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L2 Gain Stability of Switched Output Feedback
Controllers for a Class of LTI Systems

Keith R. Santarelli, Member, IEEE, and Munther A. Dahleh, Fellow, IEEE

Abstract—Our previous work has been devoted to designing
asymptotically stabilizing switching controllers for a class of
second order LTI plants. Here, we extend the results of our pre-
vious work by proving that, when a plant can be asymptotically
stabilized using a particular switching architecture, the overall
closed-loop interconnection is also finite L2 gain stable. We shall
first prove this result for a simplified problem in which a portion
of the switching architecture has full access to the state of the plant
and shall then extend to the case where the architecture only has
access to the plant output by designing an appropriate observer.

Index Terms—Controller design, hybrid systems, L2 gain,
output feedback, switching systems.

I. INTRODUCTION

T HE problem of stabilizing a continuous-time system via
hybrid output feedback is one which has received a great

amount of attention in the past decade (see, e.g., [1]–[3], [8],
[11]–[13], [16], [17], [18], [19], [20]). In this paper, we are
concerned with the operation of a particular switching architec-
ture, namely the architecture depicted in Fig. 1. Here, is
a second order SISO LTI plant to be controlled. At every time
, the control input to the plant is equal to either

or where . It is the job of the block labeled
“Supervisor” to produce a switching signal that orches-
trates switching between and in a stabilizing manner.
The structure of the supervisor is indicated in part (b) of the
figure. A first order observer is used to produce an estimate of
the plant state (represented by and ). This state estimate
is then input to a memoryless switching law which outputs the
switching signal .

The motivation for investigating the switching architecture of
Fig. 1 stems from a general interest in the design of switching
systems in which the analog control input to the plant is con-
strained to be simple in some sense. Such problems arise, for
instance, in the electronics industry where the design of feed-
back compensators for operational amplifier circuits are typ-
ically no higher than first order feedback compensators ([6],
[9]). We consider the problem of switching between propor-
tional gains (the blocks labeled and in Fig. 1) since doing
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Fig. 1. Block diagram of switching architecture (exogenous inputs not shown).

so is simple from an implementation-level perspective, and be-
cause the closed-loop dynamics of the overall feedback inter-
connection are often simple enough to analyze via elementary
techniques. This allows us to make concrete mathematical state-
ments while gaining some insight into the problem-at-large of
switching under constrained control actions.

It is not obvious that the switching architecture of Fig. 1
will provide any performance benefits over a first order linear
controller due to the simplicity of the proportional gain analog
control action, but one can show that this is indeed the case.
In a separate manuscript see [25], where we provide a formal
comparison between the performance of the switching architec-
ture of Fig. 1 to two other forms of LTI control for a simple
tracking problem to illustrate the potential benefits of using this
switching architecture over other, more traditional forms of LTI
control.

A. Input-Output Stability: Problem Motivation

Our former work has focused on the design of asymptotically
stabilizing controllers; [16] provides a set of necessary and suf-
ficient conditions for which a given second order plant is sta-
bilizable via switched proportional gain feedback, and a spe-
cific switching control law is provided when stability is pos-
sible; [17] extends the first result by considering an optimal con-
trol problem in which the objective is to stabilize a second order
LTI system via switched proportional gain feedback in a manner
which maximizes the rate of convergence of the state trajectory
to the origin. While such results are a necessary first step in the
development of tools for analyzing and designing the switching
controllers depicted in Fig. 1, the current set of results are re-
strictive since they apply only to second order LTI systems. In
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general, one would like to be able to design switching archi-
tectures for a broader class of systems. For instance, a natural
extension of our prior work is to attempt to derive analysis and
design tools for LTI systems of arbitrary dimension. Some pre-
liminary results in this direction do exist, but we shall not focus
on them here; we shall discuss this briefly in the conclusion.

Another way in which one can attempt to extend the current
set of analysis and design tools to a larger set of plants is to
consider the design of switching controllers of Fig. 1 for the
class of plants which can be “well-approximated” by a second
order LTI plant. By making use of the Small Gain Theorem,
if a given plant (which, in general can be nonlinear, time-
varying, and of order greater than two) is sufficiently close to
a second order LTI model where “closeness” is measured in
terms of the difference in some induced system norm,
then one can use existing tools to design a controller for the LTI
approximation and be guaranteed that the resulting controller
will stabilize the original plant , as well.

