the chain rule,
(b) follows because the channels are independent; so,

given Ui1, Vi1 is independent of all of the other
random variables,

(c) holds because conditioning reduces entropy.
Next, observe that

h(V1|USc , US)
(d)
=

n∑

i=1

h(Vi1|V(i−1)1, . . . , V11, USc , US)

(e)
=

n∑

i=1

h(Vi1|Ui1),

where,
(d) follows by the chain rule,
(e) follows because the channels are independent; so,

given Ui1, Vi1 is independent of all of the other
random variables.
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Finally, combining these inequalities,

h(V1|US) − h(V1|USc , US) ≤
n∑

i=m+1

h(Vi1) − h(Vi1|Ui1)

=
n∑

i=m+1

I(Vi1;Ui1).

Hence we have the desired expression,

I(VS ;USc |US) ≤
∑

i∈Sc

∑

j∈S

I(Vij ;Uij).

Finally, to complete the proof, we note that

I(Vij ;Uij) ≤ Cij.

This is because, by definition,

Cij = max I(Vij ;Uij),

where the maximum is taken over all distributions of the
channel input, Uij.

APPENDIX II
PROOF OF THEOREM VII.8

A. Determining m

Before we state the lemma of this section, we describe
the modified computation algorithm, AQ

M, which con-
sists of steps 1 to 4 above excluding 2, and we introduce
the necessary variables.

First, node i, independently from all other nodes,
generates r samples drawn independently from an ex-
ponential distribution, with parameter θi. If a sample
is larger than m, the node discards the sample and
regenerates it. This is equivalent to drawing the samples
from an exponential distribution truncated at m.

Let (W i
l )T be the random variable representing the l th

sample at node i, where the subscript “T” emphasizes
that the distribution is truncated. Then, the probability
density function of (W i

l )T is that of an exponentially
distributed random variable, W i

l , with probability density
function fW i

l
(w) = θie−θiw for w ≥ 0, conditioned on

the the event Ai
l = {W i

l ≤ m}. For w ∈ [0,m],

f(W i
l )T

(w) =
θie−θiw

1 − eθim
,

and f(W i
l )T

(w) = 0 elsewhere.
Second, the nodes use a spreading algorithm, D, so

that each determines the minimum over all n for each
set of samples, l = 1, . . . , r. Recall that we consider
the random variables at this stage as if there was no
quantization. In this case, the nodes compute an estimate
of W̄l = mini=1...n(W i

l )T ; we denote the estimate of W̄l

at node i by ̂̄Wl

i
. Furthermore, we denote the estimates

at node i of the minimum of each of each of the r set
of samples by ̂̄W

i
= ( ̂̄W1

i
, . . . , ̂̄Wr

i
), and the actual

minima of the r set of samples by W̄ = (W̄1, . . . , W̄r).
It it is shown in [19] that by the aforementioned

spreading algorithm, with probability at least 1 − δ/2,
the estimates of the r minima, ̂̄W

i
, will be be equal to

the actual minima, W̄ , for all nodes, i = 1, . . . , n, in
rT spr

D (δ/2) time slots.
Last, each of the nodes computes its estimate, ŷ i, of

y by summing the r minimum values it has computed,
inverting the sum, and multiplying by r:

ŷi =
r

∑r
l=1

̂̄Wl

i .

The following lemma will be needed in the proof of
Theorem VII.8.

Lemma A II.1. Let θ1, . . . , θn be real numbers such that
for all i, θi ≥ 1, y =

∑n
i=1 θi and W̄ = (W̄1, . . . , W̄r).

Furthermore, let ̂̄W
i
= ( ̂̄W1

i
, . . . , ̂̄Wr

i
) and let ŷi denote

node i’s estimate of y using the modified algorithm of
this section, AQ

M.

For any µ ∈ (0, 1/2), and for I = ((1−µ) 1
y , (1+µ) 1

y ),

if m ≥ lnn − ln (1 − e−
µ2

6 ),

P
(
∪n

i=1{ŷ−1
i /∈ I}|∀i ∈ V, ̂̄W

i
= W̄

)
≤ e−r µ2

6 ,

where, ŷ−1
i = 1

r

∑r
l=1

̂̄Wl

i
.

