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hen air traffic demand is projected to exceed capacity, the Federal Aviation Administration implements

traffic flow management (TFM) programs. Independently, these programs maintain a first-scheduled, first-
served invariant, which is the accepted standard of fairness within the industry. Coordinating conflicting pro-
grams requires a careful balance between equity and efficiency. In our work, we first develop a fairness metric
to measure deviation from first-scheduled, first-served in the presence of conflicts. Next, we develop an integer
programming formulation that attempts to directly minimize this metric. We further develop an exponential
penalty approach and show that its computational performance is far superior and its tradeoff between delay
and fairness compares favorably. In our results, we demonstrate the effectiveness of these models using histor-
ical and hypothetical scenarios. Additionally, we demonstrate that the exponential penalty approach exhibits
exceptional computational performance, implying practical viability. Our results suggest that this approach
could lead to system-wide savings on the order of $25 to $50 million per year.
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1. Introduction
The Federal Aviation Administration (FAA) and the
airline industry face tremendous challenges from
unexpected weather-induced reductions in system
capacity and resulting delays. The U.S. Congress Joint
Economic Committee estimates that during calendar
year 2007, 2.75 million hours of flight delays led to
approximately $25.7 billion in costs to the U.S. econ-
omy—$12.2 billion in increased airline operating costs,
$7.4 billion in passenger time lost, and $6.1 billion in
costs to related industries (Joint Economic Committee
2008). To put this in perspective, the Air Transporta-
tion Association’s 2008 Annual Report lists total prof-
its for U.S. airlines of approximately $3 billion for the
2006 operating year and $5 billion for the 2007 operat-
ing year (Air Transportation Association 2008).
Delays over the national air space are projected to
outpace increases in overall traffic. The FAA’s 2004
Airport Capacity Benchmark Report demonstrates
that many major U.S. airports regularly operate at or

near peak capacity (e.g., Hartsfield-Jackson Atlanta
International, New York LaGuardia, and Chicago
O’Hare; U.S. Department of Transportation 2004). As
with any queueing system, there is a nonlinear rela-
tionship between delay and changes in demand when
operating under these conditions (de Neufville and
Odoni 2003). Increasing capacity by building addi-
tional runways and airports is logistically complex
because of cost, space limitations, and environmental
regulations. Additionally, projects of this type often
take a decade or more to plan and complete. It is
thus critical to consider tools to improve operational
efficiency. In §1.4 we detail the contributions of this
paper. But first, to put them in context, we provide
a brief discussion of the existing traffic flow manage-
ment tools and a nonexhaustive literature review.

1.1. Traffic Flow Management
Traffic flow management (TFM) refers to a set of
strategic practices utilized by the FAA to ensure safe
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operations while attempting to minimize costs asso-
ciated with delay. TFM activities occur on the day
of operations and generally affect a significant subset
of airline traffic (e.g., all flights into a major airport).
According to data publicly available from the U.S.
Bureau of Transportation Statistics, we estimate that
TFM activities account for approximately 30% of all
air transportation delays (see calculations in §4.5 for
details). Based on factors such as number of runways,
runway configuration, scheduled personnel coverage,
and weather forecasts, the FAA determines maximum
capacities for resources in the U.S. air transporta-
tion system. These resources include arrival runways,
departure runways, and air sectors in the National
Airspace System (NAS). TEM programs are initiated
only when significant imbalances between demand
and capacity are expected, as in the midst of a severe
storm. Minor to moderate inconsistencies between
capacity and demand are resolved through localized
air traffic control (ATC) techniques (e.g., speed adjust-
ments, vectoring, or airborne queueing). Since the air
traffic controllers’ strike in 1981, the primary tool used
for TFM has been the ground delay program (GDP).
In a GDP, the FAA controls the arrival rate into a
reduced-capacity airport by coordinating departure
times for affected flights. The goal is to allow each
aircraft to proceed safely to its destination with min-
imal airborne delay. Airspace flow programs (AFPs),
first introduced in 2006, are operated much like GDPs.
The FAA uses an AFP to control the arrival rate into a
flow constrained area (FCA), for example, a reduced-
capacity air segment of the NAS. The papers by
de Neufville and Odoni (2003), and Ball et al. (2007)
provide further details regarding the TFM problem
and its extensions. To understand the prevalence of
these programs, we list in Table 1 the number of days
in 2007 that the corresponding numbers of GDPs and
AFPs were enacted (e.g., there were only 16 days
with no GDPs or AFPs). Thus, on approximately 40%
of the days during 2007, at least one GDP and at
least one AFP was in place. Although the number of
GDPs varies significantly, the number of AFPs rarely
exceeds two.

Table 1 Number of Days in 2007 and Corresponding Numbers of TFM
Programs of Each Type
Number of GDPs

Number

ofAFPs 0 1 2 3 4 5 6 7 8 9 10 11 Total
0 16 24 31 44 26 28 15 13 8 2 2 1 210

1 510 13 7 5 11 5 6 3 0 0 1 66

2 2 15 13 14 7 16 5 9 3 2 1 0 &

3 o0 0 0 0 0 1 0 0O OOTU OO 1

4 o0 0 0 0 0 O O 0 100 O 1

Total 23 49 57 65 38 5 25 28 15 4 3 2 365

GDPs and AFPs are used in concert with a three-
stage, collaborative approach to decision making.
In the first stage, the FAA allocates arrival slots
to airlines by applying the ration-by-schedule (RBS)
method for each TFM program. Arrival slots are allo-
cated according to the original schedule ordering, as
described in detail in the following section. Although
fairness is a subjective criterion, the RBS approach
is generally considered fair within the airline indus-
try because it maintains a first-scheduled, first-served
invariant. In the second stage, airlines respond to the
schedule disruption. Each airline is allowed to make
changes to the schedule within the context of the
slots allocated to it. For instance, an airline can swap
arrival slots for two of its own flights as long as the
swap does not cause either flight to depart prior to
its posted departure time. Airlines can also choose to
cancel flights in response to operational constraints
on aircraft routing, crew assignments, and so forth.
In the third stage, the FAA accepts the changes pro-
posed by all airlines. These changes, when combined,
constitute a capacity-feasible schedule because each
airline is only allowed to make changes within the set
of slots allocated to it. Subsequently, the FAA attempts
to improve the schedule by filling any gaps created by
cancellations or operator-announced delays. This pro-
cedure, known as compression, is described in detail
in Vossen and Ball (2005). After compression, the new
schedule proposal is sent to the airlines and the pro-
cess is repeated as necessary.

1.2. Coordinating Multiple Programs
In RBS, arrival slots for a single resource, either an
airport in a GDP or an FCA in an AFP, are allocated
to flights according to the original schedule order. For
FCAs, the scheduled arrival order is based on the
estimated arrival times into the FCA (i.e., the sched-
uled departure time plus the estimated en route time
to reach the FCA). Once the controlled arrival slots
have been allocated for a resource, each affected flight
receives a corresponding controlled time of departure
(CTD) from its origin, converting the allocated arrival
slot into a departure delay at the airport of origin.
When multiple TEM programs are implemented on
the same day, applying RBS for each independently
may lead to a single flight receiving conflicting CTDs
(e.g., from a GDP and one or more AFPs). To resolve
these conflicts, the FAA uses heuristics to determine
a CTD for each flight based on the order in which
the programs are initiated over the course of the day.
When AFPs were created in 2007, there was long
history of successful implementation of GDPs; thus,
GDPs were given priority by default. Specifically, a
flight already affected by a GDP at the time an AFP
is initiated is exempted from the AFP (reducing the
AFP capacity for other affected flights). But for a flight
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Table 3 RBS CTDs for FCA1
Flight Slot CTD
B 18:40 17:15
C 18:45 18:00
D 18:50 18:19
Table 4 RBS CTDs for LGA
Flight Slot CTD
Figure 1 Visual Representation of Flight Routes for Flights A, B, C, A 18:55 17:45
and D B 19:05 17:24

already affected by an AFP at the time a GDP is initi-
ated, the CTD is modified to correspond to the GDP
(Federal Aviation Administration 2005). This conflict-
resolution heuristic, referred to as precedence RBS, is
the default behavior in Flight Schedule Monitor, the
application developed by Metron Aviation that the
FAA uses to manage GDPs and AFPs (Metron Avia-
tion 2009a). In March 2009, functionality was enabled
in Flight Schedule Monitor that allows TFM managers
to exempt AFP-affected flights from subsequent GDPs
(Metron Aviation 2009b). Thus, the other conflict res-
olution approach we consider is a strict exemption-
based heuristic in which a flight is given a CTD from
the first GDP or AFP that affects its schedule and
exempted from all future GDPs or AFPs. We refer to
this conflict resolution heuristic as exemption RBS.
Consider the following example based on the four
flight routes displayed in Figure 1 with planned
schedule details listed in Table 2. At 17:00, an AFP is
initiated for FCA1 with a controlled arrival rate of one
flight every five minutes from 18:40 until 19:00. Sub-
sequently, at 17:05, a GDP is initiated for New York’s
Laguardla Airport (LGA), with arrivals into LGA
restricted to one flight every 10 minutes from 18:55
until 19:15. Note that the time a TFM program is ini-
tiated determines which flights are affected, because
flights already in the air at the time of initiation are
exempted from the program. Performing RBS for each
resource independently leads to the CTDs listed in
Tables 3 and 4. In this case, flight B receives conflict-
ing CTDs (17:15 from the AFP at FCA1 and 17:24 from
the GDP at LGA). Thus, according to precedence RBS,
flight B will be given a CTD of 17:24 (because the GDP
at LGA takes precedence). This leads to the controlled
schedule listed in Table 5. In Table 6, we provide

Table 2 Planned Departure and Arrival Times

Flight Departure FCA1 LGA

A 17:45 — 18:55
B 17:15 18:40 18:56
C 18:00 18:45 —
D 18:15 18:46 —

the controlled schedule according to the exemption
RBS (under the modified assumption that the GDP is
implemented first).

