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Abstract

We propose an alternative to gain scheduling for stabiliz-
ing a class of nonlinear systems. The computation times re-
quired to find stability regions for a given control Lyapunov
function vary polynomially with the state dimension for a fixed
number of scheduling variables. Control Lyapunov functions
to various trim points are used to expand the stability region,
and a Lyapunov based synthesis formula yields a control law
guaranteeing stability over this region. Robustness to bounded
disturbances is easily handled, and the optimal stability margin,
defined as a Lyapunov derivative, is recovered asymptotically.
We apply the procedure to an example.

1. Introduction

Control of nonlinear systems has been a topic of intense re-
search for some time. Progress on this problem is difficult be-
cause of the inherent complexity of general methods which ap-
ply to arbitrary systems. An approach which has recently come
into favor is the method of control Lyapunov functions (CLFs),
which guarantees closed loop stability whenever a CLF can be
found. Since no systematic procedure exists for finding CLFs
of arbitrary nonlinear systems, research in this direction tends
to fall into one of three categories.

e The solution to an optimal control problem based on the
solution to a Hamilton-Jacobi equation [1, 5, 13]. It is
possible to find approximate solutions to these equations,
but this problem is intractable for high order systems.
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e The construction of a stabilizing control law based on a
known CLF [4, 7]. This does not require the intractable
computations of the previous category, but it depends on
the existence of a CLF, the construction of which is a
separate problem.

e The design of a stabilizing control law for a specific class
of nonlinear systems [3, 8, 12]. These approaches can be
applied successfully in practical situations, but only for
very restricted classes of nonlinear systems.

The main contribution of this paper is a nonlinear control
procedure with the following properties.

o CLFs are computed systematically.
¢ The computations are tractable for high order systems.

o Optimal performance (in the sense of a Lyapunov deriva-
tive satisfying a desired stability margin) is recovered
asymptotically.

e Robustness to bounded disturbances is easily handled.

e The method applies to a useful class of systems.

We seek to stabilize a nonlinear system in the following
sense.

Definition 1 Given a system & = f(z,w) with w(t) € W C
R! forall t > 0, a positively invariant set ¥ C R", and a com-
pact subset @ C A, the system is robustly uniformly asymp-
totically stable over X with respect to 2, or RUAS(X,Q), if it
is uniformly asymptotically stable with respect to 2 (see [7])
whenever 2(0) € X and w(t) € W forall t > 0. We call the
set X' a region of stability (RS) for the system.

In many applications, the engineer knows that only a few
states affect the system dynamics in a nonlinear way. In this
paper, we consider the following control synthesis problem,
where the system dynamics are assumed to depend nonlinearly
on only the first k states.

Problem 1 Consider a system with control u(t) € R™ and
disturbance w(t) € W C R!. The state z(t) € R" is par-
titioned into “nonlinear states” zx € RF and “linear states”
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zz, € R™*. The dynamics are

] - ] e o

i fr(zN) Ar(zn)
95 (2N) 9l (zn)
[ 95 (zn) ]w+ [ 9k (zn) ]u’

where all functions of z are C. Constructsets ) C X C R™
containing a desired equilibrium point zyg € R™, and a static
state feedback control law p : R™ — R™, such that the closed
loop system with © = u(z) is RUAS(X ).

We would like X' to be as large as possible and ) as
small as possible. In this paper, we develop a computationally
tractable procedure for computing the RS of the system (1), and
we use this fact to design a controller to expand the RS.

Gain scheduling is a common control design approach for
systems of the form (1). In this method, linear controllers are
designed for the linearized system at trim points correspond-
ing to fixed values of the “nonlinear” states. The control gains
are then interpolated based on these scheduling variables. Un-
fortunately, the system is not guaranteed to be stable when
the scheduling variables are changing. The stability proper-
ties of such systems are analyzed in [6, 10], but the design of
a gain scheduled controller to guarantee stability remains an
open problem. In this paper, we use robust control Lyapunov
Junctions for the system linearized about various trim points to
guarantee stability over a range of operating conditions.

2. Main Solution Procedure
Before proceeding to develop the main solution procedure,
we define some relevant terms pertaining to systems of the gen-
eral form given below, where all functions of x are C' L

&= f(z) + gu(@)w + gu(z)u. 2

Definition 2 A function V' (z) is a positive definite function
centered at 7 if V(xg) = 0 and V(z) > 0 for all z # .

Definition 3 A level set of a proper, positive definite function
V{(z) is defined by a real number ¢ > 0 (the corresponding
level value) via Q@ = V710, = {z e R" | V(z) < c}.

