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Abstract 

We consider the analysis of linear programming relaxations of a large class of combinatorial problems that can be formulated 
as problems of covering cuts, including the Steiner tree, the traveling salesman, the vehicle routing, the matching, the T-join 
and the survivable network design problem, to name a few. We prove that all of the problems in the class satisfy a nice 
structural property, the parsimonious property, generalizing earlier work by Goemans and Bertsimas (1993). We utilize the 
parsimonious property to establish worst-case bounds between the gap of the IP and LP values for the class of 0-1 proper 
functions, leading to a new 2-approximation algorithm for this class of problems. We also extend the parsimonious property 
to a class of cut-covering problems that model certain instances of the edge-disjoint path problem. (~) 1997 Elsevier Science 
B.V. 
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1. Introduction subject to Z xe : f ( i ) '  i E D C_ V, 
eEr(i) 

Given an undirected graph G=(V,E)  with non- 
negative costs c e defined for every e E E, we consider 
the class of  problems described by the following inte- 
ger programming formulation: 

Z xe>>'f(S)' SC V, 
eEr(S) 

Xe E Z+,  

IZf  (D) = minimize Z CeXe 

eEE 
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where f : 2  v --~ Z+ is a given set function, and 6(S) = 
{e = (i,j) E E I i E S, j E V\S}. By selecting dif- 
ferent set functions f ( S )  and different sets D we 
can model a large class o f  combinatorial problems, 
including the Steiner tree, the traveling salesman, the 
vehicle routing, the matching, T-join and survivable 
network design problems (see [6]). 

Let IPT(D) be the underlying feasible space of  
IZT(D). We denote the LP relaxation as Pf(D), in 
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which we replace constraints xe E Z+ with x~ ~>0. 
We denote the value of the LP relaxation as Zf (D). 
Goemans and Bertsimas [4] studied the survivable 
network design problem, in which the objective is 
to design a network at minimum cost that satis- 
fies connectivity requirements (for each pair (i,j) 
of nodes in V, the solution should contain at least 
rij edge disjoint paths) and considered an integer 
programming formulation of the type IPf(D) with 
f ( S ) =  maxu,j)~6(s ) rij , D = 0 .  They showed the 
following property, which they call the parsimonious 
property, which in our notation can be stated as: 

Theorem 1 (Goemans and Bertsimas [4]). I f  the costs 
ce satisfy the triangle inequality (cij <~ cik + ckj for 
all i,j,k E V), then for the survivable network design 
problem ( f  (S)= max(i,j)~,~(s) rij),for all D C_ V: 

Zf(D)=Zf(O). 

In other words, the degree constraints are unneces- 
sary for the LP relaxation in the survivable network 
design problem. They further examine several 
sometimes surprising structural and algorithmic 
properties of the LP relaxation, and examine the 
worst-case behavior of IZf(O)/Zf(O) for the sur- 
vivable network design problem. Goemans and 
Williamson [6], Williamson et al. [17] and Goe- 
mans et al. [5] show interesting worst-case bounds 
on the ratio IZf(O)/zf(O ) for more general set 
functions f (s). 

Our goal in this paper is to understand the class of 
problems for which the parsimonious property holds 
and examine several implications of the parsimo- 
nious property. The contributions of this paper are as 
follows: 
1. We continue the program started in [4] by iden- 

tifying a set of conditions on the set function 
f (S ) ,  for which the parsimonious property holds. 
In this way we prove that a large collection of 
classical combinatorial problems satisfy it includ- 
ing the matching problem, the T-join problem, a 
relaxation of the vehicle routing problem, some 
disjoint path problems, and some b-matching 
problems. In particular all problems considered in 
Goemans and Williamson [6] satisfy it. We also 
find that if the set function f ( S )  does not satisfy 
this set of conditions, the parsimonious property 

does not hold. Goemans [3] has also independently 
developed this generalization using the technique 
in [4]. We prove the parsimonious property by 
extending an observation of Frank [2] for match- 
ing problems. 

2. We use the parsimonious property to give simple 
proofs of the integrality of some polyhedra Pf (D). 

3. We further extend the parsimonious property 
under more general conditions and examine its 
implications to the disjoint path problem. We find 
that this extension is the source for several results 
in this area. 

4. We offer a new proof technique that utilizes the 
parsimonious property to find bounds on the ratio 
IZf(O)/Zf(O), when f is 0-1 proper (defined 
later). Our proof technique leads to a new approx- 
imation algorithm for this class of problems. 