It is important to note that, in this example, it
is impossible to satisfy first-scheduled, first-served
for each resource and simultaneously minimize sys-
tem delay. That is, the controlled schedule must
either deviate from first-scheduled, first-served or
incur excess delay. This simple example illustrates
the general tradeoff that exists between fairness and
efficiency in the multiresource or network setting.
We will consider these examples further in §2.1. For
additional examples of this type, the reader is encour-
aged to review Lulli and Odoni (2007).

1.3. Literature Review

The first thorough review of the TFM problem is
provided by Odoni (1987). Subsequently, two leading
research paths have emerged and diverged. The first
has focused primarily on collaboration and equity
in the context of single-resource approaches. These
approaches are applicable for a single TFM pro-
gram or multiple, nonconflicting TFM programs. The
second research path has focused primarily on com-
putational efficiency in the context of network-wide,

Table 5 Controlled Departure and Arrival Times
According to Precedence RBS
Flight CTD FCA1 LGA
A 17:45 — 18:55
B 17:24 18:49 19:05
C 18:00 18:45 —
D 18:19 18:50 —
Table 6 Controlled Departure and Arrival Times
According to Exemption RBS
Flight CTD FCA1 LGA
A 17:45 — 18:55
B 17:24 18:49 19:05
C 18:05 18:50 —
D 18:24 18:55 —
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or multiresource, approaches to TEM, in which typ-
ically all airports and air sectors are placed under
the FAA’s control. Research into single resource
approaches has gained more traction within the
industry primarily because of (i) the inclusion of col-
laboration and equity considerations and (ii) com-
putational tractability (i.e., computations involving a
full day of flights for a single resource run quickly).
Arguably, it is because of failures in these areas that
research into network approaches has gained less
traction. Indeed, it is only recently that network for-
mulations have begun to incorporate equity or collab-
oration considerations.

For the single-resource TFM problem, determinis-
tic, static-stochastic, and dynamic-stochastic versions
of the problem were first formulated in the early
1990s (see Richetta and Odoni 1993, 1994; Terrab and
Odoni 1993). More recent research has extended these
models to incorporate collaboration and equity (see
Ball et al. 2003; Vossen and Ball 2005; Kotnyek and
Richetta 2006). Vossen et al. (2003) define a measure of
equity for the single-resource TFM problem and cal-
culate the inequity associated with flight exemptions.
Chang et al. (2001) describe the collaborative decision
making (CDM) approach with updated equity con-
siderations that was incorporated into the FAA’s GDP
in the late 1990s. In a recent paper, Brennan (2007)
describes how the CDM-enhanced GDP approach has
been extended to the AFP.

On the multiresource side, Vranas, Bertsimas,
and Odoni (1994) developed the first integer pro-
gramming formulation for the multi-airport GDP.
Bertsimas and Patterson (1998) extended this formula-
tion to the full air traffic system using a novel variable
definition. Subsequent research has focused primar-
ily on computational efficiency and the incorporation
of rerouting constraints (see Andreatta, Brunetta, and
Guastalla 2000; Hoffman and Ball 2000; Bertsimas,
Lulli, and Odoni 2011). The discussion of inequities
inherent in a network formulation of the TFM prob-
lem by Lulli and Odoni (2007) provides a critical back-
drop for our work. Bertsimas, Farias, and Trichakis
(2011) show that under reasonable assumptions the
theoretical price of fairness in TFM is bounded and
typically quite low, which is consistent with our
computational results. In recent and related work,
Bertsimas and Gupta (2011) consider fairness and
collaboration in the context of the nationwide TFM
problem.

In this paper, we develop integer programming for-
mulations for the multiresource TEM problem that
incorporate fairness considerations. Unlike other net-
work approaches, instead of including all airports and
sectors, we restrict the problem to the coordination
of multiple, conflicting TFM programs. We believe
that by considering this restricted problem, our work

will help bridge the gap between the two divergent
research paths described above.

1.4. Contributions
The contributions of this paper fall into four cate-
gories.

1. Demonstrating the potential inefficiencies of the
TEM conflict resolutions approaches utilized in prac-
tice. The general TFM scheduling problem is NP-hard,
so these inefficiencies are not surprising. Nonetheless,
this result is not well understood. Most important, we
demonstrate that these inefficiencies are not just the-
oretically plausible but are realized in historical sce-
narios.

2. Developing a fairness metric that extends to the
multiresource setting, including analysis of the result-
ing fairness properties and relationship to current
industry standards.

3. Developing two optimization approaches for
coordinating TFM programs that balance the tradeoff
between equity, as measured by catagory 2 above, and
efficiency, as measured by aggregate system delay.
The latter of these two models is computationally
tractable for national-scale TFM problems.

4. Generating computational results and analysis
using large-scale historical instances derived from
2007 data obtained from Flight Schedule Monitor, the
tool used to manage these programs.

The structure of the paper follows these main
points. In §2, we demonstrate the limitations of the
current TEM conflict resolution approaches, discuss
inherent fairness properties, and develop our fairness
metric. In §3, we develop two integer programming
formulations. Lastly, in §4, we report and discuss our
computational results.

The starting point for our formulations is the model
developed in Bertsimas and Patterson (1998) and the
first-scheduled, first-served concept of fairness inher-
ent in RBS, as described in §1.1. RBS has three salient
features. First, it is algorithmically trivial to imple-
ment and has a linear running time with respect to
the number of flight steps. Thus, the approach can
be scaled to arbitrarily large problems. Second, for an
isolated GDP or AFP, the RBS method always leads
to a solution that minimizes system delay (Vossen
and Ball 2005). Third, it maintains a first-scheduled,
first-served invariant, which is the industry accepted
notion of fairness endorsed by the primary stake-
holders, that is, the FAA and the airlines. In partic-
ular, as should be apparent based on the example
in §1.2, any multiresource extension of RBS will fail
on a very important front: it will no longer provide
delay-optimality guarantees as in the single-resource
case. This is to be expected, because fairness may in
general come at the expense of increased aggregate
delays. The main modeling contribution of this paper
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is precisely to address this deficiency. Specifically, we
seek a formulation for fairness that has the following
properties:

1. In the single-resource setting, it should reduce
to (the accepted standard) RBS, which, as discussed
above, is delay-optimal in this case;

2. Because there will typically be a tradeoff be-
tween aggregate system delay and any flight-based
fairness criterion, the formulation should essentially
consider a bicriterion approach that enables the study
of the tradeoff curve between the two; and

3. The formulation should compare favorably to
the approaches currently utilized in practice for the
multiresource setting.

Using historical TFM scenarios, we demonstrate a
computationally viable optimization formulation that
satisfies all of these properties. We estimate that this
model can reduce flight delays by 4% or more on
some of the worst days, resulting in system-wide
savings on the order of $25 to $50 million annu-
ally. The concepts and modeling approaches devel-
oped in our paper readily extend to the nationwide
TFM problem, although we focus almost exclusively
on the problems associated with coordinating GDPs
and AFPs. We do so with the goal of having our
work provide a bridge, both academically and prac-
tically, between current approaches and a long-term
vision of nationwide TFM. That is, we hope that
our work allows future TFM research, including our
own, to build upon a foundation that has a high
likelihood of being accepted in practice. Additionally,
as the frequency and complexity of AFPs increases
because of increasing en route congestion, we expect
the inefficiencies we identify with current approaches
to be exacerbated, providing further justification for
an optimization-based approach.

2. Ration-by-Schedule and Fairness

As discussed in the introduction, understanding and
incorporating industry-accepted views of fairness has
been a significant roadblock to the implementation
of optimization-based techniques for managing TFM
programs. One of the more significant challenges is
that the first-scheduled, first-served concept of fair-
ness underlying RBS does not directly extend to the
setting in which a single flight may interact with mul-
tiple TEM programs (e.g., a GDP plus one or more
AFPs). With this in mind, we turn our attention to
developing a measure of overall schedule fairness that
(i) is consistent with first-scheduled, first-served in a
single-resource environment and (ii) naturally extends
to the setting in which there are interactions between
TFM programs.

To provide additional context, we first illustrate
problems with the multiresource RBS approaches uti-
lized in practice to resolve conflicts between conflict-
ing TFM programs (i.e., GDPs and AFPs). The main

advantage of these approaches is that they are simple
extensions of RBS in the single-resource setting, and
thus the resulting schedules are similar to the single-
resource RBS schedules. Unfortunately, this simplicity
can also lead to significant costs in terms of efficiency
and therefore total delays. Next, we describe the prop-
erties we believe should underlie any measure of
schedule fairness in a multi-resource setting, using
simple examples to demonstrate the importance and
significance of these properties. Lastly, we develop a
robust measure of schedule fairness that incorporates
the properties we outline. The purpose of this met-
ric is to evaluate the relative fairness of competing
scheduling approaches.