Definition 4 A point o € R" is a trim point of the system (2)
if there exists a control ug € R™ such that f(zg)+gy(zo)ue =
0. A connected set of trim points is a trim surface.

Definition 5 ([4, 11]) Consider a subset W C R!, a point
zo € R™, a positive definite function W (z) centered at z,,
and real numbers ca > ¢; > 0. A locally Lipschitz, proper,
positive definite function V() centered at xo is a robust con-
trol Lyapunov function (RCLF) to xo with stability margin (SM)
W (z) over V=1[e1, co] for the system (2) if

sup LV (z) + Ly, V(z)w + W(z) <0, (3)
weW

forallz € Ve, co] Nker(Ly, V), where L,V (z) is the Lie
derivative of V' (z) along h{z).
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Figure 1: Sample trajectory to illustrate switching between level
sets. The solid curve is a trajectory beginning at the point
marked by an X; the circles are switching points. The
dashed curves are continuations of the trajectory toward
intermediate trim points,

A given RCLF decreases along trajectories of the closed
loop system under inverse optimal control [4] whenever w(t) €
W. Hence, the system is RUAS({25,(2;) for Qy = V1[0, ¢
and Q; = V_I[O,cl], and Problem 1 reduces to finding an
RCLE First, we design an RCLF to the equilibrium point 2.
We can always do this if the linearized dynamics about xq are
stabilizable and the disturbances are sufficiently small. Com-
puting an RS based on this RCLF is tractable for the system (1).
We design RCLFs to other trim points in the same manner. Tra-
jectories starting in a level set (% about z; converge to a smaller
level set Qi C Qg The union of these sets is the new RS, as
shown in Figure 1. To ensure convergence to xg, we introduce
a positive definite function U with U(0) = 0. For every i > 0,
we require that Qi C Qf and U(j) < U(4) for some j # i,
so that a trajectory starting in (% eventually reaches Qé. We
compute the control using the RCLF indexed by

t*(z) =arg min_ U(j). @
{jlzel}
When a trajectory in a given level set intersects a level set with
a lower index, the control law switches to the lower index.

Algorithm 1 We propose the following complete solution pro-
cedure for Problem 1.

I. Choose trim points and design RCLFs. On each iteration
¢ > 0, do the following.

A.If i > 0, find a trim point z; € int(2) for
some j < 1.

B. Select a quadratic RCLF V;(z) and SM W;(z)
based on the linearized dynamics about z; and a
local optimization problem.



C. Find Q¢ C € such that the nonlinear system is
RUAS(Q%,Q%). If 4 > 0, also require O} C QF;
else, repeat step LA with a new trim point.

D. Ifi > 0,set U(i) = U(j) + 1; else, set U(0) = 0.

E. Repeat until the region X' = U§~=OQ{; covered by
level sets is satisfactory.

II. Implement the control law.

A. Select one of the level sets in which the state  lies.
B. Apply inverse optimal control [4] to get u = p(z).
The following two results show that Algorithm 1 solves

Problem 1 and that we can construct X to contain any compact
trim surface if W is sufficiently small.

Theorem 1 Suppose there exist trim points g, . .., zn of the
system (2); functions Vo(z), ..., Vn(z), Wo(x), ..., Wn(z);
constants ¢ > ¢ > 0,¢} > ¢} >0,...,¢) >cl¥ >0;anda

positive definite function U : {0,..., N} = R; such that:

1. For each s, Vi(z) is an RCLF to z; with SM W;(z) over
Vi [eh, bl

2. Foreachi # 0, there exists j # ¢ such that Vito,ci] €
V0, c) and U (5) < U ().

Then a control law exists which makes the system RUAS(X ,2)
with X = UN  V; 1[0, ci] and Q = V571 [0, &2).

Theorem 2 If the linearized dynamics about each point in a
compact trim surface M of the system (2) are stabilizable,
then there exist K > 0; points Zo,...,zny € M; symmetric
positive definite matrices Py, ..., Pn, Qo, ..., Qn; constants
a>da8>0,..., ¢y > ¢V > 0; and a positive definite func-
tion U : {0,..., N} —= R; such that:

1. Foreachi, Vi(z) = (z—=;)" Pi(z—;) isanRCLF to z;
with SM W;(z) = (z—;)T Qi(z —x;) over V; [, ci]
when W = {w | |lw]ls < K}.