As it turns out, the systems that we have studied in our pre-
vious work [16], [17] exhibit a form of input-output stability in
the form of L2 gain stability. By proving that the systems of
Fig. 1 are finite L2 gain stable for classes of plants that
are second order LTI systems, we will effectively prove that any
plant that is sufficiently well-modelled by an appropriate second
order LTI system in an L2 gain sense can be stabilized via
the techniques we have already developed.

The main goal of this paper is to prove that, under certain
mild assumptions on the parameters of the plant and switching
gain , the algorithms developed in [17] for asymptotic sta-
bility are also finite L2 gain stabilizing when exogenous inputs
are added to the system dynamics. While we also have results
which show how to extend our existing design techniques to sys-
tems which have a good second order LTI approximation in an
L2 gain sense, we refer the reader to [18] for the details of this
extensions (including a specific higher order design example)
due to space constraints.

B. Related Work

While there exists a large amount of work in the literature re-
lated to the study of switching systems, to the knowledge of the
authors, the number of results related to the specific question
of L2 gain bounds for switched system are few. The switching
laws we presented in [16], off of which we base the switching
laws we shall examine in this document, are in the same gen-
eral family of switching laws as those presented by Xu et al. in
[19], [20]. In this work, the authors consider a set of state-de-
pendent switching laws that switch between a given set of vector
fields. The work presented by Hu et al. in [8] extends the work
of [19], [20] to a case more similar to the one we consider here:
the vector fields are not fixed but are, rather, designed by imple-
menting a switched output feedback law that switches between
two scalar gains. While the results in these papers are construc-
tive, to the knowledge of the authors, the domain of these re-
sults has not been extended outside of the realm of asymptotic
stability. A similar statement can be made regarding work on de-
signing hybrid output feedback automata for second order linear
systems (see, e.g., the work of Benassi et al. in [2] or Litsyn et
al. in [12])

Nevertheless, certain classes of switched systems have been
studied in recent years which provide positive results on L2 gain
stability. Both Hespanha in [7] and Zhai et al. in [21], [22] con-
sider the problem of establishing finite L2 gains for systems that
switch between Hurwitz/Schur matrices. In [5], Gonçalves con-
siders an optimal design problem to minimize the L2 gain of
a class of on-off systems in which the presence of the exoge-
nous input does not affect the associated switching times. By
contrast, the work we present here requires neither of these as-
sumptions; the exogenous inputs are allowed to affect the se-
quence of switching times between subsystems, and the subsys-
tems between which switching takes place are not required to be
individually stable (in fact, while we will not discuss this here,
it is often-times the case that instability of at least one of the
subsystems is desirable for good performance—see, e.g., [18,
Ch.5] and the design example presented therein)

Some recent work on L2 gain of switched systems for more
general classes of nonlinear systems has been studied by Zhao
et al. in [23]. In this paper, the authors formulate a set of neces-
sary and sufficient conditions for the existence of a stabilizing
switching law (for a given set of vector fields) in the form of
certain Lyapunov-like functions that satisfy a set of conditions.
It should be noted that these results are not constructive since
they provide no guaranteed way of finding such Lyapunov-like
functions when they exist (though the paper does provide some
suggestions on candidate function choices, these suggestions are
not guaranteed to work). By contrast, in the work we examine
here, we shall prove that the class of systems we consider is
guaranteed to be finite L2 gain stable by providing an explicit
class of storage functions which can be used to prove finiteness
of L2 gain. Moreover, we can find numerical upper bounds on
the L2 gain using standard techniques of semidefinite program-
ming [24].

We shall now briefly review some basic concepts related to
L2 gain, including its definition and the concept of storage func-
tions. We shall conclude this section by providing an outline of
the remainder of the paper.

C. L2 Gain: Definition and Generalized Storage Functions

Recall that the L2 gain of a system is given by the following
definition [14]:

Definition: The L2 gain of a continuous-time system with
input and output is the smallest (infimal) value of
such that

for all input/output pairs where and are square
integrable over arbitrary finite intervals.

A system with input and output is, therefore, said to be
finite L2 gain stable if it has finite L2 gain . A convenient
method of proving that a system has finite L2 gain is to prove
existence of a (generalized) storage function [15]. Specifically,
a storage function with quadratic supply rate is a
positive definite function which satisfies the relationship

(1)
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where is the system state, and is an exogenous input. If we
consider the quadratic supply rate
where is a system output, then it is well-known that
existence of a generalized storage function is a necessary
and sufficient condition for finite L2 gain stability (see, e.g.,
[15]).