2.1. Problems with Multiresource
Ration-by-Schedule

One downside of precedence RBS that is not a fac-
tor with the exemption alternative is that AFP capaci-
ties, specified in terms of controlled arrival rates, may
be (and often are) violated. By examining the con-
trolled schedule from the example in §1.2 (Table 5),
we see that two flights (B and D) are scheduled to
arrive at FCA1 simultaneously even though the con-
trolled arrival rate was established at one flight every
five minutes. It is difficult to measure the impact asso-
ciated with this issue because, in practice, AFPs are
constructed in a subjective fashion. That is, the param-
eters of each AFP, such as duration and arrival rate,
are tweaked until the end result satisfies subjective
criteria for safety. Additionally, with an AFP traffic
flow is controlled through a line or region of air space
that may be hundreds of miles long; thus, two flights
that arrive at the same time may be very far apart
geographically. Nonetheless, precedence RBS makes it
difficult, if not impossible, to precisely control traf-
fic flow through the air. Additionally, as air traffic
congestion continues to increase, airspace controls are
expected to become more common, exacerbating this
problem.

A more significant issue with both multiresource
RBS scheduling approaches is that either may lead
to inefficient resource utilization. For instance, con-
sider the planned flight schedule in Table 2 and the
precedence RBS schedule in Table 5. In the prece-
dence RBS schedule, we see that the 18:40 arrival slot
for FCA1 is unused because flights C and D cannot
depart earlier than planned. If we swap the order
of flights A and B into LGA, flight B is then able
to use the 18:40 slot, which allows flights C and D
to depart on time (using the same capacity profile
as the precedence RBS schedule). This sequence of
exchanges reduces the total delay from 13 minutes
(9 minutes for flight B and 4 minutes for flight D) to
10 minutes (all for flight A). Similarly, consider the
exemption RBS schedule provided in Table 6. This
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schedule results in 23 minutes of delay (9 minutes
each for flights B and D, and 5 minutes for flight C).
As with the precedence RBS example, the 18:40 slot
into FCA1 is unused. If we swap the order of flights
A and B into LGA, flight B is able to use the 18:40 slot,
which allows flight C to depart on time and flight D
to depart 4 minutes late, resulting in 14 minutes of
delay (10 minutes for flight A and 4 minutes for flight
B). Note that the exemption RBS schedule results in
more delay because, in contrast to the precedence RBS
schedule, no AFP capacity violations are allowed.

The last issue with the two approaches is that the
expected RBS arrival order for certain resources may
be violated based on the resolution of conflicting
CTDs. In the precedence RBS example above, flight B
was originally scheduled to arrive at FCA1 first but
was instead scheduled second after resolution of the
conflicting CTDs. Although the RBS order is violated
in this case, it is likely not a fairness issue because
LGA is a more congested resource along flight B’s
route. On the other hand, consider two flights, the
first of which passes through a severely constrained
FCA en route to a more mildly constrained arrival air-
port, the second just through the FCA. Assuming the
GDP was implemented first, under either approach
the GDP-based CTD will take priority for the first
flight, allowing it to avoid the impact of the more
severe AFP. The second flight will be affected only
by the AFP and thus incur significantly greater, and
therefore inequitable, delays. As should be appar-
ent from this example, we can construct scenarios in
which either multiresource RBS schedule is arbitrar-
ily unfair.

2.2. Principles for Measuring Fairness

The challenge to incorporating fairness into the mul-
tiresource setting is that the link between original
schedule order and delay optimality breaks down
when some flights are affected by multiple TFM pro-
grams. Thus, in a multiresource setting we need to
make a tradeoff between fairness relative to the origi-
nal schedule order and efficiency in terms of total sys-
tem delay. To find the appropriate tradeoff, we need a
method of measuring the relative (un)fairness of com-
peting schedules.

The concept of fairness is by nature subjective and
often domain specific. Even within air traffic, there are
many plausible ways to measure schedule fairness,
each leading to different results. For example, in a
single-resource setting, one measure of fairness is
the number of slots a flight deviates from its initial
order position (e.g., if a flight scheduled to arrive
fourth is instead allocated the twelfth arrival slot,
we would say that flight's schedule was unfair by
eight positions). Unfortunately, in the multiresource
setting, using position-based metrics without consid-
ering delay can lead to imbalances in the fairness

penalty incurred between resources. Other proposals
include measuring schedule fairness by comparing
average or maximum flight delays between airlines.
These types of measures ignore variation in conges-
tion along flight routes and thus are also problem-
atic in the multiresource setting. In this section, we
describe properties that we believe are critical to mea-
suring fairness in the multiresource setting. These
properties are motivated primarily as extensions of
the successful properties of RBS in the single-resource
environment. In the following section, we use these
properties to obtain a multiresource fairness deviation
metric.

PrRoOPERTY 1. The measure of schedule fairness should be
determined with reference to the original schedule ordering.
Because of the success of RBS in the single-resource setting,
the concept of first-scheduled, first-served has come to be
widely accepted by airlines and the FAA.

PROPERTY 2. The measure of schedule fairness should be
applicable to a single flight as well as the overall schedule.
That is, the measure should be able to determine the amount
by which each flight’s schedule varies from first-scheduled,
first-served.

ProOPERTY 3. The unit of fairness deviation and its rel-
ative magnitude should be consistent between resources.
In a single-resource setting, position-based deviation is an
accepted measure of fairness deviation. In the multiresource
setting, this is confounded due to varying congestion lev-
els between resources. An eight-position delay (going from
fourth to twelfth) could mean 30 minutes of delay in a low-
capacity airport, but only 10 minutes of delay in a higher
capacity one.

ProPERTY 4. No flight should expect to receive less
delay than what would be caused by the most congested
resource along its route. That is, there should be a fairness
penalty only if a flight incurs more delay than its origi-
nal schedule order would indicate for each of the resources
along its route.

PROPERTY 5. The measure of a flight’s deviation from
the original schedule should be calculated relative to the
total delay assigned to the flight (ground delay plus
air delay), not intermediate arrival times into controlled
resources. This property is relevant if the scheduling
approach allows both ground delays (by assigning CTDs)
and en route delays (by mandating air speed reductions
or arrival queuing) to be assigned. In practice, the sched-
ule created by the FAA using RBS assumes that a flight
will incur no delays en route and only assigns ground
delays through CTDs. Airborne delays are subsequently
managed by air traffic controllers en route or at the arrival
airport. Network TFM models, such as the one described
in Bertsimas and Patterson (1998), consider both of these
problems simultaneously in order to improve efficiency and
predictability.
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2.3. Time-Order Deviation Metric

With these properties in mind, we now develop a
measure for evaluating the unfairness of a controlled
schedule. First, we use features of both the planned
(predisruption) schedule and the controlled (postdis-
ruption) schedule to determine a fair delay threshold
for each flight, which we refer to as the maximum
expected delay. Next, we calculate the time-order devi-
ation for each flight as the amount by which the
flight’s delay in the controlled schedule exceeds this
threshold.

We first determine the fair delay threshold for
the case in which a flight, f, utilizes just one con-
trolled resource. We let j be the flight’s position in the
planned arrival ordering for this resource. For exam-
ple, if there is a GDP at LGA and flight f was planned
to be the third arrival into LGA, j would equal three.
We define flight f’s expected delay for the controlled
resource as the difference between the jth controlled
arrival time for the resource and the planned arrival
time of the flight. Note that the order of flights could
be swapped in the controlled schedule; thus, the jth
controlled arrival for the resource might not be the
same as the jth planned arrival. Continuing the exam-
ple of a GDP at LGA, if flight f was planned to
be the third flight to arrive into LGA at 19:15, and
the third controlled arrival into LGA is scheduled for
19:20, we would say that flight f has a five-minute
expected delay into LGA. As long as flight f incurs
no more than five minutes of delay, we would con-
sider the controlled schedule to be fair from flight f’s
perspective.

The case in which a flight, f, utilizes multiple con-
trolled resources is a bit more complicated. For each
of the controlled resources flight f is scheduled to uti-
lize, we could calculate the expected delay as in the
example above. Each of these expected delay values
would represent a fair delay threshold, assuming that
flight f utilized no other controlled resources along its
route. Thus, in the case in which a flight utilizes mul-
tiple controlled resources, we set the fair delay thres-
hold to the maximum of the expected delay value
across these controlled resources. As long as flight f
incurs no more delay than this maximum expected
delay, we consider the controlled schedule to be fair
from flight f’s perspective. One could argue that the
fair delay threshold should be higher than this value
because the flight uses multiple controlled resources,
but it clearly should not be any lower. Note that this
general definition applies to flights that utilize just
one controlled resource because for these cases the
maximum expected delay equals the expected delay
for the single resource.

Using these definitions, we define each flight's
time-order deviation as the amount by which its total

delay in the controlled schedule exceeds the max-
imum expected delay along its route. In the event
that the maximum expected delay exceeds the flight’s
total delay, we set the time-order deviation equal
to zero. That is, a schedule is not fairer if a flight
arrives earlier than expected, even though this might
reduce the overall system delay. Time-order devia-
tion can be considered a generalization of deviation
from the ideal RBS allocation used to measure exemp-
tion bias in Vossen et al. (2003). The key differences
are (i) time-order deviation is measured relative to
the most congested resource along a flight’s route
and (ii) time-order deviation is measured relative to
a feasible, controlled schedule instead of a potentially
infeasible, idealized allocation. Next, we consider an
example in which we calculate the time-order devia-
tion for a flight that is affected by a GDP at LGA and
an AFP at FCA1.