2. M CUNV0,6).

3. For each i # 0, there exists j # i such that V;7'[0,¢}] C
V[0, ¢5) and U(5) < U(3).

If W = {0}, this statement holds with ¢t = 0 for all 3.

2.1. Trim Point Selection

Given a desired scheduling variable value, z;y, it is
straightforward to find a corresponding trim point z; for the
system (1) by solving the following for ;1. and u;.

[ fn(zin) ] 4 [ An(zin) ]wu n [ gn (zin) }ui —o.

fr(zin) Ar(zin) ge(zin)

At least one solution to (5) exists as long as the matrix
[A(zin) | gu(zin)] has full row rank. The desired values of
z;n are found by iterating over grid points in the scheduling
variable space to find, at each iteration ¢, a trim point such that
Vi(z;) < ¢} for some j < i. Detailed algorithms appear in [9].
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2.2. Local Control Lyapunov Functions

Next we construct an RCLF to ;. Lyapunov linearization
yields a natural quadratic Lyapunov function based on the lin-
earized dynamics. Hence, we propose a quadratic Lyapunov
function V;(z) = (z — =;)TP;(z — z;) and SM W;(z) =
(z — 2;)TQi(z — ;), where P, = PT > 0and Q; = QF > 0.

One way to select an RCLF and SM is to require the closed
loop system locally to approximate the solution to an optimal
control problem with some cost

J(zo) = / [(z—2:)" Qe(x — 25) + (u—us) " Re(u—us)] dt
0
based on (). > 0 and R, > 0 for the linearized system

i = A(z — z;) + Byw + By(u — u;).

Therefore, we find P; to be the stabilizing solution to the alge-
braic Riccati equation.

ATP, + PLA+ Q.- P,ByR;'BTP, = 0. (6)

For the closed loop system with the optimal control (LQR), the
SM is given by Q; = Q. + P,ByR;*BI P, whenw = 0. In
the nonlinear system, it may only be possible to achieve a SM
aW;(z), for some a € (0,1), over some set V; (e}, ck].

2.3. Level Set in Known Stability Region

If i > 0, Theorem 1 requires V;71[0,¢i] C V;71[0, cl) for
some j. Given c%, we can use the S-procedure [2] to compute

min V().
Vi(z)zey

€l =

2.4. Computing the Region of Stability
To_ chgck if Vi(z) is an RCLF to z; with SM aW;(z) over
V7 e, ch] for given a and c; > ¢t > 0, we parameterize the
set V. 1[ct, cb] N ker(Ly, V;) and evaluate condition (3). We
translate x; to the origin and partition P; and ); to obtain
Vile) = akPyvnan +228Prrzp +2iPrrzr, (7)
Wiz) = zRQnnzn +225QNizr +21Qrrzr-(8)
To check that V;(z) is an RCLF with a given SM aW;(z), it

is useful first to parameterize the set ker(L,, V;). For the sys-
tem (1), the condition L,, V;(z) = 0 is equivalent to

Y(en) Tz = —[Pyngl(zn)+ Pnrgl(an)] 2N,
Y(en) = Pfrel(zn)+ Prrgt(zn).

To simplify the algebra, we assume that Y (2 ) has rank
m for all zy € R*. Theorem 3 shows how to parameterize
ker(L,,V;) by zn and a parameter A € R"=*=™,

Theorem 3 Given a function V;{(z) of the form (7),

T
ker(Lo. Vi) = {| gran)a— P;ngg;LxN —En) |
zy € R®, A e Rk ™Y
¢ = PYYTPY) Mgl Raw,
R = Pyn-—PniP;}PE,,




where G is any matrix of full rank such that Y7G = 0.

To analyze stability over the level set V; 7 [¢}, ci], we need

the following definitions.

Vi(zn, A) syRoy + ETPLré + ANTGTPLLG,

Yi(ch) {zn € R* | Vi(an,0) < ¢},
EACKCRTY) {Ae R | o <Vi(zw, A) < 63},
Ti(ci,ch,zn) = max sup

AeZi(cl,ch,an) weWw
LsVi(z) + Ly, Vi(z)w + aWi(z).

Proposition 1 Vj(z) is an RCLF with SM aW; () over the set
V.7 e, eyl iff Ty (et ch, zn) < Oforall 2y € Vi(ch).

To test this condition, we check [y(ct,ch,zn) < 0 at grid
points zx € Y;(ch). For the system (1), we can do this with
substantially less computation time than is required to deter-
mine the RS for a general nonlinear system.

We apply Theorem 3 to get the following.