The paper is structured as follows. In Section 2, we 
introduce the properties of the set function f (S) that 
imply the parsimonious property and examine clas- 
sical combinatorial problems that can be modeled in 
this way. In Section 3, we prove the parsimonious 
property as well as the dual integral parsimonious 
property. In Section 4, we examine applications of 
the parsimonious property to the integrality of certain 
polyhedra Pf(D). In Section 5, we introduce a new 
proof technique to bound the ratio IZf (O)/Zf (0). This 
proof technique gives rise to a new approximation al- 
gorithm for the problems considered in Goemans and 
Williamson [6]. In Section 6, we further extend the 
parsimonious property and apply it to the analysis of 
the disjoint path problem. 

2. Parsimonious set functions 

In their study of the approximability of problems in 
the class IPf (0), Goemans and Williamson [6] (for the 
case that f ( S )  takes values in {0, 1 }) and Williamson 
et al. in [17] (for the case that f ( S )  takes values in 
Z+) introduce the following set of conditions for the 
set function f (S ) .  

Conditions A (Proper set functions): 
1. f (O) = O. 
2. Symmetry: f ( S )  = f ( V \ S )  for all S C V. 
3. Properness: If S n T = 0, S, TC V, then f ( S  U T) 

<<, max{ f (S ) , f (T )} .  
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We next introduce the following set of conditions: 

Conditions B (Parsimonious set functions): 
1. f (O)  = 0. 
2. Symmetry: f ( S ) = f ( V \ S )  for all SC_ V. 
3. Node subadditivity (NS): If S n {x} = 0, then 

f ( S  U {x})<~f(S)  + f ({x}) .  
4. Quasi-supermodularity (QS): For all S, TC_ V, 

S n T # 0. Either 

f ( S )  + f ( T ) < f ( S U  T) + f ( S n  T) 

o r  

f ( S )  + f ( T ) < ~ f ( S \ T )  + f ( T \ S ) .  

We also introduce the general subadditivity condi- 
tion: 

Subadditivity: If S N T ---- 0, then f ( S  U T) <~f(S) 
+f (T) .  

The QS property was also introduced in the pa- 
per of Goemans et al. [5], who used the term weakly 
supermodular. 

Conditions B are more general than Conditions A: 

Proposition 1 (Goemans et al. [5]). Let f be a sym- 
metric, set function with f ( 0 ) = 0 .  Then, i f  f is 
proper, it is quasi-supermodular and node subaddi- 
tire. 

Proof. I f f  is a proper function, then clearly f is node 
subadditive. Among the terms f ( S n  T), f ( S U  T), 
f (S\ T ), f (T\S), say f (S n T) attains the minimum. 
By properness, f(S)<~ m a x ( f ( S n  T ) , f ( S \ T ) ) =  
f ( S \ T ) ,  and f(T)<<, m a x ( f ( S N  T ) , f ( T \ S ) ) =  
f ( T \ S ) ,  and so f ( S )  + f ( T ) < ~ f ( S \ T )  + f ( T \ S ) .  
The other cases follow similarly from symmetry 
o f f .  [] 

We next describe problems that are parsimonious 
but not proper. 

2.1.1. The b-matching problem with b(i) E { a , a+  1} 
Given numbers b(i) such that ~ i c v  b(i)= 2r, the 

problem can be modeled in the form of IPf (D) with 
D = V and 

1 VS: IS[/>2 and 

f ( S )  = ~iEs b(i) = 2k + 1, 

b(i) S = { i } ,  V\{i}. 

Notice that the function f is not proper, because for 
S, T disjoint whose union is V\{i} the definition is 
violated. However, the function f ( S )  is QS. While 
f is not subadditive for general sets S, T, it is node 
subadditive if b( i ) E { a, a + 1 }. 

2.1.2. The capacitated tree problem 
Given a graph G = (VU {0},E), nonnegative de- 

mands di, i E V, a depot 0, costs ee, e E E. We would 
like to design a tree of minimum cost such that each 
subtree from the depot has demand at most Q. The 
capacitated tree problem is a popular relaxation of the 
vehicle routing problem. A valid cutset formulation 
of the capacitated tree problem is of the type IPT(0) 
with 

f (S) = ~i~s  ai 
Q ' 

f (S U { 0 } ) -  ~i~v\sai  
Q 

It is obvious that f ( S )  does not satisfy Conditions A, 
since it is not proper but it satisfies Conditions B. It is 
clearly symmetric and subadditive as we show below, 
for S, T C V such that S N T = 0 

f ( S  U T) - ~-~iCSuT di _ f ( S )  + f ( T ) ,  
Q 

2.1. Examples of  problems 

In Table 1 below we review several classical 
combinatorial problems formulated using the cut-set 
formulation IPT(0) for f satisfying Conditions A, 
(and therefore B). All these problems are shown to 
be proper in [6]. 