2.3.1. Time-Order Deviation Example. Consider
a flight planned to depart from Boston Logan Interna-
tional Airport (BOS) at 18:00, arrive at FCA1 at 18:45,
and arrive into LGA at 19:15. Prior to schedule dis-
ruption, the flight is planned to be the fourth arrival
into FCA1 and the third arrival into LGA. Based on
a GDP at LGA and an AFP at FCA1, the flight is
subsequently given a CTD of 18:25 (corresponding to
25 minutes of ground delay). To calculate the time-
order deviation for this flight, we need to addition-
ally know the order of arrivals into FCA1 and LGA
in the controlled schedule. Based on the controlled
arrival orderings listed in Tables 7 and 8, we can cal-
culate the time-order deviation as follows. First, we
calculate the flight’s expected delay into FCA1 as the
time of the fourth controlled arrival into FCA1 (18:55)
minus the flight’s planned arrival time into FCA1
(18:45), which equals 10 minutes. Next, we calculate

Table 7 Controlled Flight Order for FCA1

Order FCA1 Arrival

18:35
18:45
18:50
18:55
19:00
19:05

DO AN

£3

Table 8 Controlled Flight Order for LGA

Order LGA arrival

19:00
19:10
19:20
19:30
* 19:40

O W N =
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the flight’s expected delay into LGA as the time of the
third controlled arrival into LGA (19:20) minus the
flight’s planned arrival time into LGA (19:15), which
equals five minutes. The referenced arrival times in
Tables 7 and 8 are highlighted in bold. The maxi-
mum expected delay for the flight is the 10 minutes
from FCA1. In the controlled schedule, the total delay
for the flight is 25 minutes (the difference between
the 18:25 CTD and the 18:00 planned departure time).
Thus, the time-order deviation for the flight is 15 min-
utes (25 minutes of total delay minus 10 minutes of
maximum expected delay). Thus, we would say that
60% of the delay assigned to this flight is unfair as
measured by time-order deviation. In Tables 7 and 8,
the rows corresponding to the controlled arrival times
for the referenced flight have been marked with an
asterisk (x) although they are not used directly in the
calculation of the flight’s time-order deviation.

We define the time-order deviation for a controlled
schedule as the sum of the time-order deviations for
each flight represented in the schedule. If we divide
the total time-order deviation by the total delay
assigned, the result describes the average percentage
of unfair delay assigned to each flight (relative to the
individual fair delay thresholds). The time-order devi-
ation of individual flights may vary significantly from
the average, so in our results in §4.4 we also consider
the distribution of flight delay. As expected, time-
order deviation satisfies all of the principles laid out
in the previous section. That is, (i) time-order devi-
ation is calculated relative to the original schedule
order, (ii) the measure can be applied to each flight
in the controlled schedule, (iii) the unit of measure
(i.e., time) is consistent between resources, (iv) the
measure is calculated relative to the most restricted
resource along each flight’s route (i.e., relative to the
maximum expected delay), and (v) the measure is
based on the total delay and not intermediate arrival
times. Note that for a single controlled resource, or
for a set of independent controlled resources (such
as multiple GDPs), the time-order deviation metric
achieves zero if the controlled schedule matches the
schedule that results from independent RBS alloca-
tions for each controlled resource. For this indepen-
dent resource case, among the set of delay-minimal
schedules and because of the uniqueness of the first-
scheduled, first-served solution, the time-order devia-
tion metric achieves zero if and only if the controlled
schedule matches the RBS allocations.

3. Optimization Approaches

In this section, we describe two integer program-
ming formulations, the solutions to which describe
the ground holding that should be assigned to each
flight. Each formulation allows for the flexible trade-
off between a delay term and a fairness term in the

minimization objective. In the first model, the fairness
term is a convex approximation of the fairness met-
ric developed in the previous section. We call this the
time-order deviation approximation (TODA) model.
In the second model, we use an exponentially grow-
ing delay penalty to enforce fairness. This approach
has considerable computational advantages yet sac-
rifices little in terms of fairness achieved according
to time-order deviation. We refer to this model as
the ration-by-schedule exponential penalty (RBS-EP)
model.

In §3.1, we develop the common notation as well as
define the input data used in both our formulations.
In §3.2, we provide the portion of the optimization
formulation that is common to both the TODA and
RBS-EP models. Section 3.3 provides the formulation
for the TODA model, and §3.4 the formulation for
the RBS-EP model. We discuss some issues related to
practical implementation in §3.5.

3.1. Data and Notation

We consider a set of discretized time intervals
J ={0,..., T —1}, where T represents the end of the
day and each interval is defined to have equal dura-
tion, typically either five minutes or 15 minutes. We
consider a set of controlled resources, %, that will
typically include arrival airports (for GDPs) and FCAs
(for AFPs). System resources that are not capacity con-
trolled provide no binding constraints on the system
and are excluded from 9. For each resource, r € &,
and each time interval, t € I, we specify a capacity
of b,;, which can be either the allowable arrival rate
or the maximum number of flights allowed to occupy
the resource during the interval. For GDPs and AFPs,
resource capacities are specified in terms of the allow-
able arrival rate.

Additionally, we consider a set of flight legs, . For
each flight leg, f € #, we define the controlled flight
plan to be the sequence of controlled resources sched-
uled to be utilized over the course of the flight. For
instance, consider the flight from Portland Interna-
tional Airport (PWM) to New York John F. Kennedy
Airport (JFK) depicted in Figure 2, with TEM pro-
grams in place at FCA1 and JFK. For this flight, the
controlled flight plan would be a sequence contain-
ing FCA1 followed by the arrival resource for JFK.
Notationally, we let |f| represent the number of steps

Figure 2 PWM to JFK Flight Path Intersecting Two Controlled

Resources, FCA1 and JFK
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Table 9 Data Values for PWM to JFK Controlled Flight Plan Based on
a 07:00 Scheduled Departure

Scheduled time i r o 8
07:35 1 FCA1 31 2
08:15 2 JFK 39 1

in the controlled flight plan for flight f and use the
shorthand .7(f) to represent the set of step indices
{1, ..., |f]}. For each step in the controlled flight plan,
in addition to the resource, r, we must specify the
earliest start time, a, and the processing time, 6.
That is, o €  represents the first time interval at
which the step can be scheduled and 6 € N* the num-
ber of time intervals the step needs to be processed
(i.e., landing time at an arrival airport or dwell time
in an occupancy-controlled FCA). Notationally, we let
r(f, i), a(f, i), and 8(f, i) refer to the appropriate val-
ues for step i of the flight plan for flight f. In our for-
mulation, a(f, i+1) —a(f, i) represents the minimum
number of time intervals between the starts of steps i
and i+ 1. Thus, we require a(f, i)+ 6(f, i) to be less
than or equal, rather than strictly equal, to a(f, i+1).
For example, if the resources for two sequential steps
are not geographically adjacent, a(f,i+1) — a(f, i) —
o(f, i) would represent the travel time between the
boundaries of the two resources. In Table 9, we pro-
vide sample values for these fields based on the exam-
ple described above (see Figure 2), with five minute
time intervals starting at 05:00. In our example, the
referenced flight is scheduled to occupy FCA1 for 10
minutes en route to JFK.

For each resource, r, we assume there is a preferred
ordering of tasks (i.e., flight steps) corresponding to
the original schedule. That is, for resource r we would
prefer to start the task indexed by j before the task
indexed by j+ 1, where each task corresponds to a
flight step, (f,i). Using this notation, we let j(f, i)
represent the task index of flight step (f, i) for the cor-
responding resource, r(f, i). Additionally, we let (7, j)
represent the time interval task j would be assigned
based on performing single-resource RBS for r.

Summarizing the above, we have the following
model inputs:

9 = set of discrete time intervals;
R = set of capacity-controlled resources;
b,, = capacity of resource r over time interval ¢;
F = set of flights;
| f| = number of steps in controlled flight plan
for flight f;
J(f) = set of step indices in controlled flight plan

for flight f;

r(f, i) = resource required by flight step i for
flight f;

a(f,i) = earliest start time for flight step i for flight

7

o(f, 1) = processing time of flight step i for flight
J(r) = number of tasks (i.e, flight steps)
assigned to resource 7;
J(r) = set of task indices {1, ..., J(r)—1};
j(f,i) = the task index of flight step i for flight f;
and
RBS(r, j) = RBS start interval for task j of resource r.

3.2. Model Foundation

In this section, we describe the components of
the deterministic, multiresource TFM formulation
that provide the foundation for the two models
we develop. This formulation is derived from the
Bertsimas and Patterson (1998) nationwide TFM
model.