. max _ sup
i <Vi(zn,A)<eh wew
ao(zn) + bo(en)" A+ AT Co(zn)A +
wl[s(zn) + T(zN)N]).

Fi(ciacgamN) =

The coefficients are found by simple algebra. For W = {0},

max ap +bEA+ATCoA.  (9)

T,z
1( Y ) et <Vi(zn,\)<ch
This quadratic optimization problem with quadratic constraints
can be solved using the S-procedure as discussed in [2]. Theo-
rem 4 shows that the two constraints are never simultaneously
active; therefore, the S-procedure is nonconservative [2].

Theorem 4 In the problem (9) with zny € Y;(ct), if Cy £ 0,
then T;(ct, i, zn) = T;(0,c,zn). If Cy < 0, one of the
following holds for \* = —1Cj .

L IfVi(zn, A*) < e, Tulet, cb, zn) = Tu(ct, 00, ).

2. If‘/z(wN:A*) > Cg, Fi(ci,cé,fIJN) = Fi(O,CZé,xN)-

3. Otherwise, ['s(c}, ch, zn) = ao — 363 Cy *bo.

If W is a convex polytope, robust stability can be analyzed
using Theorem 4 with each of the extreme points of W substi-
tuted for w because the condition is affine in w.

2.5. Iteration over Level Values

Since I';(ct, ¢b, zn) is nondecreasing in ¢}, a bisection can
be used to find the largest ¢} satisfying T';(ci, b, zn) < 0
over zny € Vi(ck). At zo, we need both ¢ and ¢ so that
To(cf,cd,zn) < Oover sy € Vo(cd). If W = {0}, then
¢ = 0, and we find cJ by bisection. Otherwise, a procedure

such as the one outlined in [9] is required.

Q)

Figure 2: Cart with inverted pendulum and spring.

2.6. Control Law Implementation

The correct RCLF to use in the control input computation
is the one corresponding to the index 4, given by (4), with the
smallest value of U (¢) such that V;(z) < c. The largest SM
achieved over a given level set depends on the corresponding
level value, so the SM should be scaled by a continuous positive
function a(V;(z)). In this way, the control can achieve the
maximum guaranteed SM over any level set up to the RS. The
optimal a*(V;j(z)) is hard to determine, but we can compute
level values at finitely many « and interpolate so that o < o,
with o = o at the interpolation points. As the partition of & €
(0, 1] is refined, the optimal SM is recovered asymptotically.

3. Computational Complexity

The computation times for each step in Algorithm 1 are
polynomial in » for fixed k. This is a significant savings over
the related problem of gridding the state space to find an RS
for a general nonlinear system, which is exponential in n. Trim
point selection involves gridding over z, and solving (5) at
each grid point. If there are IV, grid points for each dimension
in z)y, the computation time is approximately N*O(n*). The
time required to solve the Riccati equation (6) for V;(z) and
Wi(z) is O(n?). To analyze stability over a given level set
for the system (1), we grid zny € Yi(ch) and solve an LMI
problem to compute I';(ct, ¢}, zn) at each grid point. In the
case |lw|lc < 1, the computation time to solve this problem
using an ellipsoid algorithm {2] is roughly N*2!O(n?), where
N, is the number of grid points in );(c}) for each dimension.

4. Cart-pole Example
In the system shown in Figure 2, a pole is hinged on a cart,
and a spring joins the top of the pole to a fixed point on the
wall behind the cart. The control is a force on the cart and the
disturbance is a torque on the pole. We want a control design
to drive the system to the origin from an initial condition. A
simplified model of the dynamics has the form

{ g_fL } = f(6) + A(®)zL + gu (O)w + gu(H)u,
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Figure 3: Variation of T'o(c$, 3, xx ) with disturbance constraint.

where oy = 0 and 71, = [¢; z;v]. After designing an RCLF
Vo(x) and SM Wy () for the linearized dynamics about zo = 0
as in Section 2.2, we analyze stability with disturbances |w| <
Wae and a SM scaling & = 0.1. The results are plotted in
Figure 3 for several values of w,,,,. We can repeat this to get
cJ(a) and c3(a) over a range of a. We expand the RS using
RCLFs to multiple trim points, as shown in Figure 4.

5. Conclusions

Progress in nonlinear control is difficult because arbitrary
nonlinear systems are inherently complex. The new method is
a stabilizing alternative to gain scheduling for the system (1),
which is sufficiently restricted so that computations can be
made tractable. The computation time is polynomial in the
state dimension, and the control can be designed for robustness
to bounded disturbances.
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