f ((S U {0}) U T) - ~i~v\(suT) di 
Q 

<~ f ( S  U {0}) 

<~ f ( S U  {0})+  f (T ) .  
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Table 1 
Set functions f ( S )  satisfying conditions A (and therefore B) modeling various integer programming 
problems IPf(0) satisfying Conditions A 

Problem f (S) Conditions 

Spanning tree 1, for all S 7 ~ 0, V A 
Steiner tree I, if S N T ¢ 0, T A 
Shortest path 1, if IS N {s, t}l -- 1 A 
Generalized Steiner tree 1, if S N Ti~ 0, Ti, i = 1 .... , k A 
Nonbipartite matching 1, if I S [ -  2k + 1 A 
T-join 1, if ]SN T I -2k + 1 A 
Network survivability max(i,/) E a(s) r!/, rij >/0 A 
k-connected graph k for all S 7 ~ ¢, V A 
Tree partitioning 1, if  IS[ ~<k, IS[ >~n - k A 
Point-to-point connection 1, if I S n C I ¢ [S n D] A 

It is also QS, since for S, T C V, 

f ( S  U T ) + f ( S  A T) -- 
Sicsurdi ~i~S~T4 + 

Q Q 

E i E S  di ~ i c  Tdi 
Q Q 

= f ( S )  + ,f(T), 

f ( ( S U  {O})U T)+ f ( ( S U  {O})N T) 

EiEV\(SuT)  di ~ i E s n T d i  + 
Q Q 

<~f((S U {O})\T) + J ( T \ ( S  U {0})), 

f((Su {O})u (T U {0})) 

÷ S ( ( S  U {O})N(T U {0})) 

~ i 6 v \ ( s u r )  di ~ i c v \ ( s n T ) d i  + 
Q Q 

= f ( S  U {0}) + f ( T U  {0}). 

3. The parsimonious property 

The cut-set formulation introduced in the previous 
section captures many of the classical optimization 
problems studied in the literature. It is thus interesting 
and indeed surprising that the parsimonious property 
holds for the LP relaxations of these problems. In the 

remainder of this section, we prove the parsimonious 
property using linear programming duality extending 
an observation of Frank [2] for the matching problem 
to the general class of problems Pf (0). 

The dual of Pf(D) is as follows: 

DZf (D) = maximize 

subject to 

y(S)f (s) 
s c v  

y(S)<~c(e), eEE, 
S: eE6(S) 

y(S)>~O, SCV,  S ¢ { i } ,  

Vi ED. 

Let DPf (D) be the dual polyhedron and DZf(D)  de- 
note the optimal objective value. To prove the par- 
simonious property using a dual argument, we only 
need to show that among all dual optimal solutions 
to DPf(D), we can always choose one with y(v)>~O 
for all v E D. This solution is then feasible to DPf (0). 
Let ,Y- be a collection of sets (subsets of V). We call 
this family of sets laminar if for all A, B E .Y- either 
A N B = 0 ,  orA CB, o r B C A  (see [13]). 

Theorem 2 (Parsimonious property). I f  the cost 
function c satisfies the triangle inequality, and f is 
a parsimonious set function, then 

Z f ( O ) = Z f ( O )  forallDC_ V. 

Proof. Let y be a dual optimal solution in DPf(D). 
By the QS property, we may assume that the set 
,~-: = {S: y(S)> 0} is laminar, since we can always 
replace two intersecting sets S and T by S\T, T \S  or 
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S N T, S U T. Suppose there exists a v E D such that 
y(v) <0. For all A C o~ containing v, we replace A by 
V\A, i.e., we set 

y(A)+-O, y(V\A)*-- y ( V \ A ) +  y(A). 

In this way, we obtain another dual optimal solution 
with no member of o~ containing v. Note that o~ is 
still laminar. 

Let p ( e ) =  ~s:ecr(s)y(S).  By dual feasibility, 
p(e)<~e(e). We may assume that there is a uE V 
such that e=(u ,v )  and p(e)=c(e) ,  since we can 
increase y(v) otherwise. Let A be a maximal member 
of ~- containing u. Let A = min(-y(v) ,  y(A)). We 
modify the dual solution as follows: 

y(v) ~-- y(v) + A, 

y(A U {v}) *-- y(A U {v}) + A, 

y(A) +--- y(A) - A. 