D. Document Outline

A basic outline of this paper is as follows. We shall first briefly
revisit some of our prior work on the design of asymptotically
stabilizing controllers using the switching architecture of Fig. 1
to provide some necessary background for the remainder of the
paper. Our main task will to be prove finite L2 gain stability of
the systems in Fig. 1. The proof of this result will be broken
down into three main steps:

1) Proving existence of a Lyapunov function (when all exoge-
nous inputs are zero) for a simplified version of the system
in Fig. 1 in which the memoryless switching law has ac-
cess to the true state of the plant.

2) Using the Lyapunov function of item 1 to prove existence
of a generalized storage function for finite L2 gain stability,
again for the simplified case that the memoryless switching
law has access to the true state of the plant.

3) Designing an appropriate first order observer and proving
that the system of Fig. 1 is finite L2 gain stable.

Due to space constraints, several proofs are curtailed or
omitted. When necessary, reference will be made to a more
detailed version of this paper ([18, Ch.4]).

II. BACKGROUND: ASYMPTOTICALLY

STABILIZING CONTROL LAWS

Our previous work [16], [17] and Chapter 3 of [18] deals with
a simplified variant of the system depicted in Fig. 1 in which
the memoryless switching law has access to the true state of the
plant rather than an estimate of the plant state . While we
shall not describe this work in full detail, we shall highlight the
major results that allow us to design asymptotically stabilizing
memoryless switching laws in what follows. The basic problem
that is considered in Chapter 3 of [18] is the following: consider
a second order LTI plant of the form

where we assume that the plant is of relative degree two. We
wish to design a memoryless switching law which satisfies
the following conditions:

1) The range of is bounded, i.e., for
some .

2) The control law yields an asymptotically stable
closed-loop system in the sense that
is asymptotically stable.

3) The corresponding rate of convergence given by

is as large as possible.

Fig. 2. Graphical illustration of the switching law of (3). The vector � repre-
sents the eigenvector corresponding to the maximum eigenvalue of the matrix
��� � ���, and �� is a normal vector to this eigenvector ( �� � � �.).

The real parameter in item 1 above plays the role of the
symmetric switching gain shown in Fig. 1. If is chosen suffi-
ciently large (determined by a function of the parameters of the

, , and matrices), then the following are true:
1) The maximum rate of convergence, denoted by , is

given by

(2)

where denotes the smallest eigenvalue of a square
matrix.

2) Let represent the eigenvector corresponding to the min-
imum eigenvalue of the matrix , and let and
be a vector such that . Then there exists a vector

such that the memoryless switching law

(3)

makes the dynamical system globally
exponentially stable with rate .

A graphical illustration of the control law in item 2 is
depicted in Fig. 2. Note that if the initial condition lies
along , then, by choosing a control law with , the
state trajectory will evolve as

which converges to the origin exponentially with rate
. The basic principle behind the design

of the overall control law is, hence, the following: if the
initial condition does not initially lie along the manifold
spanned by , design such that the state trajectory will
reach this manifold in finite time. By choosing any vector

that lies “between” and (which is the eigenvector
corresponding to the maximum eigenvalue of ), we
can find a vector that is normal to such that the control law
of (3) achieves this goal. A sample phase portrait is illustrated
in Fig. 2. Here, the initial condition lies in the region
where . Thus, the system dynamics initially evolve
according to . In finite time, the state
trajectory is driven onto the manifold spanned by the vector
at which time switches from to . The eigenvalues
of the matrix are designed to be complex-valued,
hence, rotation is induced, and the the state trajectory is driven
onto the manifold spanned by in finite time.
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The vector (and, correspondingly, ) is a free parameter;
hence, the control law of (3) is not unique. The interested reader
is referred to Chapter 3 of [18] for a discussion of ways of se-
lecting the vectors and .

For the next several sections, we shall assume a particular
state-space representation for the plant and will prove finite L2
gain stability within the framework of this particular set of coor-
dinates. We shall then provide a proof for arbitrary state-space
descriptions via a change of coordinates.

As mentioned above, we consider second order LTI plants of
relative degree two, i.e., plants of the form

with . Note that, without loss of generality, we may
take . In this case, we may describe the dynamics of the
plant via

(4)

(5)

where , and where satisfies the condi-
tion1

(6)

For convenience, we shall abbreviate the closed-loop dynamics
of the system in the following way:

(7)

where the matrices and are given by

(8)

III. CONSTRUCTION OF LYAPUNOV FUNCTION

In Chapter 3 of [18], we proved that the closed-loop system
described by (7) is exponentially stable when (and, corre-
spondingly ) is appropriately chosen and, hence, admits a
Lyapunov function which is monotonically decreasing
along the system trajectories. Assuming, for the moment, that
a smooth Lyapunov function exists, then it will satisfy the
conditions

(9)

(10)

While the above conditions are sufficient for proving asymp-
totic stability, by themselves, they are not sufficient for finding
a storage function when exogenous inputs are added to the
system. To illustrate one of the key issues that arises by trying
to use a Lyapunov function that only satisfies the conditions of

1See Chapter 3 of [18] for the origins of this condition.