3.2.1. Decision Variables. For both formulations,
we use the following variable definitions:

1, if flight plan step i for flight f has started

Vi = by time t and

0 otherwise.
3.2.2. Constraints. We first ensure that the

sequence [V, - -, Ysir—1y], which we refer to as [y],
is monotonically increasing:

Vi <Ypaey VETF,Vie F(f),Viel0, ..., T-2}. (1)

Next, we guarantee that each flight step is sched-
uled and that no flight step is scheduled before its
minimum start time:

yfi(T—l) =1 erg, Vlej(f) (2)
Y, -y =0 VfeF, Vie J(F)
s.t. a(f, i)>0. (3)

We also enforce the appropriate order between
flight steps in a controlled flight plan as follows:

Yearnr = Yfit—a(f, ivDra(f, )
VieF, Yie J()\Ifl}- @)

We require strict equality in (4) to disallow alloca-
tion of airborne delays. To allow the allocation of air-
borne delays, we could replace this with an inequality
(i, Yfisyr < ---)- The last set of constraints is to
ensure that resource capacities are not violated:

Z (yfit - yfi(t—é(f,i))) <b,
{(f, D):r(f,D)=r}
VreR, Vted. (5

Note that 4, — Y i¢—s(f, ) T€presents whether flight f
is performing flight plan step i at time .
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3.2.3. Objective Function. The delay term in the
objective function of each formulation represents the
aggregate costs associated with flight delay, which we
model as follows. First, we note that the start time of
flight plan step i for flight f, s(f, i), can be written as

71
s(f,i)=T-_ Yir-
1=0

The total delay for flight f, d(f), is equivalent to the
delay accumulated through the last step in the flight
plan, |f|, which can be written as

d(f)=s(f, 1)) = a(f, If])-

In the base formulation, the objective is to minimize

total delay:
min Y d(f). (6)
feF
Constraints (4) ensure that the total delay for flight f
is equivalent to the delay assigned before the first step
in the controlled flight plan, which allows us to allo-
cate all of the flight delay as ground holding.

3.3. Time-Order Deviation Approximation
(TODA) Model

Using the notation described in the previous section,

we first provide the mathematical definition of time-

order deviation. Letting 5(r, j) represent the start time

for the jth flight step to utilize resource r in the con-

trolled schedule, we have

(Maximum Expected Delay)
MED(f) £ max{3(r(f, i), j(f, ) ~a(f,)}; and (7)
(Time-Order Deviation)
TOD(f) £ (d(f) —MED(f))*. 8)

In Equation (8), d(f) represents the total delay
assigned to flight f, as in the objective function for
the base formulation (6). There are two challenges
to calculating time-order deviation within a mathe-
matical programming model. The first is that to cal-
culate expected delay, we need the sorted list of
scheduled start times for each resource. That is, in
addition to maintaining a view of the schedule from
each flight’s perspective, we also need to maintain
a view of the schedule from each resource’s per-
spective. We address this by creating schedule vari-
ables that maintain a fixed relative order for each
resource and are bound to the original flight-centric
schedule variables. The second challenge is that time-
order deviation is a nonconvex function because of
the inner maximum from Equation (7). Thus, time-
order deviationcannot be represented directly in a

linear minimization objective. Instead, we approxi-
mate time-order deviation by replacing the maximum
over all flight steps in Equation (7) with an aver-
age over the flight steps that we estimate a priori
will lead to the most delay. We do so by comput-
ing which steps, i, would be assigned the most delay
based on independent RBS allocations performed for
each resource. This gives us an estimate of conges-
tion from capacity-demand imbalances, although it
ignores delays introduced due to interactions between
resources.

3.3.1. Model Adjustments. We first define the
ordered auxiliary variables described above:

1, if j tasks for resource r have been
Uy = scheduled to start by time ¢ and
0 otherwise.

Based on this definition, (u,; — u,;_y)) will indi-
cate when task j of resource r starts in the optimized
schedule. Note that this might or might not be the
same as the start time of the task originally scheduled
to occupy position j.

Next, we add the following constraints to the model
to ensure that the variables maintain the definition
above:

Uy SUyjrry YT ER, Vje J(r),
Vte{0,...,T—=2}, and (9)
uir—y=1 Yre®R, Vjell, ..., J(n)} (10)

Constraints (9) and (10) ensure that the sequence of
ordered auxiliary variables [u,] maintains the same
monotonically increasing form as the sequence of
flight step variables [y]. We also need to ensure that
the appropriate order for the auxiliary variables is
maintained; that is, task (j + 1) cannot start before
task j:

Upjpnye Sty YT E R,VjeF(r), Vted. (11)

The last, and most important, set of constraints
ensures that, by each interval, the number of sched-
uled flights according to the ordered auxiliary vari-
ables and the flight step variables coincide:

J(r)
Duy= > Yu VreR, Vted. (12)
j=1 {((f, D):r(f, D=r}

That is, constraints (12) ensure that when a flight
step is scheduled within an interval, one of the
sequences of ordered auxiliary variables must flip
from zero to one in that same interval.

With these definitions in mind, we can calculate the
expected delay (ED) for flight step (f, i) and resource
r(f, i), denoted ED(f, i):

T-1
ED(f, i) = Z (1- Ups, i)j(f,i)t)' (13)
a(f, i)
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The right-hand side measures the number of inter-
vals from the earliest start time for flight step (f, i)
until the j(f, i)th task starts for resource r(f, 7).

As discussed in the introduction to this section, we
estimate which resources for each flight f will max-
imize expected delay by computing which steps i
would be assigned the most delay according to inde-
pendent RBS allocations. For flight f, we denote the
maximum RBS delay as dRE (f) and the set of steps
achieving the maximum RBS delay as Jyax(f):

d**(f, i) =RBS(r(f, 1), j(f, 1)) — a(f, );
dyiax (f) = rgg;ddRBs(f .0} and (14)

Ivax(f) ={i € F(f): dRBS(fr i) = dllsAB,Asx(f)}-

We now have the tools needed to describe the fair-
ness term we add to (6) to calculate the approximate
time-order deviation in our TODA objective function:

minZd(f)+¢<d(f)— 3 M) (15)

feF i€ Fpax(f) |jMAX(f)|

Within the sum, the second term represents the
approximate time-order deviation scaled by a factor
of > 0, which controls the tradeoff between system
delay and approximate time-order deviation. Within
the approximate time-order deviation term, the inner
sum calculates the average expected delay across
the flight steps that achieved maximum RBS delay
according to independent RBS allocations. When the
set Fyax(f) equals the steps that achieve the max-
imum expected delay in the optimized schedule,
our approximate time-order deviation will equal the
true time-order deviation as described in §2.3. Oth-
erwise, the average expected delay across Fyax(f)
will be less than the maximum expected delay, and
the approximate time-order deviation will be strictly
larger than the true time-order deviation. The (-)*
ensures that we add the approximate time-order devi-
ation to our objective only if the total delay exceeds
this average expected delay.

3.4. Ration-by-Schedule Exponential Penalty
(RBS-EP) Model

Unlike the TODA model, the RBS-EP model requires
the introduction of no new variables or constraints to
the foundational model described in §3.2. The only
change required is modifying the functional form of
the objective function. The intuition behind the RBS-
EP model has two parts. The first is that no flight
should expect to incur less delay than its worst-case
RBS delay, dRE (f) as defined in Equation (14) in the
previous section. But because of interactions between
resources, it is unlikely that each flight will be able
to achieve this exactly. So to provide flexibility, we
penalize each interval of delay beyond diey (f) by an
exponentially increasing amount.

3.4.1. Model Adjustments. One of the nice prop-
erties of discrete scheduling models is that we can
associate different objective coefficients with each pos-
sible start time for a task. To achieve an exponentially
increasing penalty, we need only to determine the
appropriate coefficients for each flight and potential
start interval. Thus, we let ¢, be the coefficient asso-
ciated with the last step of flight f starting at time ¢:

¢p = min{t —a(f, |f]), B ()

t—a(f, |f)—dRE (f)

+ ) A<, (16)

e=1

Based on the definition above, we have ¢ —cf_y) =
AU DR assuming ¢ > a(f, |f]) + diia(f)-
Thus, assuming A > 1, the incremental cost of each
additional interval of delay beyond diEy (f) increases
exponentially. A sample plot of this cost function is
represented in Figure 3 for A =2, diFS (f) =4, and
a(f,|f1)=0.

With the cost coefficients Cp defined as above, the
objective function for the RBS-EP model is

T-1
minZ[ > Cft(yflft_yflf(tl))}' (17)
fer Li=a(r 1)

The difference (v s — Yy 5¢-1)) equals 1 if and only
if the last step for flight f begins at time ¢, thus
applying a penalty of ¢y as desired. In the exponen-
tial penalty model, the base of the exponent, A > 1.0,
used in defining cg, implicitly controls the tradeoff
between aggregate system delay and fairness.

3.5. Integration Issues

As noted, these computational models build on
Bertsimas and Patterson (1998) and Andreatta,
Brunetta, and Guastalla (2000). Beyond the fairness
considerations, however, there are two key differences
in the approach we outline. First, in each of the ref-
erenced models, flights can be assigned air delay en
route. Because of the limited number of AFPs imple-
mented in practice, and the deterministic nature of

35
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Figure 3 Plot of Delay Cost Function for A =2, dfi25(f) = 4, and

alf, |f)) =0
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our formulations, allowing air delay provides little
value for the historical scenarios we consider in our
results. Thus, to simplify exposition of the model
as well as maintain consistency with current prac-
tice, we consider only ground delay. Additionally, in
the referenced models, planned aircraft connections
between flight legs are maintained in the controlled
schedule (i.e., planned aircraft connections are repre-
sented as constraints in the formulation). Our mod-
els do not include connectivity constraints between
flight legs. Note that both of our models could include
these constraints and remain entirely consistent; thus,
it is an explicit modeling choice to omit them. We
have made the decision to exclude constraints of this
type because, again, this change leads to an approach
that is consistent with current practice. Most impor-
tant, our models can utilize the same inputs as exist-
ing TFM programs, allowing for direct comparison
as well as easier integration. Additionally, because
of each airline’s ability to swap aircrafts and cancel
flights, it is unclear whether strict connectivity con-
straints are in the best interest of the airlines. Includ-
ing these constraints increases the amount of delay
assigned, under the assumption that airlines have less
flexibility to respond than they do in practice. On the
other hand, excluding these constraints leaves the full
burden of resolving infeasibilities to the airlines. We
believe that understanding the impact of aircraft con-
nectivity in this context is an important open research
question.