To check for feasibility of this modified solu- 
tion, we only need to consider edges of the form 
(v,w) where w is not in A. Note that by the 
construction of o~, p(u, w) = p(v, w) + p(u, v) - 
2y(v). Hence, e(v, w)>>,e(u, w) - e(u,v)=e(u, w) - 
p(u, v) >~ p(u, w ) -  p(u, v) --- p(v, w) -2y (v )  >~ p(v, w) 
+2A. Thus, the modified solution is dual feasible. 
Since f ( S )  is symmetric and node subadditive, the 
objective value of the new dual solution does not 
decrease. Therefore, the modified solution is also op- 
timal. By repeating this procedure, we can construct a 
dual optimal solution with y(v) >>, 0 for all v in D. [] 

Notice that if y in the above proof takes only in- 
tegral values, then A can be chosen to be integral. 
This yields an integral analogue of the parsimonious 
property in a dual sense. Let DIZf(D) denote the op- 
timal objective value over DPf(D) with integrality 
constraints on y(S). 

Theorem 3 (Dual integral parsimonious property). 
I f  f is parsimonious, and c satisfies the triangle 
inequality, then DIZf(O)= DIZf(D). 

The parsimonious property does not hold if we relax 
either the QS or the node subadditivity property. 

Consider the set function f on 3 nodes as follows: 
f (vl) = f ({ v2, v3 } ) = 1, f (S) = 0 ,  otherwise. Then 

clearly f is QS, but it is not node subadditive. In this 
case the parsimonious property does not hold, as the 
polyhedron Pf (V) is empty. 

On the other hand, subadditivity alone does not 
guarantee the parsimonious property. Define f on 4 
nodes as follows: f ( S ) =  1 if ]S[ = 1 or 3, f ( S ) = 2 ,  
otherwise. Then f is clearly subadditive and sym- 
metric. In this instance, Pf(V)  is again empty, 
since ifx(vi, v j)>0 and x(6(vi))=x(6(vj))= 1, then 
x(6({vi, vj})) <2.  

Although the condition that the cost function c 
satisfies the triangle inequality seems restrictive, 
for problems of the form IP/(0), i.e., with no de- 
gree constraints, we can ensure that this condition 
is met by the following transformation. Let c~(u, v) 
denote the shortest path between u and v with c as 
the length function. Clearly, e ~ satisfies the triangle 
inequality. Let IZ)((~) and Z~ (0) denote the respec- 
tive solution value with c' as the objective function. 
We use the technique introduced in [4] to prove: 

Theorem 4. 

Z]. ((~) = Zf (0), IZ~ (0) = IZ/(I~). 

Proof. Let x be an optimal solution to P~(~) (or 

IP~(0)). Consider an edge e=(u,v)  such that c'(e) 
<c(e).  Let P be a shortest path (with respect to c) 
linking u and v. Then P ~ {e}, and c'(g) = c(g) for 
each edge g on P. I f x ( e ) > 0 ,  we let x(e)~--O, and 
x(g) ~ x ( g )  + x(e) for each edge g on P. Clearly the 
solution is still feasible, and since cl(e) = ~g~e c(g), 
the cost of the new solution is the same, thus it is also 
optimal. Repeating this procedure, we have x(e)> 0 
only when c~(e) = c(e), thus proving the theorem. [] 

4. Applications in proofs of integrality of polyhedra 

An important direction of research in integer pro- 
gramming is the development of techniques to show 
integrality of the associated polyhedra for integer pro- 
gramming problems. Perhaps the most common proof 
technique is algorithmic. Researchers develop an opti- 
mal algorithm for a combinatorial optimization prob- 
lem, which at the same time shows integrality of a 
proposed formulation for the problem. In this section 
we show that the parsimonious property leads to non- 
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algorithmic, genuinely simple proofs of integrality of 
some polyhedra Pf (D), yielding new simple proofs of 
some classical results as well as some new results. 

A milestone in combinatorial optimization is the 
proof of integrality [1] of the perfect matching poly- 
hedron. This result follows directly from the integral- 
ity of the T-join polyhedron, as the perfect matching 
polyhedron is a face of the T-join polyhedron. Sur- 
prisingly, we can derive the integrality of T-join poly- 
hedron from that of the perfect matching polyhedron, 
using the parsimonious property. Let Conv(S) denote 
the convex hull of the set S. 