Proof. First, note that when {∀i ∈ V, ̂̄W
i

= W̄}, we
have that for all i, ŷ−1

i = 1
r

∑r
l=1 W̄l. So, it is sufficient

to show that

P

(
1
r

r∑

l=1

W̄l /∈ I

)

≤ e−r µ2

6 .

Let W ∗
l = mini=1,...,n W i

l , the minimum of in-
dependent exponentially distributed random variables,
W i

l , with parameters θ1, . . . , θn respectively, then W ∗
l

will itself be exponentially distributed with parameter
y =

∑
i θi. Observe that the cumulative distribution

function of W̄l, P(W̄l ≤ w), is identical to that of
W ∗

l , conditioned on the event Al = {∩n
i=1A

i
l}, where

Ai
l = {W i

l ≤ m}, P(W ∗
l ≤ w|Al), (see Appendix for

proof). Hence, we have that

P

(
1
r

r∑

l=1

W̄l /∈ I

)
= P

(
1
r

r∑

l=1

W ∗
l /∈ I| ∩r

l=1 Al

)
.
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Now, because P(A ∩ B) ≤ P(A), it follows that

P

(
1
r

r∑

l=1

W ∗
l /∈ I| ∩r

l=1 Al

)

P (∩r
l=1Al)

≤ P

(
1
r

r∑

l=1

W ∗
l /∈ I

)
.

From Cramer’s Theorem, see [5], and the properties of
exponential distributions, we have that

P

(
1
r

r∑

l=1

W ∗
l /∈ I

)
≤ e−r(µ−ln(1+µ))

and for µ ∈ (0, 1/2), e−r(µ−ln(1+µ)) ≤ e−r µ2

3 .
Next, we have that P (∩r

l=1Al) = (P (Al))r , because
the A1, . . . , Ar are mutually independent. Furthermore,
P (Al) ≥ 1 − ne−m. To see this, note that the com-
plement of Al is Ac

l = {∪n
i=1{W i

l > m}}, and
P

(
W i

l > m
)

= e−θim. So, by the union bound, we have

P (Ac
l ) ≤

n∑

i=1

e−θim ≤ ne−m,

where the last inequality follows because ∀i, θi ≥ 1.
Finally, putting all this together, we have that

P

(
1
r

r∑

l=1

W̄l /∈ I

)
≤ (1 − ne−m)−re−r µ2

3 .

Letting 1− ne−m ≥ e−
µ2

6 completes the proof.

B. Proof of Theorem VII.8
Before we proceed with the proof of the Theorem,

we describe the quantization scheme. In step 2 of the
algorithm AQ, node i quantizes the sample it draws, a re-
alization of (W i

l )T denoted by wi
l . The quantizer Q maps

points in the interval [0,m] to the set {1, 2, . . . ,M}.
Each node also has a “codebook,” Q−1, a bijection
that maps {1, 2, . . . ,M} to {wq1 , wq2 , . . . , wqM}, chosen
such that for a given γ, |wi

l −Q−1Q(wi
l)| ≤ γ. We will

denote Q−1Q(wi
l) by (wi

l)Q.
While we do not further specify the choice of the

quantization points, wqk , we will use the fact that the
quantization error criterion can be achieved by a quan-
tizer that divides the interval [0,m] to no more than M
intervals of length γ each. Then, the number of messages
will be M = m/γ, and the number of bits that the nodes
communicate is log M.

Proof. We seek an upper bound on the (ε, δ)-
computation time of the algorithm AQ, the time until,
with probability at least 1 − δ, all nodes i = 1, . . . , n

have estimates ŷQ
i that are within a factor of 1± ε of y.

That is,

P(∪n
i=1{ŷ

Q
i /∈ [(1 − ε)y, (1 + ε)y]}) ≤ δ.