(9) and (10) as a model for a storage function, consider the case
when the switching law evolves according to

where is an exogenous input. It is clear that, for
any value of in the state-space, a value of can always be
chosen so as to “fool” the supervisor, e.g., is such that

but . Without corruption,
the dynamics would evolve according to , but, instead,
they evolve according to , and it is quite possible that

. When is small compared to (so that
lies close in angle to either or ), this is particularly prob-
lematic since, informally speaking, positivity of the expression

essentially reduces to positivity of for small .
We attempt to fix the above problem in the following

way: in addition to requiring that when-
ever and whenever

, we wish to find a Lyapunov function for which
for both whenever is close to

either or in an angular sense. While it is not obvious, if we
prove existence of a Lyapunov function which satisfies these
additional requirements, we shall be able to augment it into a
storage function to prove that the systems under study have
finite L2 gain.

The main goal of this section is to prove that there exists a
piecewise differentiable Lyapunov function for the system of
(7) which satisfies the above additional properties. In our effort
to prove this, we shall actually find a Lyapunov function for
a different (but related) auxiliary system and shall then prove
that the Lyapunov function we found for the different system
also acts as a Lyapunov function for the first system with the
specified additional requirements.

A. Auxiliary Switching System

Before we begin our discussion of the new switching system
we wish to study, we shall re-describe (7) in polar coordinates
as it provides a more convenient description for this section.
The radial component and the angular component can be
described via the following dynamics:

otherwise
(11)

where is the angle that the vector makes
with respect to the positive axis, and the functions
and are given by
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Fig. 3. Auxiliary switching system for the different values of � . The dashed
lines each make an angle of � with � and �, and the system dynamics be-
tween the pairs of dashed lines surrounding � and �, respectively, are chosen
to maximize ��.

For a given value of , consider now the problem of deter-
mining the vector field or which maximizes . Since

, we see that maximizes for lying in the first
and third quadrants, while maximizes for lying in the
second and fourth quadrants. The new switching system that we
shall study has dynamics which can be described as follows. The
values of for which we choose to use and in (11) will be
almost exactly the same in our new system, with the following
exception: around the switchings boundaries (corresponding
to values of and ) and (corresponding to values
of and ), we shall construct a small cone for which
the system dynamics will evolve according to whichever vector
field maximizes . Depending upon the value of , this gives
rise to three possible situations which are depicted graphically
in Fig. 3. When , we consider a system which evolves
according to the dynamics

otherwise
(12)

where is a small angle. We arrived at this description
in the following way: we first investigate the cone described by

(depicted in part (a) of Fig. 3 as
the sector formed by the two dotted lines that surround ) and
consider the task of choosing the vector field that maximizes in
this region. From the analysis in the previous paragraph, we see
that maximizes everywhere in a small cone, so we choose
this vector field in the small cone. Similarly, we construct a small
cone about and, again, choose
the vector field which maximizes in this region. For

, we find that, again, maximizes everywhere in this
cone. When is less than , it turns out that maximizes

everywhere in the cone (depicted in part (b) of the figure), and
the corresponding switching system dynamics are described via

otherwise.
(13)

A similar description can be written for the case when
and is depicted graphically in part (c) of Fig. 3.

As we shall discuss shortly, for sufficiently small, the
switching systems described above are exponentially stable in
all three cases. We shall formally prove results only for the case
when as the proofs for the other two cases are similar.

It is clear that if the auxiliary switching system is stable, it
admits a Lyapunov function that proves stability. It is also clear
that if the auxiliary switched system is stable, then the orig-
inal system is stable as well. What is not necessarily clear—and
which we shall spend a fair bit of time proving at the end of this
section—is that if one finds a Lyapunov function of a particular
form for the auxiliary system, this Lyapunov function is also
a Lyapunov function for the original system which satisfies the
additional criterion that the Lyapunov function is decreasing for
both vector fields in a small cone around and in a small cone
around .