Theorem 5. Let f ( S ) :  1, i f  [S N T I is odd, 0 other- 
w&e. Then 

Conv(IPf(0)) = PT (0). 

Proof. Let f r  be the restriction of f to T, defined on 
S c T. Note that IPfr(T ) is just the perfect matching 
polyhedron on T. We show next that IZf (~) -- Zf (~) 
for all integral cost functions c. By Theorem 4, we 
may assume c satisfies the triangle inequality. The 
following inequalities are immediate: 

IZf(O) ~< IZfr (0) ~< IZfr (T). 

From the integrality of the perfect matching problem 
IZfT(T ) =Zfr(T  ). From the parsimonious property 
Zf r ( T ) = Zf T ( O ) <<. Z f (0), yielding that 

IZf (0) ~< Zf 03). 

The reverse inequality holds trivially and so 
IZf(0) = Zf (0), which shows integrality of the T-join 
polyhedron. [] 

The shortest path polyhedron can be treated as a 
Steiner-l-connectivity polyhedron on two terminal 
nodes. Integrality of the polyhedron also follows 
easily from the parsimonious property. We general- 
ize this result, using the parsimonious property, and 
show that the cut set formulation for the Steiner-2- 
connected polyhedron with at most 5 terminal vertices 
is integral. 

Theorem 6. For the Steiner-2-connected problem on 
at most 5 terminal nodes, 

Conv(IP¢- (0)) = pf (0). 

Proof. It is well known [11] that the subtour elimina- 
tion polyhedron for the traveling salesman problem, 
which can be represented as Pf (V) with f ( S )  = 2, on 
at most 5 nodes is integral. From the parsimonious 
property the result follows easily. [] 

We next consider the uncapacitated multicommod- 
ity flow problem with a single source s, multiple 
sinks D={q , t2  . . . . .  tk} modeled as IP_u(0), with 
f(S)=-ID•S[ if sq~S and U ( S ) = f ( S )  if sES .  
Algorithmically, the problem reduces to the computa- 
tion of the corresponding shortest paths between the 
source and the sinks. Note that if D = V the prob- 
lem is the shortest path tree problem. We show next 
that the polyhedron PU (0) is integral. This result also 
follows from Johnson [7]. 

Theorem 7. For the uncapacitated multicommodity 
flow problem with a s&gle source and multiple sinks, 

Conv(lPf(O)) = Pf (~). 

Proof. We can assume without loss of generality 
that the cost satisfies the triangle inequality. Clearly, 
IZf (0) ~< IZf (V). Since Pf (V) has only a single inte- 
gral solution with x(s, ti) = 1 for each i = 1,2 . . . . .  k, 
I Z f ( V ) = Z f ( V ) .  By the parsimonious property, 
Zf (V)  = Zf (0). Thus, IZf(O)<<,Zf(O), and the result 
follows. [] 

5. Applications in worst-case analysis 

In recent years there has been a lot of interest in 
the approximability of combinatorial optimization 
problems. Typically researchers propose a heuristic 
algorithm for an integer programming problem (a 
minimization problem) and compare the value of the 
heuristic to the value of the LP relaxation (or to the 
value of a dual feasible solution of the LP relaxation). 
A very nice and very general example of this ap- 
proach is the 2(1 - (1/ITI)) approximation algorithm 
(T = {v E V: f ( v )  = 1}) proposed in [4] for the prob- 
lem IPf(0) with f being proper (Conditions A) and 
taking values in {0, 1 }. A corollary of their result is 
the bound IZf(O)/Zu(O) <<. 2(1 - (1/1T[)). A distinct 
characteristic of their method is a reverse deletion 
step, in which edges that were added in the solution 
are deleted. 
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In this section we propose a new proof method 
that shows that IZf(O)/Zf(O) <<. 2(1 - (1/I T I)) for 0-1 
proper functions. 

5.1. A proof technique to bound the ratio IZf(0)/  
zi(o) 

We consider problem IPf(0) with f being a 0-1 
proper function, and integral costs Ce. The latter is 
without loss of generality, since, if the costs are ra- 
tional we can rescale them to integers by multiplying 
them by an appropriate large integer without affect- 
ing the optimal solution. Let T = {v E V: f (v)= 1}. 
Our proof technique uses the crucial observation that 
a minimal integral solution to the problem must be a 
forest, and thus has at most ITI - 1 edges. An integral 
solution is minimal if it does not properly contain any 
other feasible integral solution. 