Another integration consideration is how these
approaches fit into the three-stage collaborative deci-
sion making (CDM) framework described in §1.1. The
key feature to note is that the output of our models
can be easily translated into a slot assignment for the
corresponding programs. In this sense, we maintain
the same output format as that of existing approaches
(corresponding to the first stage in the CDM pro-
cess). To determine a single program to manage each
flight (for stages two and three of the CDM process),
we could simply choose the program that would be
assigned under the current approaches. Alternatively,
we propose that each flight be assigned to the pro-
gram that maximizes the expected delay in the result-
ing schedule, as defined in Equation (7) in §3.3. Using
this approach, each flight would be controlled by the
program corresponding to the resource that creates
the most congestion along its route.

A level of complexity not considered in our work
is the dynamic nature of TFM programs. Over
the course of the day, TEM programs are created
and modified as more precise weather forecasts are
revealed. These dynamics create challenges for any
deterministic allocation approach (including RBS)
because they introduce potential inequities and ineffi-
ciencies into the system. Effectively addressing these

challenges remains an interesting, important, and, to
our knowledge, open research question.

4. Computational Results

Here we provide computational experiments to
demonstrate the practical value of the RBS-EP model.
We highlight three key results from our historical sce-
narios. The first is that under a conservative com-
parison between RBS-EP and current practice, the
RBS-EP model improves efficiency, as measured by
total delays, while maintaining equivalent levels of
equity. The second is that the RBS-EP model closely
tracks the tighter TODA approximation of the efficient
frontier between aggregate delay and fairness, calcu-
lated according to our time-order deviation metric.
Lastly, the RBS-EP model is computationally efficient,
allowing for the solution of even complex, national-
scale problems within reasonable computing times.

4.1. An Apples-to-Apples Comparison

One challenge in comparing our optimization-based
approaches to current approaches is that precedence
RBS allows the specified capacities to be violated (as
discussed in §2.1). An optimization-based approach,
on the other hand, ensures that all resource capac-
ity constraints are strictly satisfied. Thus, if the
same capacities are utilized as inputs to both pro-
cedures, precedence RBS would typically perform
better because of its ability to arbitrarily exceed
FCA capacity constraints (and the inability of our
optimization-based approaches to do so). In most
cases, exemption RBS does not exhibit this same char-
acteristic because exempted flights reduce the effec-
tive capacity of future programs.

To level the playing field when comparing to prece-
dence RBS, we first perform a precedence RBS alloca-
tion. Next, we compress the precedence RBS schedule,
attempting to fill any gaps created in the resource
schedules. For resources and time intervals for which
the resulting allocation exceeds the specified capac-
ity, we update the corresponding capacity as an input
into each optimization-based approach. By updating
the capacity, we ensure that our optimization-based
approaches do not exceed the initial capacity any more
than the precedence RBS schedule. For instance, based
on the four flight example in §2.1 and five minute
discretization intervals, we would increase the capac-
ity of FCA1 to two flights for the five-minute inter-
val from 18:45 through 18:49, keeping the capacity at
one for all other intervals. Although this leads to a
fairer comparison between the two approaches, the
playing field is still tilted toward precedence RBS.
Because of the inherent limitations of precedence RBS,
we can only perform comparisons for the capacity
allocations that directly correspond to a precedence
RBS schedule. Fortunately, as demonstrated in §2.1,
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Figure 4

this still leaves some inefficiencies that optimization-
based approaches are capable of exploiting.

4.2. Construction of Historical Scenarios

To construct each of our scenarios, we start with
flight schedule data that correspond to a single day
of relatively clear weather operations (April 23, 2007).
This schedule includes estimated entry and exit times
for each sector along each flight’s route. The sched-
ule data were obtained from Flight Schedule Moni-
tor, the TEM decision support tool developed for the
FAA by Metron Aviation (Metron Aviation 2009a). For
purposes of our experiments, we treat this schedule
as representing the Official Airline Guide (i.e., the
planned airline flight schedules). Thus, the defining
characteristics of each scenario are the set of con-
trolled resources and corresponding capacities.

To construct the capacity reduction scenarios, we
use historical TFM program data, also obtained from
Metron Aviation’s Flight Schedule Monitor. These
data include reporting times, effective times and dura-
tions, and TFM program capacities for each 15-minute
interval. From these data, we choose 10 represen-
tative days on which both GDPs and AFPs were
implemented. For each of these days, we create two
scenarios, one to reproduce historical behavior and a
second to analyze the hypothetical impact of further
reductions in FCA capacities. To create the histori-
cal scenarios, we reduce all hourly arrival capacities
by 7.5% relative to the historical data. This reduction
compensates for our clear weather day, April 23, 2007,
having fewer flight operations than days during the
summer (when all of the capacity reduction scenar-
ios occurred). We calculated this reduction level by
comparing flight frequencies in the Airline On-Time
Performance Database, which includes flights for the
20 largest domestic airlines. For the hypothetical sce-
narios, we reduce airport capacities by 7.5% and FCA
capacities by 25%, both relative to the historical data.
We utilize these hypothetical scenarios to understand
how efficiency improvements might change as en
route congestion increases and AFPs are used more

Depiction of Airspace Boundaries for FCAA05, FCAA06, and FCAA08 (Federal Aviation Administration 2006)

heavily going forward. Each of the approaches uti-
lized in practice is sensitive to the order of program
implementation; thus, we use the historical reporting
times to determine this order, reproducing historical
behavior as accurately as possible.

The historical AFPs we utilize affect traffic heading
into the Northeast corridor through one or more of
the boundary-based flow constrained areas: FCAAQS5,
FCAAQ6, and FCAAO08. Figure 4 depicts each of these
boundaries. Because our schedule data include only
sector entry and exit times, in our scenarios we
replace FCAAQ8 with FCAAO06. Both FCAA06 and
FCAAQS8 are used to address weather in the Ohio
Valley region or in the Washington D.C. airspace (Fed-
eral Aviation Administration 2006). In Table 10, we
report scenario details for the 10 days of capacity
reductions we overlay on the clear weather flight
schedule. The Conflicts column reports the percentage
of flights affected by more than one TFM program. By
construction, each of these values is the same for the
historical and hypothetical scenarios described above.
For each of the scheduling approaches we test, includ-
ing the two multiresource RBS approaches, we dis-
cretize time into five-minute intervals.

Table 10 Details on Controlled Resources for Historical and
Hypothetical Scenarios

Date Flights Airports FCAs  Conflicts (%)

5/2/2007 1,858 (2) LGA SFO A06 4.3

5/9/2007 1,572 (2) IAD JFK A05 8.7

6/19/2007 5,191 (8) ATL DCA EWR IAD A05 A06 15.6
JFK LGA SFO PHL

6/27/2007 4,682 (4) CYYZ JFK LGA A05 A06 7.5
ORD MDW

6/28/2007 3,583 (5) EWR IAD JFK LGA SFO  A05 A06 15.7

7/5/2007 2,585 (2) CYYZ EWR A05 A06 51

7/16/2007 1,858 (2) LGA SFO A06 4.3

7/18/2007 3,705 (5) EWR JFK LGA PHL SFO A05 A06 12.5

7/27/2007 3,944 (4) EWR LGO ORD SFO A05 A06 6.6

9/27/2007 3,953 (6) ATL CYYZ EWR A05 57

JFK LGA PHL
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4.3. The Tradeoff Between Efficiency and Fairness
In this section, we demonstrate the tradeoff between
efficiency, as measured by aggregate delay, and fair-
ness, as measured by the time-order deviation of
the resulting schedule for each of the 20 scenarios
described in the previous section (10 historical and 10
hypothetical). We create tradeoff curves by adjusting
i and A, the parameters that control the relative trade-
off for each of the optimization-based approaches
developed in §3. First, we compare the TODA model
to the RBS-EP model for the less complex scenar-
ios. Because the TODA model is not computationally
tractable for the more complex scenarios, we evaluate
only the RBS-EP model for these problems.

We employ two computational heuristics to solve
the TODA and RBS-EP optimization problems. First,
because we discretize time into five minute intervals,
it is computationally intractable to allow each flight
to be delayed indefinitely. Doing so would result in
well over a million binary decision variables for some
of our instances. Instead, we restrict the amount of
allowable delay on a flight-by-flight basis. Specifically,
we allow each flight f to be assigned up to dRFe, (f)
plus an additional 15 or 30 minutes of delay, where
dRES. (f) is the maximum independent RBS delay allo-
cation as defined in Equation (14) in §2.3. Although
there is suboptimality associated with this approach,
the resulting schedule is, by construction, quite fair
because it is close to the accepted RBS allocation. Sec-
ond, we use a greedy integer rounding heuristic to
convert each solution of the linear relaxation into a
feasible flight schedule. We do so by greedily schedul-
ing flights in order, based on the relaxed start time to
the first step in each flight plan, s(f, 1). This heuris-
tic ensures that after solving the root node relaxation

7/16/2007 (historical)

during branch-and-bound search, we always have a
good feasible solution. This is critically important
in the TFM setting, in which we must be able to
guarantee a solution in a relatively short amount of
time (preferably one minute or less).