B. Exponential Stability of the Auxiliary Switching System

One can prove exponential stability of the auxilliary
switching system of (12) via the method of Poincaré maps
[10]. We omit a formal proof here due to its length (one can
be found in Chapter 4 of [18]), but we shall outline a sketch
of this proof, considering the specific case where .
Examining the top portion of Fig. 3, we see there is a cone in
which the dynamics evolve according to , one of whose
boundaries lies very close to the stable eigenvector . One
can show formally that the closer the left-most boundary of the
cone lies to the stable eigenvector, the more the phase portraits
will exhibit initial shrinkage in the Euclidean norm before they
leave this cone. More specifically, the initial shrinkage in the
Euclidean norm that the phase portraits experience before they
leave the cone governed by can be made arbitrarily
small as tends to zero. Moreover, one can show that the
growth in the Euclidean norm due to the vector field
is bounded, and that any phase portrait must pass through any
given ray periodically. Combining these facts allows us to con-
clude that, for all trajectories of the auxiliary switching system
of (12), there exist times and and
such that from which we conclude that

as . Using a continuity argument, one
can then show that as .

C. Construction of Piecewise Differentiable Lyapunov
Function for Auxiliary System

We shall now prove that the auxiliary switching system has
a Lyapunov function which is strictly decreasing along system
trajectories and which is piecewise differentiable. We shall
prove these statements only for the case when (the
other two cases can be considered similarly). The first formal
statements that we shall utilize are the following:

Proposition III.1: Consider the system

(14)

where and are as in (8), is the clockwise-oriented
normal vector to the ray , and is the clockwise-
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oriented normal vector to the ray . Then for
sufficiently small, the function

where is the solution to (14) with initial condition
is a Lyapunov function which is strictly decreasing along the

trajectories of (14).
Proposition III.2: Consider the Lyapunov function

of Prop. III.1. Within the interior of each cone
and where and are given as in Prop.
III.1, the partial derivatives and exist and are
continuous.

We omit the proof of these statements as they follow from
common results concerning the existence of Lyapunov functions
for exponentially stable systems and basic results from func-
tional analysis, but the interested reader can find proofs of both
statements in Chapter 4 of [18]. The result of these propositions
yields the following theorem, whose proof can be found in the
Appendix :

Theorem III.1: Consider the function of Prop. III.1
where is sufficiently small to guarantee that is a
Lyapunov function for the system of (12). Then is a
Lyapunov function for the original system of (7) and satisfies
the conditions

Moreover, there exists a small cone about the vectors and
for which the Lyapunov function is decreasing along both vector
fields, i.e.,

for , where are given as in (8), and are
clockwise-oriented normal vectors to the rays
and , and where and are clockwise-
oriented normal vectors to the rays and
where is sufficiently small.

IV. L2 GAIN STABILITY: FULL STATE INFORMATION

We are now ready to consider the problem of proving that the
systems under investigation are finite L2 gain stable. Specifi-
cally, we wish to investigate the following setup: consider sig-
nals for , and 3 and consider the following system
dynamics:

(15)

(16)

where, as before, , and where .
We now consider a control law of the form where

with , and where is given
by

.
(17)

Fig. 4. Block diagram depicting where the exogenous signals � ���, � ���, and
� ��� enter into the system dynamics for the full state L2 gain problem.

If we define , the formal statement
that we wish to prove in this section is the following: under the
assumptions on given by (6), for any matrices
and where , there exists such that

In other words, we wish to prove that the L2 gain from the vector
to any linear combination of the state and output is finite.
Fig. 4 depicts graphically where the signals , , and

enter the system dynamics. We see that and
“corrupt” the information that is passed to the switching law

(which, in the absence of either or is equal to the
optimal switching law of the previous section), while
corrupts the control input . A few words on the generality
of this model are in order. There are three additional places in
the block diagram where exogenous inputs could be added: one
at the input to the gain , another at the input to the gain ,
and another at the output of the supervisor . The first two
inputs can be effectively modelled by the input (see [18,
Ch.4] for an explanation). The last input—an input present at
the output of the supervisor —is not a case that we shall
consider, since adding a signal which takes on arbitrary values
in is not sensible when the output is discrete-valued.

In order to prove that the system under investigation has finite
L2 gain, we shall prove that there exists a storage function for
the quadratic supply rate whenever
is sufficiently large. Our storage function shall be based on the
Lyapunov function of the previous section (in fact, it will be a
scalar multiple of it). Our proof will rely on considering two
separate cases, one in which and one in which

where is a sufficiently small real number. The
proof for the former case will rely on the result of the following
Proposition whose proof can be found in [18]:

Proposition IV.3: Consider vectors such that

where is the standard signum function. Then for every
, there exists such that if , then one of

the following must hold:

where and are clockwise-oriented normal vectors to the
rays and and and are
clockwise-oriented normal vectors to the rays and
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where represents the angle of the vector with
respect to the positive axis.