First, suppose that we may communicate real-valued
messages between the nodes. We analyse the effect of
quantization on the convergence of the node estimates to
the desired 1 ± ε factor of y. For this, we compare the
quantized algorithm, AQ, with the modified algorithm
AQ

M.
Note that for the above quantization scheme, for all

i, l and any realization of (W i
l )T denoted by wi

l ,

(wi
l)Q ∈

[
wi

l − γ,wi
l + γ

]
,

hence,

min
i=1,...,n

(wi
l)Q ∈

[
min

i=1,...,n
wi

l − γ, min
i=1,...,n

wi
l + γ

]
,

and,

1
r

r∑

l=1

min
i=1,...,n

(wi
l)Q

∈
[

1
r

r∑

l=1

min
i=1,...,n

wi
l − γ,

1
r

r∑

l=1

min
i=1,...,n

wi
l + γ

]

.

(A.13)

Note that 1
r

∑r
l=1 min(wi

l)Q is a realization of (ŷQ
i )−1.

Now, suppose that the information spreading algo-
rithm, D, is used so that in O(rT spr

D (δ/2)) time,

P
(
∪n

i=1{̂̄W
i
'= W̄}

)
≤ δ

2
. (A.14)

Consider the case where {∩n
i=1{̂̄W

i
= W̄}}, we have

from Lemma A II.1 that, for any µ ∈ (0, 1/2), if m =
ln n − ln (1 − e−

µ2

6 ),

P

(
1
r

r∑

l=1

W̄l /∈
(

(1 − µ)
1
y
, (1 + µ)

1
y

))

≤ e−r µ2

6 .

Combining with (A.13), we have that

P
(
∪n

i=1

{
(ŷQ

i )−1 /∈
(

(1 − µ)
1
y
− γ, (1 + µ)

1
y

+ γ
)}

| ∩n
i=1 {̂̄W

i
= W̄}

)
≤ e−r µ2

6 ,

But the event
{

(ŷQ
i )−1 /∈

(
(1 − µ)

1
y
− γ, (1 + µ)

1
y

+ γ
)}

is equivalent to
{
(ŷQ

i ) /∈
(
(1 + (µ + yγ))−1y, (1 − (µ + yγ))−1y

)}
.
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And, letting ε = µ + yγ,

(
(1 + ε)−1, (1 − ε)−1

)
⊂ (1 − 2ε, 1 + 2ε) .

So,

P
(
∪n

i=1

{
|ŷQ

i − y| > 2εy
}
| ∩n

i=1 {̂̄W
i
= W̄}

)
≤ e−r µ2

6 .

Letting r ≥ 6µ−2 ln 2δ−1, we have that

e−r µ2

6 ≤ δ

2
.

Combining this with (A.14) in the Total Probability
Theorem, we have the desired result,

P(∪n
i=1{ŷ

Q
i /∈ [(1 − 2ε)y, (1 + 2ε)y]}) ≤ δ.

Finally, recall that when the nodes communicate their
real-valued messages, with high probability all nodes
have estimates of the minima that they need in the
computation of the estimate of y in O(rT spr

D (δ/2)) time.
So, the computation time is of that order.

Now, for the quantization algorithm described in this
section the nodes need to communicate log M bit mes-
sages before the appropriate minima are computed. Be-
cause we assume that this is the case, that the nodes ex-
change log M bits at a time, T spr

D (δ) time slots are needed
until the quantized messages are disseminated and the
minima computed. Consequently, the computation time
of the quantized algorithm will be O(rT spr

D (δ/2)).
But, M = m/γ, and by design, for a given µ we

choose m = ln n − ln (1 − e−
µ2

6 ); so m = O(log(n)).
Furthermore, we choose γ, such that γ = Θ( 1

n). Then,

log M ≤ log log n + log n,

so, log M = O(log n) bits are needed.
As we have previously seen, for µ ∈ (0, 1/2), r ≥

6µ−2 ln 2δ−1. But, µ = ε − yγ; and, γ = Θ(1/n) so,
yγ = O(1). We therefore have, for ε ∈ (yγ, yγ + 1/2),

T cmp
AQ (ε, δ) = O

(
ε−2(1 + log δ−1)T spr

D (δ/2)
)
.
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