In Figures 5 and 6, we compare the tradeoff curves
generated by the TODA model to the tradeoff curves
generated by the RBS-EP model. In these plots, each
point represents a schedule generated using a spe-
cific value of ¢ or A, plotting average flight delay in
the corresponding schedule against the percentage of
unfair delay as measured by time-order deviation. For
each model, we allow flights to be assigned up to
dRES. () plus 30 minutes of delay. In general, we find
that the RBS-EP model closely tracks the approximate
efficient frontier between fairness and delay as esti-
mated by the TODA model. The RBS-EP model does
not, however, allow us to fully explore the lower end
of this curve. For more complex scenarios, determin-
ing a baseline according to the TODA model is not
computationally tractable, although we have verified
this general relationship on smaller constructed sce-
narios outside of the ones shown here. When there
is more significant network-based congestion, there
is typically a small gap between these two curves.
Even though the RBS-EP model does not directly min-
imize time-order deviation or its approximation, there
is a fairly consistent trend between an increasing A,
the base of the exponential penalty, and a decreasing
time-order deviation of the resulting schedule. That is,
by simply adjusting the functional form of the delay
penalty, we have created a model that closely tracks
the more complex time-order deviation metric.

One thing to note in these charts is that a rela-
tively large benefit in terms of time-order deviation

7/16/2007 (hypothetical)

S 30 & 30
= [—e— TODA - O- RBS-EP = [—e— TODA - -O- RBS-EP
£ 20 £ 20
3 3 &
= = ~Q
£ 10 o £ 10 .
2 — e — — o 2 ~ 9
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Figure 5 Historical and Hypothetical Precedence RBS Scenarios for 7/16/2007
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Table 11 Comparison of RBS-EP Model to Precedence RBS for Historical Scenarios

Precedence RBS RBS-EP (Fair, 30) RBS-EP (1.001, 15)

Average Unfair Delay Unfair Delay Unfair

Scenario flight delay  delay (%) A reduction (%) delay (%) reduction (%) delay (%)
5/2/2007 6.8 0.0 N/A — 3.3 1.9
5/9/2007 3.9 3.8 1.001 0.9 1.2 0.8 11
6/19/2007 19.7 0.5 1.501 0.5 0.3 0.8 0.6
6/27/2007 18.5 0.0 N/A — 3.4 14
6/28/2007 24.5 0.0 N/A — — 2.2 1.3
7/5/2007 3.2 5.4 1.001 12.2 1.0 12.2 1.0
7/16/2007 2.9 0.0 N/A — — 0.6 0.6
7/18/2007 17.5 0.1 N/A — — 2.6 1.3
7/27/2007 4.5 0.5 N/A — — 7.7 3.0
9/27/2007 7.9 0.1 N/A — — 15 1.1
Summary 12.8 0.3 0.4 0.15 2.5 1.2

is gained by sacrificing a relatively small amount in
terms of total or average flight delay. This is consistent
with both the computational results that follow
and the theoretical results developed in Bertsimas,
Farias, and Trichakis (2011). In general, a substantial
improvement in equity can be gained with little sac-
rifice in terms of efficiency.

In Tables 11, 12, 13, and 14 we summarize the
results of our 40 test instances (10 days x 2 scenarios
x 2 multiresource RBS approaches). For each instance,
we compare the average flight delay and percentage
of unfair delay (as measured by time-order deviation)
of the multiresource RBS schedules to schedules gen-
erated using two different approaches based on the
RBS-EP model. In each table, the summary row pro-
vides the results averaged across all affected flights
over the 10 days. In the first approach, we allow
each flight to be delayed up to difey (f) plus 30 min-
utes. We then choose and report the smallest param-
eter value for the exponential penalty base, A, that
leads to a solution at least as fair as the correspond-
ing multiresource RBS solution, as measured by time-
order deviation. For some instances we are unable to

find a schedule as fair using the RBS-EP model, typi-
cally because the multiresource RBS solution is almost
perfectly fair. In these cases, we report N/A for the
RBS-EP parameter value and list “—” for the per-
centage of delay reduction and percentage of unfair
delay. When summarizing the results, we use the mul-
tiresource RBS solution in place of these values. We
refer to this approach as RBS-EP (Fair, 30). In the sec-
ond approach, we allow each flight to be delayed
only 15 minutes beyond dfeey (f). For this approach,
we report the average flight delay and percentage of
unfair delay for the RBS-EP solution using A =1.001.
We refer to this approach as RBS-EP (1.001, 15). Of
the feasible schedules that minimize total delay, this
approach selects the one that is most fair according
to the exponential penalty. Although this schedule
may not be as fair as the multiresource RBS sched-
ule, no flight is likely to incur more than 15 min-
utes of unfair delay by construction. Across the 20
precedence scenarios, this second approach allocates
1.8% of unfair delay, on average, as compared to 1.5%
for the precedence RBS schedules. For the 20 exemp-
tion scenarios, the second approach allocates 2.2% of

Table 12 Comparison of RBS-EP Model to Exemption RBS for Historical Scenarios

Exemption RBS RBS-EP (Fair, 30) RBS-EP (1.001, 15)

Average Unfair Delay Unfair Delay Unfair

Scenario  flight delay  delay (%) A reduction (%) delay (%) reduction (%) delay (%)
5/2/2007 7.2 13.0 1.001 7.3 3.2 6.8 2.9
5/9/2007 45 0.0 N/A — — 5.7 1.1
6/19/2007 20.9 25.4 1.001 4.8 1.4 4.4 1.0
6/27/2007 19.0 5.6 1.001 55 2.5 45 1.4
6/28/2007 24.6 0.0 N/A — — 2.6 1.6
7/5/2007 4.3 0.0 N/A — — 145 0.9
7/16/2007 2.9 43 1.001 0.5 0.9 0.5 0.9
7/18/2007 18.1 5.9 1.001 54 2.4 5.2 2.7
7/27/2007 47 7.7 1.001 7.7 5.0 5.7 2.8
9/27/2007 8.2 35 1.001 45 1.6 41 1.2
Summary 13.4 9.3 4.0 1.6 45 1.6
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Table 13 Comparison of RBS-EP Model to Precedence RBS for Hypothetical Scenarios

Precedence RBS RBS-EP (Fair, 30) RBS-EP (1.001, 15)

Average Unfair Delay Unfair Delay Unfair
Scenario  flight delay  delay (%) A reduction (%) delay (%) reduction (%) delay (%)
5/2/2007 13.3 04 2.001 1.4 0.0 3.0 1.7
5/9/2007 5.5 6.0 1.001 0.7 1.2 0.7 1.2
6/19/2007 22.0 2.7 1.251 4.0 2.3 4.0 2.4
6/27/2007 22.6 1.0 1.751 5.7 1.0 6.9 2.1
6/28/2007 21.7 0.0 N/A — — 6.8 3.0
7/5/2007 14.7 7.6 1.001 5.0 04 5.0 04
7/16/2007 341 0.1 N/A — — 21 1.4
7/18/2007 24.6 4.4 1.001 13.4 48 111 3.1
7/27/2007 7.1 4.6 1.001 10.6 4.6 8.9 2.8
9/27/2007 9.0 2.0 1.001 35 1.8 2.8 1.1
Summary 16.7 2.5 5.3 1.8 6.4 2.3

unfair delay on average, compared to 6.5% for the
exemption RBS schedules. Thus, we believe that this
approach represents a reasonable and fair alternative,
especially in an aggregate sense.

For the historical scenarios in Table 12, the days
during which exemption RBS is the most unfair are
6/19/2007, 6/27/2007, 7/18/2007, and 7/27/2007.
On each of these days, AFPs are reported earlier in the
day than GDPs that represent possible sources of con-
flict. When the reverse ordering occurs, on days such
as 6/28/2007 and 7/5/2007, the resulting exemp-
tion RBS schedule is extremely fair. Because AFPs
affect a large geographic region, the relative capacity
reductions are typically mild when compared to those
resulting from GDPs. Thus, flights that are affected
first by AFPs and exempted from subsequent GDPs
are able to skirt the largest source of congestion along
their routes. This, in turn, pushes further delays down
to flights affected only by GDPs, creating large time-
order deviations. From a fairness perspective, this
demonstrates the sensitivity of exemption RBS to the
ordering of program implementation. In Table 11, we
see that for the historical scenarios precedence RBS

remains quite fair even for the days mentioned above.
This is not particularly surprising because precedence
RBS mitigates potential fairness issues by creating
additional FCA capacity as needed. The costs of this
additional capacity are likely realized downstream
in terms of interventions en route, which makes the
costs difficult to evaluate. Thus, in terms of calculat-
ing the cost benefits in §4.5, we compare our RBS-EP
approaches to exemption RBS.