In layman’s terms, Prop. IV.3 says that if is small compared
to , and and lie in different cones, then must be close
in angle to one of the boundaries, either or . Equipped with
Prop. IV.3, we can now prove the following important result
whose proof can be found in the Appendix :

Theorem IV.2 (Finite L2 Gain Theorem): Consider the Lya-
punov function of Prop. III.1. There exist positive con-
stants and such that the function is a storage function
for the quadratic supply rate along the
system trajectories described by (15), (16), and (17).

Thm. IV.2 proves finite L2 gain for a particular coordinate
description of the plant . However, as we shall show now,
one can find storage functions to prove finite L2 gain for any
minimal state-space description of the second order plant
of relative degree two:

1) Propostion IV.4: Consider a linear system

under the control law with

where , and where for
. Suppose for some value , the quadratic supply rate

has associated nonnegative storage func-
tion where . Then for any in-
vertible , the system

under the control law with

where and for has quadratic
supply rate with associated nonneg-
ative storage function , where is given by

(18)

Proof: Immediate upon making the substitution .

V. OBSERVER-BASED CONTROL

Up until this point, we have assumed that the switching law
has access to the full state of the plant in making its decision

(i.e., where and are the states of the plant
). In practice, the supervisor may have to rely on some esti-

mate of the true state to make its decisions.
We shall show now that, by designing a simple observer, we can
design switching controllers which do not rely on access to the
full state of the plant and which yield closed-loop interconnec-
tions that are finite L2 gain stable. We shall begin by showing

that one can design a reduced-order (first order) observer to es-
timate the “missing” state information that is not present in the
output. Once we have done this, we shall show that using the
output of this observer in place of the true missing state infor-
mation will still yield a finite L2 gain stable system.

A. Observer Design

The design of the observer we shall use is based upon re-
duced order observer theory (see Exercise 29.2 in [4]). Consider
a reachable and observable second order LTI system of the form

(19)

Note that the class of plants we have been studying, namely
second order plants of relative degree two, always has a state-
space description that can be written in the above format. Since
the output is, itself, the first state of the plant, we only need to
estimate the second state of the plant in order to obtain an
estimate of the full state vector.

Without loss of generality, we shall assume that the entry
. To design an observer for , we simply “repeat”

the dynamics of

(20)

If we define the error signal , we find
that evolves according to the dynamics . Since

by assumption, we see that the dynamics of the error
are stable, i.e., exponentially as .

The addition of the above observer makes the order of our
overall system equal to 3 where the components , , and
comprise a “natural” state vector. One can equivalently charac-
terize the state in terms of the components , and , instead,
and the state-space description takes the form

(21)

where , and are as in (19), and where
is an appropriate matrix. When written in the above form, it is
clear that is an uncontrollable mode of (21). We shall exploit
this fact in the sections that follow.

B. Finite L2 Gain Stability of Observer-Based Controller

A block diagram of the closed-loop system with the observer
of (20) in place is shown in Fig. 5 where ,
and . As in the full-state problem of Fig. 4, we allow the
addition of the three exogenous inputs , and ,
but we now also allow an additional exogenous input to
the input of the observer dynamics. In general, we wish to prove
finite L2 gain stability when all four inputs , and are
present, but for now, we shall begin with the special case where

is identically 0:
Theorem V.3: Consider the system depicted in Fig. 5 where,

under the assumption identically, the observer output
exponentially as where is the

second state of the second order plant . Assume that the
“full state” system of Fig. 4 is finite L2 gain stable for the same
plant and switching law . Moreover, suppose that the
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Fig. 5. Block diagram of switching system with observer in place (the observer
is comprised of the blocks ������ �, � , and � with � � �� , � � � ,
and � � � ). The input � models the net disturbance/noise inputs to the
observer.

gain from the vector to an output of the form
in the full state system of Fig. 4 is equal to . Then the gain
from to the output in the observer-based
control scheme of Fig. 5 is equal to for arbitrary matrices
of appropriate dimension.

The proof of this statement can be found in the Appendix .
We point out one very important corollary of the above result:
Corollary 1: When is identically 0 in Fig. 5 the gain

from the vector to the output is the same for
both the full state system of Fig. 4 and for the observer-based
system of Fig. 5.