Theorem 8 (Goemans and Williamson [6]). I f f  is a 
O- 1 proper function 

IZy(0) ~<2 (1 - ~T~) Zf(0). 

Proof. For the purpose of contradiction we assume 
the contrary. Therefore, there exists a counterexample 
on the least number of nodes, with f proper and c 
nonnegative. We may further assume that EeEE c(e) 
is minimal. 

Suppose there is a v with f ( v ) = 0 .  Let f '  de- 
note the restriction of f on V\{v}. It can easily be 
checked that f / i s  still proper. By the minimality of the 
counterexample, 

IZf'(O)<~2 ( 1 -  ~TI) Zf'(O). 

Since the optimal solution in IPf,(0) is also feasi- 
ble in IPf(0), IZf(0)~<IZf,(0). From Theorem 4, 
by using the shortest path distances Zf(O)--Z~(0) 
a n d  Z f , ( O ) - Z t f , ( O )  But, Z),(O)=Z'({v}) By the 

- -  _ • f - 

parsimonious property Zry(O)=Z~f({v})=Z'f,(O). 
Therefore, 

IZf(O)<~2 ( 1 -  ~TI) Zf(O), 

which is a contradiction. So we may assume f(v) = 1 
for all v. 

If there is an edge e = (u, v) E E with C e = 0, then by 
contracting this edge, and treating {u, v} as a super- 
node, we restrict the problem to one of strictly smaller 
size. By the minimality of the counterexample, there 
exists a solution that satisfies the theorem. By intro- 
ducing the edge (u, v), with no extra cost since ce = 0, 
if necessary, we obtain a solution feasible to the orig- 
inal problem and the theorem holds. Therefore, we 
may assume ce > 0 for all e. 

Now let y(v)= ½ for all v and consider the cost 
function c' where Cle = Ce - 1 ( C~e >~ 0 from the previous 
paragraph). By the minimality of c, there exist x, y~ 
such that x E IPf(0), ~-~s: eEl(S) y'(S) ~Cle and 

CeX e y'(S)f(S). 
e S 

Since f is 0 - 1, Xe corresponds to a forest and, there- 
fore, 

E X e  ~ IT[-- 1 : 2  ( l - -  ~T~) 
e 

x ~ - ~ Y ( V ) = 2 ( 1 - ~ T ~ ) ~ f ( v ) y ( v ) .  
s s 

The last equality holds, since we have shown that we 
can assume f(v) = 1. Let y* = yt + y. Note that 

1 1 
E y * ( S ) =  ~ y(S)+-~+~<~C'e+l=ce 

S: e~6(S) S: eE6(S) 

and so y* is dual feasible. Therefore, 

eeXe ---- C'eX  + Xe 
e e e 

< ~ 2 ( 1 - ~ T I ) E Y * ( S ) f ( S ) "  

This is again a contradiction and the theorem 
follows. [] 

Although the proof method in Theorem 8 is non- 
algorithmic, it also leads to an algorithmic method to 
construct an approximate solution. It differs from the 
Goemans and Williamson's algorithm in that it needs a 
preprocessing step to compute pairwise shortest paths. 
With this in hand, we can discard all vertices with 
f(v) = 0. We call these vertices the Steiner vertices. 
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This approach avoids the critical reverse deletion step 
in the Goemans and Williamson's algorithm, at the 
expense of computing pairwise shortest paths. Our al- 
gorithm is as follows: 
Approximation algorithm for 0 - 1 proper functions 
1. Compute the pairwise shortest path distances for 

all pairs of  non-Steiner nodes. 
2. Discard the set of Steiner nodes. Select an edge 

with the least cost. Merge the two end nodes into 
a supernode, delete all edges joining these two 
nodes. 

3. Repeat Step 2 until two supernodes merge to form 
a set S with f ( S )  = 0. Let e t be the last edge se- 
lected. If  there are no more non-Steiner nodes, go 
to Step 4. Else, for all edges remaining, reduce the 
cost coefficients by c(e ~) and return to Step 1.1 

4. Replace the edges selected in Steps 2 and 3 by 
its corresponding shortest path. Delete edges 
(if necessary) if cycles exist in the subgraph 
selected. 

For the Steiner tree problem, our algorithm emu- 
lates the MST heuristic on non-Steiner nodes with 
the pairwise shortest distance metric. In this respect, 
Theorem 8 generalizes the well-known fact that 
the MST heuristic gives a 2 ( 1 -  (1/ITI)) ap- 
proximate solution to the minimum Steiner tree 
problem. 