Under our hypothetical scenarios, in which we
further reduce the capacities of each AFP, we find
that, in general, significantly greater delays are intro-
duced using both the precedence and exemption RBS
scheduling approaches. Although true in general, this
statement does not hold for all scenarios. For some
scenarios we are able to achieve a greater percentage
of delay reductions in the less constrained historical
scenarios. This demonstrates that the opportunity for
delay reduction is not strictly increasing as capaci-
ties decrease, even though this appears to be true in
aggregate. In these scenarios, precedence RBS remains
more fair and allocates fewer delays than does exemp-
tion RBS. Nonetheless, even when using precedence
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Table 14 Comparison of RBS-EP Model to Exemption RBS for Hypothetical Scenarios

Exemption RBS RBS-EP (Fair, 30) RBS-EP (1.001, 15)

Average unfair Delay Unfair Delay Unfair

Scenario  flight delay  delay (%) A reduction (%) delay (%) reduction (%) delay (%)
5/2/2007 13.8 3.4 1.001 6.2 3.3 47 1.7
5/9/2007 6.7 0.0 N/A — — 53 1.3
6/19/2007 29.4 11.0 1.001 19.0 5.4 171 3.2
6/27/2007 24.0 3.0 1.251 6.8 2.3 6.8 2.3
6/28/2007 28.3 0.0 N/A — — 8.1 41
7/5/2007 16.9 0.0 N/A — — 43 0.4
7/16/2007 3.2 3.6 1.001 3.0 2.7 2.5 2.2
7/18/2007 28.5 47 1.001 11.4 3.9 9.3 2.6
7/27/2007 7.7 1.9 1.501 49 1.2 6.4 2.9
9/27/2007 9.8 2.7 1.001 7.6 1.8 6.9 1.0

Summary 19.0 4.4 8.8 2.6 9.6 2.6
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Figure 7 Allocated Flight Delay Distributions with RBS-EP A Value of 1.001

RBS as a baseline, we are still able to realize delay
reductions ranging from 5.3% for schedules that are
just as fair, to 6.4% if we relax this restriction. These
results suggest the importance of implementing an
optimization-based approach to TFM program coor-
dination before the prevalence and complexity of AFP
utilization increases.

4.4. Flight Delay Distribution

In addition to the summary statistics listed in the
tables in the previous section, it is important to con-
sider the distribution of delays for affected flights.
Airlines typically build slack into their flight sched-
ules to preserve connections between aircraft, crews,
and passengers. Delay that is less than the planned
slack can be absorbed without schedule modifica-
tions. Delay that exceeds the planned slack often
requires costly recovery operations. Thus, we need to
ensure that our approach does not lead to a heavy tail
of flight delays (i.e., a larger number of flights incur-
ring a large amount of delay).

Consider the flight delay distributions charted in
Figure 7 for the historical and hypothetical 6/28/2007
exemption RBS scenarios. These figures plot the num-
ber of flights that incur at least the specified number
of hours of delay (starting at 45 minutes), compar-
ing the exemption RBS schedule to the RBS-EP sched-
ule allowing df (f) plus 30 minutes of delay with
A =1.001. Although the distributions are similar, the
RBS-EP schedules have a longer tail, with many
flights incurring at least 2.5 hours of delay, more than
the maximum delay assigned in the exemption RBS
schedule. Based on the discussion in the preceding
paragraph, this is likely a significant issue.

6/28/2007 (historical)
1,200

........................................... | B Exemption RBS

RBS-EP (2.001)|

075 1.00 125 150 175 2.00 225 250 275
Hours of delay

Number of flights w/
at least the specified delay
[ e ] g
[eNeNel=R=1
SO OS DSOS O
p—————

Figure 8

Fortunately, the RBS-EP model provides an obvious
mechanism for resolving these issues. By increasing
the value of A, the base of the exponential penalty, it
puts additional pressure on the tail of the flight delay
distribution. For example, consider the updated charts
in Figure 8, for which we utilize A values of 2.001 for
each of the RBS-EP solutions, as compared to 1.001
in the previous charts. By increasing the value of A,
we have increased the total delay assigned from 1,429
hours to 1,443 hours in the historical scenario and from
1,527 hours to 1,581 hours in the hypothetical scenario.
In so doing, we have managed to shrink the tails of the
delay distribution, with the resulting schedules still
more efficient than the exemption RBS schedules. This
tradeoff between aggregate delay and the distribution
of delay is another important consideration in choos-
ing an appropriate value of A in practice.

4.5. The Value of Efficiency
In Table 12, we see that exemption RBS allocates a
total of 7,339 hours of delay across the 10 scenarios,
whereas the RBS-EP (Fair, 30) approach allocates 7,046
hours of delay and the RBS-EP (1.001, 15) approach
7,008 hours of delay. Thus, we estimate that the RBS-
EP model would lead to an overall delay reduction of
4.0% to 4.5% across days with conflicting TFM pro-
grams. Next, we would like to determine how much
cost reduction, for airlines, passengers, and related
industries, can be attributed to these delay reductions.
As mentioned in the introduction, the U.S.
Congress Joint Economic Committee estimates that
arrival delays cost the U.S. economy $25.7 billion in
2007 (Joint Economic Committee 2008). The Bureau of
Transportation Statistics estimates that in 2007, 37.7%
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of flight delays resulted from the previous flight
arriving late; thus, we estimate that the remaining
62.3% of flight delays are due to direct impacts
(Research and Innovative Technology Administration
2009). These direct impacts, to which we attribute the
full delay costs, led to 73.5 million minutes of delay,
of which we estimate that 21.3 million minutes were
due to ground holding programs using the Airline
On-time Performance Database (U.S. Bureau of Trans-
portation Statistics 2007). This represents approxi-
mately 30% of the direct impact delay; thus, we
attribute 30% of the total delay costs—$3.7 billion in
increased airline operating costs, $2.2 billion in pas-
senger time lost, and $1.8 billion in costs for related
industries—to TFM programs. Of the delay assigned
through these initiatives, approximately 13% was on
days during which domestic GDPs and AFPs were
both implemented. We consider these days our base-
line for improvement because the multiresource RBS
schedules are delay optimal when there are no con-
flicts between TFM programs. A 1% delay reduction
on these days would save airlines $4.8 million, pas-
sengers $2.9 million, and related industries $2.4 mil-
lion annually, a total of just over $10 million annually.
Combining this with the above, we estimate that
implementation of the RBS-EP model for coordinating
TFM programs would lead to annual cost savings on
the order of $25 to $50 million.

It is worth noting that the attribution approach
utilized likely underestimates the value in at least
two ways. First, by focusing our analysis on direct
impact delays we are assuming propagated delay
costs are allocated proportionally among different
root causes. This likely underestimates the costs asso-
ciated with TFM programs because these programs
typically result in larger magnitudes of delays that are
more likely to exceed schedule slack, leading to delay
propagation. Second, the Joint Economic Committee
estimates passenger delays by multiplying the num-
ber of passengers by the corresponding flight delays.
This approach does not include the impact of missed
connections or flight cancellations, both of which are
prevalent during TFM initiatives.

4.6. Computational Performance

To be implemented in practice, an optimization-based
approach to coordinating TFM programs must be
extremely fast, preferably returning a good solution
within a minute or less to support the subsequent
CDM procedures. Fortunately, this is not a concern
for either of our RBS-EP approaches, which use less
than 10 seconds of CPLEX solver time per instance.
As a reference, in Table 15 we list the CPLEX solver
times for the hypothetical exemption RBS scenarios.
We allow either 15 or 30 minutes of delay beyond
dRBS (f) and compare the solution times for A =

279
Table 15 CPLEX Times for Hypothetical Exemption RBS
Scenarios Using RBS-EP Model
CPLEX solver times (sec.)
RBS-EP (15) RBS-EP (30)

Date A=1.001 A=2001 A=1.001 A=2.001
5/2/2007 0.16 0.15 0.47 0.46
5/9/2007 0.12 0.12 0.45 0.44
6/19/2007 8.10 8.05 9.03 6.59
6/27/2007 2.15 3.37 3.70 7.69
6/28/2007 419 4.54 6.58 8.57
7/5/2007 0.39 0.39 1.32 1.32
7/16/2007 0.24 0.24 0.67 0.66
7/18/2007 1.34 3.54 3.68 7.68
7/27/2007 0.65 0.63 1.68 1.62
9/27/2007 0.51 0.51 2.09 2.06
Total 17.83 21.53 29.65 37.08

1.001 and A =2.001. Allowing a smaller amount of
delay in the model reduces the number of decision
variables, leading to a roughly 40% improvement in
CPLEX times, on average. The performance measure-
ments utilize the greedy integer rounding heuristic
described in §4.3, with a CPLEX relative optimality
gap of 0.01%. The computational tests are performed
on a PC with dual Xeon 3220 Quad-Core processors
and 16 Gigabytes of RAM, running Ubuntu v8.04 and
CPLEX v11.2 through the Java interface.

5. Conclusion

In this research, we develop an optimization-based
formulation that could be readily incorporated in
practice by the FAA. Specifically, based on principles
that have made RBS successful, we have developed
a time-order deviation metric for schedule fairness
that extends to the multiresource setting. This metric
allows us to evaluate optimization-based scheduling
approaches relative to each other, but more impor-
tantly, it allows us to compare these approaches to
the approaches currently utilized in practice. Using
this metric, we have demonstrated that in each of
the approaches used in practice to resolve conflicts
between TFM programs, an implicit tradeoff is made
between equity and efficiency. We have also demon-
strated that our two formulations, the TODA and
RBS-EP models, can improve efficiency while main-
taining a consistent level of fairness. Lastly, we have
shown that the RBS-EP model is computationally
tractable in practice, even for complex, national-scale
problems.

Introducing optimization into the FAA’s practices
has been a significant challenge, as should be appar-
ent from the literature review in §1.3. The RBS-EP
model addresses many of these challenges and should
thus provide a strong foundation for future research.
Our goal is to have the RBS-EP model represent the
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first step in an ongoing sequence of practical enhance-
ments to the FAA’s TEM procedures.
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