Proof (Proof of Cor. 1): With an appropriate decomposi-
tion of , we may express as . Thm. V.3
then tells us that the L2 gain from to in the full
state setup of Fig. 4 is equal to the L2 gain from to

for arbitrary . If we select and notice
that , we obtain the desired result.

While it is true that Cor. 1 does not hold when is
nonzero, we shall demonstrate that L2 gains for problems in
which is nonzero can be upper bounded by the L2 gain of
a problem in which is zero. We formalize this result in the
following theorem:

Theorem V.4 (Observer-Based Finite L2 Gain Theorem): For
the system of Fig. 5, suppose that the L2 gain from the input
to an output of the form is equal to . Then the L2 gain
from the composite input to for the system
of Fig. 6 is upper bounded by

Proof: We begin by redrawing the block diagram of Fig. 5
in the form shown in Fig. 6. In terms of the variables in this new
block diagram, define a new signal , and
denote the L2 gain from the input vector to

as . We can view the overall transformation from
the composite input to the output
as the cascade of two transformations, one in which we map
the vector into and one in which we map the vector

into . Using the submultiplicative property of L2
gains, the L2 gain of the overall transformation is upper bounded

Fig. 6. Equivalent block diagram of Fig. 5 with input disturbance � re-config-
ured as an observer output disturbance � .

by the product of the L2 gains of these individual transforma-
tions. The map from to is an LTI transformation

where

Verifying that completes the proof.

VI. CONCLUSION

The main contribution of this work has been to show that,
equipped with a design mechanism for an appropriate observer,
the switching laws developed in our previous work [16]–[18]
are finite L2 gain stable. As a consequence of this result, the
design techniques of our prior work (originally just for second
order LTI systems) can now be extended to all nonlinear, time-
varying, and higher order plants which are well-approximated
by a second order LTI system in an L2 gain sense. The interested
reader is referred to [18] for more information on this (including
a particular design example for a higher order system), along
with details on techniques of actually computing upper bounds
on the L2 gains via semidefinite programming.

Note that while we formally proved the results here for second
order systems of relative degree two, this assumption is not a
critical one. Indeed, preliminary work indicates that, under the
assumptions made in [16], second order systems of relative de-
gree one that are asymptotically stabilized via switching laws
similar to the ones shown here are also finite L2 gain stable.
Moreover, second order LTI systems with feedthrough terms
can also be accommodated by augmenting the architecture of
Fig. 1 with an appropriate feedforward cancellation path ([18,
p.29] for details).

One of the main reasons for investigating this work is to mo-
tivate further study of switching architectures. While the results
presented here are restrictive since they are derived for second
order linear systems, they do open up the door for various exten-
sions, in particular, to systems of higher dimension. Extensions
to the case of switches between two linear combinations of an
estimate of the plant state (i.e., implementing a control law of
the form , where is the output of an observer for the
true plant state , and , are appropriately selected
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gain vectors) for reachable, observable linear systems of arbi-
trary dimension may be tractable.

As a final note, we comment on the possibility of chattering
when time delays are present. Such behavior is typically ob-
served in sliding mode control systems. Numerical simulations
indicate strongly that the control laws presented here are insen-
sitive to chatter. This observation is a great contrast to many ex-
isting results on the design of switched static gain controllers for
second order linear systems (see, e.g., [20] and figures therein)
in which chatter is a fundamental characteristic of the control
law rather than simply an artifact of time delays. A formal study
of our switching architecture’s sensitivity to chatter is an area
for future research.

APPENDIX

PROOFS OF TECHNICAL STATEMENTS

Proof of Thm. III.1: To begin, note that in polar coordi-
nates, of Prop. III.1 can be expressed as
since is homogeneous of degree 2. Moreover, the par-
tial derivatives and are continuous within

and where are defined as
in Prop. III.1.

For , by construction, the vector field of the
auxiliary system and the original system are the same in the
regions and (for a graphical
depiction of this, in Fig. 3, corresponds to
the shaded region, and corresponds to the
non-shaded region excluding the small regions containing

and that are bound by the dashed lines). Hence, we
have that in the region
and in the region , as
desired. We also have that in the regions

and by virtue of the fact that
is a Lyapunov function for the auxiliary system. The only

thing that remains to be shown, then, is that
in the regions and . In polar
coordinates, this amounts to showing that:

for and
for sufficiently small , where and are
the first and second components, respectively, of the vector field

of (12). Verification of the above constraint is lengthy
and is omitted due to space constraints (see Chapter 4 of [18]
for details).