For arbitrary proper functions f ,  as Goemans 
and Williamson [6] observe, we can construct 
a feasible solution by utilizing Theorem 8. Let 
Pl < P2 < • " " < Pn be the distinct values of f ,  and 
for each i, fp i (S)=  1 if f (S)>~pi  and 0 otherwise. 
Note that fpi is proper 0 - 1. By appending Pi - -  Pi-I 
(P0 = 0) copies of  the approximate solution to fp, 
for each i = 1,2 . . . . .  n, we obtain a feasible solution 
which is within 2W(p l ,  p2 . . . . .  p ,  ) times of the opti- 

n 
real solution, where ~¢t~(pl, P2 . . . . .  P , )  = ~i=l(Pi  - 
Pi-i ) / P i .  Similarly, for arbitrary QS functions we 
can use the results of [5] to find 

IzA0) < ~ 2 ~ ( p l ,  p 2 , . . . ,  p , ) Z A O ) .  

6. Weakly parsimonious functions and the disjoint 
path problem 

A natural question is whether node subadditivity 
and quasi-supermodularity (QS) are the most general 
conditions on the set function f for the parsimonious 
property to hold. To this end, we introduce a third set 
of conditions on the set function f :  
Conditions C ( Weakly parsimonious set functions): 
1. f (O)  = O. 
2. Symmetry: f ( S ) =  f ( V \ S )  for all S C V. 
3. Weak subadditivity (WS): I f  S A{x}  =0 ,  then 

f ( S U  {x})<~f(S).  We will then say that x is a 
weakly Steiner vertex. 

4. 2-Quasi-supermodularity (2-QS): For every three 
mutually crossing sets (two sets S, T are crossing 
if all of S\T ,  T\S,  S A T  are nonempty) at least 
two of them satisfy the QS property. 

Compared with Conditions B (parsimonious set 
functions), weak subadditivity is stronger than node 
subadditivity, while the 2-QS property is a relaxation 
of the QS property. In other words, there are set func- 
tions f satisfying one of conditions B or C but not 
the other. 

In this section we show that the parsimonious prop- 
erty still holds for weakly parsimonious set functions 
and observe that these relaxed conditions provide a 
unifying understanding of several results on the dis- 
joint path problem. 

We next prove that the parsimonious property holds 
for weakly parsimonious functions, using the splitting 
technique of [9] and used in [4]. 

Definition l (Splitting operation). For some u,w 
with x(v, u) > 0, x(v, w) > 0, we split v using u, w by 
the following modification: 
• x ( v , u ) + - - x ( v , u )  - ~, 

• x ( v , w ) ~ x ( v , w )  - ~, 

• x ( u , w ) ~ x ( u , w ) + ~ .  

Note that the splitting operation does not increase 
the objective value, if  the cost function satisfies the 
triangle inequality. 

1Note that the new cost coefficients obtained this way need 
not satisfy the triangle inequality. We need to perform another 
shortest path computation with these new cost coefficients. 

Theorem 9. Let D be the set o f  weakly Steiner ver- 
tices. I f  c satisfies the triangle inequality, and f is 
weakly parsimonious, then 

Zr(D) = Zf(O). 
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Proof. Let v E D, u E V, and suppose x(6(v)) > 
f (v) ,x (v ,u)>O,  where x is an optimal solution in 
Pf(~)). Consider the minimal tight sets that contains v 
but not u. By the 2-QS property, there exist at most 2 
such minimal sets, say $1 and $2. Then all tight sets 
containing v but not u must contain one of these two 
sets. 

We show next that there is a w in S1 N $2 with 
x(v, w )>  0. Assuming the contrary, then 

f ( S i )  = x (6(S i ) )=x( f (S i \ {v} ) )  

+x(6({v}, st)) - x(6({v}, st)) 

>~ f ( S i \ { v } )  + x(f({v},S~)) - x(f({v},Si)) .  

From weak subadditivity, f(Si\{v})>>, f (Si ) ,  hence, 

x(6({v},S~))~x(6({v},St)). 

Since we have assumed that x(3({ v }, $1 N $2 )) = O, we 
rewrite the inequality for i = 1,2 and obtain 

x(6({v},&\s~))+x(6({v},S~ tOs2)) 

<x(6({v},S~\S2)) 

and 

x(6({v}, sl \s2)) + x(6({v}, sl u s2)) 

~< x(6({v}, s2\sl )). 