Proof of Thm. IV.2: We wish to show that for all
and all (not both identically 0) that there exist constants

and both positive such that

which can, equivalently, be expressed as

(22)

for where are given as in (8) and where

As mentioned before, we shall break the proof up into two cases:
one in which and one in which where

will be chosen sufficiently small.
Case 1: Small : Consider the first case where is small

compared to . We wish to show first that
along the system trajectories under the constraint that

for sufficiently small. When and
have the same sign, the above statement is triv-

ially true since is a Lyapunov function for the autonomous
system with no exogenous inputs. When and

are of different signs, however, this conclusion
does not hold, in general, since the “wrong” vector field is being
chosen. As we shall show now, however, under the assumption
that is sufficiently small compared to , the statement is true.
First, note that by picking sufficiently small, Prop. IV.3 tells us
that, whenever and have different
signs, must lie in a small cone about either or . But by
Thm. III.1, there exists a small cone about and a small cone
about for which for both and .

Now, consider the difference

If we let for , we can express the above as

Now, since is a compact set, we have

and, hence

when . Hence, the left-hand side of (22) can
be lower bounded by

For notational convenience, if we define
for , we can further lower bound the above by

The above expression takes the form

where is continuous and homogeneous of degree one. For
each fixed , the above is a quadratic form in which has
minimal value
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If we again let , the above can reparameterized as

Since is a compact set and is continuous, it follows that
exists and

when . Hence, we have shown that, under the con-
straint , (22) is positive for and sufficiently
large.

Case 2: Large : We now wish to show that if
, can still be chosen sufficiently large to ensure that (22) is

positive for all , which are not both identically
0. If we define as in the previous section, and if we define

, then the left-hand side of (22)
is lower bounded by

Note that the above can be written in the form

where is continuous and homogeneous of degree one and
is continuous and homogeneous of degree 2. Again using

the parameterization , if we consider all which
satisfy for some , we can rewrite the above in
the form

where . What we wish to show now that the ex-
pression in parentheses above is increasing for for all
unit-length and if is sufficiently large. Indeed, differen-
tiating the expression in parentheses with respect to shows
that the derivative is increasing whenever
Again, since and lie in compact sets and is continuous,

exists, and the indicated function of is
increasing whenever Taking guarantees
that the expression in parentheses is increasing for . Thus,
for all which satisfy ,

Defining

we have

for .
We have now shown that (and, equivalently ), can be

chosen sufficiently large to ensure that (22) is positive for all
and that are not both identically 0. Hence is a storage

function for sufficiently large, and the system has finite L2
gain.

Proof of Thm. V.3: The formal statement we wish to show
is the following: suppose that for a given value of , there
exists a storage function for which

(23)

along the trajectories of the system of Fig. 4. Then there exists
a function such that

(24)

along the trajectories of the system of Fig. 5 for arbitrary
of appropriate dimension. We shall show here that the function

is a storage function which satisfies
(24) when is chosen sufficiently large. If we let

, we can rewrite the lefthand side of (24) as

(25)

where for are defined as in the proof of Thm. IV.2.
We shall lower bound (25) by making the following observa-
tion: if the lefthand side of (23) is positive for all nonzero
and , then it is actually lower bounded by a function of the
form where . To see this note, define

to be the minimum of the lefthand side of (23) over the set
. The result now follows by noting that the

lefthand side side of (23) is homogeneous of degree 2. Using
this result, we can now conclude that (25) is lower bounded by

(26)

We shall rewrite the above in the following manner:

(27)

We shall show that, for a sufficiently large choice of , both
(27) and (27) can be made positive. To prove this for (27), note
that because is homogeneous of degree one, (27) can be
lower bounded by

(28)

for some . Eqn. (28) is a quadratic form in the scalar
quantities and and is positive for all nonzero and if
and only if the matrix

is positive definite. A simple calculation shows that the above
matrix will be positive definite if which
can always be satisfied by choosing (and hence of the storage
function ) sufficiently large. A similar argument can be
made to show that (27) can be made nonnegative for all nonzero
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and for sufficiently large , as well, to show that (24) can be
made positive for all nonzero , , and to complete the proof.
Note that no assumptions were made on the matrix , hence
showing that the result holds for arbitrary of appropriate di-
mension. Note further that the above holds true for any value of

for which (23) holds. In particular, the above proof holds for
any value of that is greater than the L2 gain of the full state
system of Fig. 4 from which we conclude that the L2 gain of the
full state system and the observer-based system are the same.
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