As we show next, this corollary provides a unifying 
way to understand several seemingly unrelated results 
for the edge-disjoint-path (EDP) problem. 

6.1. 2-QS functions and the disjoint path problem 

Given an undirected graph G = (V ,E) ,  a collec- 
tion of source-sink pairs (sl, tl } . . . . .  {sk, tk}, the EDP 
problem asks whether there exists a collection of edge 
disjoint paths in G, each joining a source to its corre- 
sponding sink. Let H denote the demand graph, with 
edge set {(sl, tl ) . . . . .  (sk, tk)}. Let xG(e) = 1 if e E G 
and let xn(e) -- 1 if e E H. 

Clearly, a necessary condition for the existence of 
these paths is the cut-criterion: 

xo(f(S))>>.xH(6(S)) for all S C  V. 

There has been an extensive literature (see, for exam- 
ple, [2, 14]) that finds conditions on G and H, so that 
the cut-criterion is both necessary and sufficient for the 
existence of a solution to the EDP problem. Let Kn, Cn 
denote, respectively, the complete graph and the cycle 
on n nodes. We also denote the disjoint union of m 
copies of Kn by mK,. The following results are known: 

Theorem 10. I f  G + H is Eulerian, and H & either 
a double star or a K4 or a Cs, then the cut-criterion 
is necessary and sufficient for the solvability of  the 
EDP problem. 

Hence x(6({v}, $1 tO $2)) ~< 0, which is a contradiction 
since x(v, u) > 0 and u E S1 t3 $2. Therefore, there ex- 
ists a w in S1 n $2 with x(v, w) > 0. By splitting at v us- 
ing u, w, we obtain another feasible optimal (because 
of the triangle inequality) solution. By repeating this 
procedure, we obtain an optimal solution in Pf(D), 
thus proving the theorem. [] 

The above proof actually yields the following: 

Corollary 1. Let G be an Eulerian multigraph and 
xc be the incidence vector of  G. Let f be an even, 
2-QS set function. I f  xa is a feasible integral solu- 
tion to IPf(0) and x( f(v) ) > f ( {v} ) for some weakly 
Steiner vertex v E V, then there exists {u, w} and an 
edge splitting operation of  v at {u, w}, yielding a new 
Eulerian graph G ~ and a corresponding incidence vec- 
tor xa, that is a feasible integral solution to IPf(O). 

The case in which H is a 2/£2 was proved by 
Rothschild and Whinston [12]. The double star case 
follows easily from their result. The K4 case was 
proved by Seymour [15] and Lomonosov [8] inde- 
pendently. The C5 case is due to Lomonosov [8]. See 
[2, 14] for nice proofs and exposition of these results. 

At first sight these results appear to be unrelated 
without a unifying characteristic. We could use the 
theory developed in this section to identify the unify- 
ing characteristic of all the above results contained in 
Theorem 10. The central reason is that the set func- 
tion xi4(6(S)) in these cases has the 2-QS property. In 
particular it is easy to prove the following proposition: 

Proposition 2. The set function X~l(6(S) ) has the 2- 
QS property i f  and only i f  H does not contain a 3K2 
or disjoint copies of  K3 and K2. This in turn holds if  
and only i f  H is a double star or a K4 or a C5. 
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In order to see how Proposit ion 2 can be used to 
prove Theorem 10, let us rewrite the cut condi t ion as 

follows: 

xc+i4(6(S))  >1 f ( S )  = 2xH(6(S)).  

Under  the assumptions of  Theorem 10 and using 

Proposit ion 2, x6+14 corresponds to a Euler ian graph 
(by assumption) ,  while f is an even,  2-QS set func- 
tion. Let D - -  V\{s~ ,h  . . . . .  sk, tk} be the nodes in G 
that do not  be long to a source-sink pair. In our con- 
text D is the set o f  weakly Steiner vertices. Apply ing  
Corollary 1 we can then perform edge-spli t t ing opera- 

t ions on the edges of  G to obtain a new graph G I that 
satisfies the cut criterion, but  with edges incident  only 
to the sources or sinks. The rest o f  the proof  involves 
showing that G' has the set o f  edge-disjoint-paths 
jo in ing  each source-sink pair. This  follows from a 
tedious case by  case analysis  which we omit  here, as 
it is unrelated to the theme of  the paper. By  reversing 

the edge-spli t t ing operations, we obtain a set o f  edge- 
disjoint-paths in G that meets the cut criterion, thus 

proving Theorem 10. 
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